Skip To Content

Birch Lake


View Larger Map

Location

Division No. 13 AB
Canada

Birch Lake


View Larger Map

Location

Clearwater County AB
Canada

Birch Lake


View Larger Map

Location

SK
Canada

An assessment of non-conventional drinking water in the Peace, Athabasca and Slave River basins


Year: 1997

Abstract:
It is estimated that approximately 25 % of the residents of the Northern River Basins Study area do not receive their drinking water from conventional drinking water treatment facilities. Therefore, these people rely on alternative sources for their drinking water supply. This report assesses the utilization and quality of the different non-conventional sources of drinking water that are used by people that do not consume conventionally treated water. Some of the non-conventional drinking water supplies utilized in the NRBS area include: (1) self-hauled treated water; (2) untreated surface water; (3) dugout water; (4) groundwater; (5) environmental sources of water such as snow, rain, and birch tree water; (6) bottled water; and (7) water treated by a variety of point-of-use technologies. There were four main research components in the assessment of these non- conventional drinking water supplies. First, the results of an in-depth review of the literature available on non-conventional drinking water sources, drinking water quality and the correlation of drinking water and health is presented in the first part ofthis report. Although the literature was limited on the actual consumption and quality of most of the non-conventional sources of drinking water consumed in the study area, substantial information exists on conventional drinking water quality as well as considerable information on several point-of-use treatment technologies. Essentially, the best type of point-of-use treatment depends on the raw water source. Perhaps the best point-of-use treatment method to use on water o f unknown quality is to boil it. The recommended boiling time in the literature varies considerably from simply heating the water to 50°C to vigorous boiling for 15 minutes. However, the majority of the authors cited a full boil for 1 minute as being sufficient to inactivate most pathogens. Besides boiling, there are numerous other point-of-use treatment technologies that employ disinfection (ultraviolet disinfection, ozonation, chlorination, iodination) and mechanical particle removal processes (such as sedimentation and filtration). The best available technology depends on the raw water source and likely incorporates more than one process to provide multiple barriers to ensure adequate drinking water quality. The second component of research regarding non-conventional drinking water in the Northern River Basins Study are was to visit selected NRBS communities and interview residents regarding their non-conventional drinking water practices. Remote areas around Fort Chipewyan, John D’Or Prairie, Fox Lake and Atikameg were visited and residents were asked about the sources and utilization on non-conventional drinking water supplies, as well as their overall drinking water quality concerns. It was through these informal interviews that most of the information was collected on the types of non-conventional drinking water used and how it was treated, if at all, prior to consumption. Many of the people interviewed discussed the deterioration of some of the surface water sources in the study area, but the majority of the concerns presented regarding drinking water quality in this study was in regards to the addition of chlorine in the conventional drinking water treatment process. Based on this, it was found that some people who do have conventionally treated water delivered to their home, collect a non-conventional supply of water for consumption such as from a nearby lake or river. This water has been called “special drinking water” by those consumers. It was also based on these findings that a series of population sub-groups that may be particularly pre-disposed to consuming non-conventional drinking water was postulated. First, those that live in remote areas not i serviced by conventional drinking water facilities are obvious consumers of non-conventional drinking water supplies. Second, some NRBS residents may be traditional consumers of alternative drinking water supplies. Many elderly residents may be included in this second group. Third, NRBS residents may consume non-conventional drinking water as a result of cultural activities such as living off the land expeditions or other wilderness activities. And the final group includes those individuals that consume non-conventional drinking water supplies for health reasons. This may include people that drink bottled water for its perceived health benefits as well as those that consume special drinking water to avoid the taste and smell o f chlorine in conventionally treated water. Third, during these field trips, samples of non-conventional drinking water were collected and these samples were analyzed for various physical, chemical and microbiological parameters. The non- conventional samples collected included untreated lake, river and creek water, spring water, groundwater well water, snow water, bottled water, and one sample of water treated with a point-of- use filter. Although the number of samples collected was limited and does not allow for absolute conclusions, several trends can be hypothesized. It was found that untreated surface water did not meet many of the physical, chemical and microbial guidelines in the GCDWQ. Although the groundwater samples collected met the microbiological limits in the GCDWQ, some physical and chemical parameters may be exceeded. The bottled water samples were found to have a very high background bacterial count and the point of use device tested was found to have actually contributed coliforms to the influent water supply. The fourth component in the assessment of non-conventional drinking water supplies in the Northern River Basins Study area was to pursue research on the effectiveness on some of the portable point-of- use drinking water treatment filters on the market. The reason for this was because there is a very limited body o f literature regarding these devices, and the claims made by the manufacturers suggest that these units are suitable to provide a safe supply of drinking water for wilderness campers and travelers. For the rigorous laboratory testing of these units, three filters were chosen to represent the larger market. The filters were chosen based on the type of filter media (carbon media, plastic media and silver impregnated ceramic media were selected), the price range (least expensive to most expensive were tested), and each unit was from a different manufacturer. The filters were subjected to an influent test water with a high turbidity, high bacterial count and a high particle count. It was found that only the silver impregnated ceramic filter was capable of reducing the turbidity, bacterial count and particle levels to below recommended levels for supplying a safe drinking water. However, further microbiological tests on this unit are required before it can be recommended for utilization in the study area.

As long as the rivers flow: Athabasca River knowledge, use and change


Author(s): Candler, C., Olson R., & Deroy S.

Year: 2010

Abstract:
"The Study confirms that, for members of both ACFN and MCFN, the Athabasca River continues to be central to their lives, their ability to access their territories, and their conception of themselves as aboriginal peoples, despite historical change. Use of the river by the participants is still strong and diverse, and while use has generally declined, it has declined in some areas more than others. Use for drinking water, trapping and teaching have declined more than use for hunting, transportation, and cultural/spiritual and wellness practices. The Study suggests that reduced quantity and quality of water in the Athabasca is having adverse effects on the ability of ACFN and MCFN members to access territories, and to practice their aboriginal and Treaty rights, including hunting, trapping, fishing and related activities.

Background air and precipitation chemistry


Year: 1978

Abstract:
In March 1976, the first in a series of intensive field studies was carried out in the Alberta Oil Sands Environmental Research Program study area in northeastern Alberta to examine the fine structure of the atmosphere and dispersion characteristics under winter conditions. The study comprised several co-ordinated sets of measurements over a two week period. These included: minisonde flights, tethersonde vertical profiles, acoustic sounder and delta-T sonde profiles, correlation spectrometer and ground level sulphur dioxide measurements, plume rise photography and background air and precipitation chemistry. Plume dispersion measurements made by aircraft were co-ordinated with the study and are reported in a separate publication. All measurements, except those for background air chemistry, were made within 20 km of Mildred Lake taking in the present oil sands processing facility of Great Canadian Oil Sands Ltd. and the future production site of Syncrude Canada Ltd. The study was successful in identifying unique features of the winter environment of the area such as diurnal formation and breakup of inversion layers, the effects of the river valley on circulation patterns, plume characteristics, pollutant deposition patterns in the snowpack and background levels of gases and particulates.

Breeding distribution and behaviour of the white pelican in the Athabasca oil sands area


Author(s): Beaver, R., & Ballantyne M.

Year: 1979

Abstract:
Aerial surveys and ground investigations were conducted in the spring and summer months from 1975 to 1977 on a breeding population of White Pelicans (Pelecanus erythrorhynchos) in the Birch Mountains area of northeastern Alberta. In 1975, an undetermined number of White Pelicans bred at Big Island Lake located approximately 20 km northeast of Namur Lake; however, the sighting of only 12 young during a July aerial survey at that location suggested a small breeding flock. Pelicans did not breed successfully at Namur Lake, a previously occupied nesting location, during the course of this study. In 1976 and 1977, White Pelicans established nesting colonies and bred at a rookery site at Birch Lake, located approximately 10 km south of Namur Lake. Aerial photographs taken at the Birch Lake rookery during the height of the nesting season in late May and early June revealed 140 breeding pairs in 1976 and 70 pairs in 1977. Sixty-eight young were raised to the flying stage in 1976, compared with 55 in 1977, resulting in fledging rates of 0.49 and 0.78 young per nesting attempt in those respective years. Calculated breeding success (number of young raised to the flying stage from estimated total eggs laid) was 22.1 percent in 1976 and 35.7 percent in 1977. In 1976, an estimated eight to 20 nests were lost to rising water levels induced by beaver (Castor canadensis) dams constructed on the outflow channel of Birch Lake. Periodic removal of these dams prevented loss of nests in 1977 to flooding. Mortality during the breeding season included an 11.7 percent loss of eggs and a 19.1 percent loss of young in 1977, the only year for which such data were obtained. White Pelicans bred only on island sites located in permanent water bodies. The birds nested on flat or gently sloping terrain which provided loose substrates for nest mound construction. These substrates varied in composition from loose organic soils to gravel with scattered rock. Density and composition of vegetative cover at nesting locations were also variable, being partly modified by the nesting activity of the birds themselves. Pelicans, which were presumably foraging, were observed on water bodies as far as 69 km from the breeding site. Both adults and young demonstrated varying levels of behavioural responses to disturbances occurring near the rookery. The documentation of these responses and other behaviour is presented in a discussion which considers their implications with respect to the potential effects of development of the Athabasca Oil Sands deposits and the anticipated accelerated recreational use of the Birch Mountains wilderness. Management and reclamation strategies are discussed.

Changes in the areal extents of the Athabasca River, Birch River, and Cree Creek Deltas, 1950–2014, Peace–Athabasca Delta, Canada


Author(s): Timoney, K., & Lee P.

Year: 2016

Abstract:
Deltas form where riverborne sediment accumulates at the interface of river mouths and their receiving water bodies. Their areal extent is determined by the net effect of processes that increase their extent, such as sediment accumulation, and processes that decrease their extent, such as erosion and subsidence. Through sequential mapping and construction of river discharge and sediment histories, this study examined changes in the subaerial extents of the Cree Creek and Athabasca River Deltas (both on the Athabasca River system) and the Birch River Delta in northern Canada over the period 1950-2014. The purpose of the study was to determine how, when, and why the deltas changed in areal extent. Temporal growth patterns were similar across the Athabasca and Birch River systems indicative of a climatic signal. Little or no areal growth occurred from 1950 to 1968; moderate growth occurred between 1968 and the early to mid-1980s; and rapid growth occurred between 1992 and 2012. Factors that affected delta progradation included dredging, sediment supply, isostatic drowning, delta front bathymetry, sediment capture efficiency, and storms. In relation to sediment delivered, areal growth rates were lowest in the Athabasca Delta, intermediate in the Birch Delta, and highest in the Cree Creek Delta. Annual sediment delivery is increasing in the Cree Creek Delta; there were no significant trends in annual sediment delivery in the Birch and Athabasca Deltas. There was a lag of up to several years between sediment delivery events and progradation. Periods of delta progradation were associated with low water levels of the receiving basins. Predicted climate-change driven declines in river discharge and lake levels may accelerate delta progradation in the region. In the changing ecosystems of northeastern Alberta, inadequate monitoring of vegetation, landforms, and sediment regimes hampers the elucidation of the nature, rate, and causality of ecosystem changes.

Comment on "Streamflow input to Lake Athabasca, Canada" by Rasouli et al. (2013)


Author(s): Peters, D. L.

Year: 2014

Abstract:
This comment paper addresses data and analysis issues in a paper entitled "Streamflow Input to Lake Athabasca, Canada" by Rasouli et al. (2013). Analyses of observed and naturalized lake level data for Lake Athabasca are redone in this comment paper with corrected hydrometric data to provide northerners and researchers with the correct information for environmental assessments. The comment paper also highlights the importance of including in the analysis not only direct inflows to Lake Athabasca, but also the hydraulic influences on lake outflow, especially when meaningful future projections of lake levels are required for water management.

Guide to the Athabasca oil sands area


Year: 1973

Abstract:
The oil sands area is located in northeastern Alberta adjacent to the Canadian Shield (Fig. 1). The main drainage of the area is provided by the Athabasca-Clearwater system, the valleys of which are incised into a broad, muskeg-covered interior plain to depths of 200 to 300 feet. The tributary streams originate in three highland areas (Fig. 2): the Birch Mountains to the west of the Athabasca River which rise to about 2,700 feet, Stony Mountain south of Fort McMurray which reaches an elevation of 2,500 feet, and Muskeg Mountain to the east of the Athabasca River which rises gradually to 1,900 feet. To the southwest of the area, between Birch Mountain and Stony Mountain and north of the eastward flowing Athabasca River, is a subdued highland area with gentle slopes called the Thickwood Hills. These hills give rise to northward flowing tributaries of the MacKay River, and a few short streams flowing southward to the Athabasca. A number of shallow lakes are located in the area, the largest and most numerous of which are located on the top of the Birch Mountains and form an interconnected chain of lakes, which flow into the Ells River. These are called Eaglenest, Gardiner, and Namur Lakes. The only lakes of any size south of Fort McMurray are Algar and Gregoire Lakes. McClelland Lake, which is located in the lowlands northeast of Bitumount, is an area of internal drainage.

Inventory of selected raptor colonial and sensitive bird species in the Athabasca oil sands area of Alberta


Year: 1980

Abstract:
A three-year inventory of selected rare, endangered and sensitive bird species in the Athabasca Oil Sands area of northeastern Alberta was completed in the late summer of 1977. Aerial and ground surveys of the Alberta Oil Sands Environmental Research Program (AOSERP) study area and selected adjacent areas were conducted. Three major habitat types were investigated: the boreal mixed-wood forest of the Birch Mountains area; the jack pine sandplains south of Lake Athabasca and the Canadian Shield north of Lake Athabasca. Three major groups of birds were surveyed: raptors, colonial birds, and specified sensitive species. Locations of nest sites and colonies were noted and described. No attempt was made to determine the absolute abundance of each species in the AOSERP study area, as the aerial surveillance techniques employed do not justify such an estimation. The exception to this were two species whose total population in the AOSERP study area was restricted to very small areas and therefore could be readily determined: White Pelicans and Peregrine Falcons. Each of these species was investigated in considerable detail and, the data reported in separate publications. Recommendations were made for: 1. Further, more intensive surveys of part of the AOSERP study area in order to determine phenology and numbers of initial breeders more accurately; and 2. Additional surveys of the Canadian Shield area which was incompletely surveyed during this study. Observations of foraging behaviour of a breeding pair of Bald Eagles were conducted in the Birch Mountains, 90 km northwest of Fort McMurray, Alberta, from mid-summer to early fall, 1977. Bald Eagles foraged almost exclusively on fish, although gull wings and a merganser skull were found below nest trees. Nest trees were generally located less than 50 m from water. Active nests were more frequently located on islands and peninsulas. The nest trees were usually tall and broad and included jack pine, spruce, and less frequently trembling aspen. Live trees were preferred over dead trees. In the Birch Mountains, Bald Eagles were relatively sensitive to boat traffic and approaches by humans on foot. Further work is strongly recommended: 1. To further outline critical breeding and foraging habitat criteria; and 2. To assess the potential impact of disturbance on breeding and foraging Bald Eagles.

Potential productivity of black bear habitat of the AOSERP study area


Author(s): Young, B. F.

Year: 1978

Abstract:
Potential black bear (Ursus americanus) production was determined for the Alberta Oil Sands Environmental Research Program (AOSERP) study area using information obtained by radio-telemetry on forest cover use by bears during the two years of study at Cold Lake, Alberta. Expected densities for each of five forest over classes were calculated using the Cold Lake data. The areas of individual townships comprised by each of the cover classes were determined and multiplied by the expected bear density of each class to provide a population estimate for each township. The crude average bear density for the AOSERP study area, including water areas, was 0.18 per km2 assuming total avoidance of muskeg areas and 0.25 per km2 assuming use of muskeg. The potential entire population estimate was calculated as 5188 and 7431 bears using the two methods. The most productive bear habitat was located along the eastern and southern edges of the Birch Mountains and in the Gregoire Lake area. The poorest potential was in the Thickwood Hills and in the northeastern corner of the study area. Although final population estimates may be biased, township population estimates should provide at least a valid index for identifying important areas of black bear habitat.

Regional-scale subsurface hydrogeology in northeast Alberta


Year: 1993

Abstract:
The hydrogeological regime of formation waters in the Phanerozoic sedimentary succession was determined for a region defined as Tp 70-103 W4 Mer (55-58 degrees;N latitude and 110-114 degrees;W longitude) in northeast Alberta, covering most of the Athabasca Oil Sand Deposit. The study was based on information from 12,479 wells, 3187 analyses of formation water, 2531 drillstem tests and 452,030 core analyses. Data management and processing were carried out using the INGRES Data Base Management System and specially designed software developed at the Alberta Geological Survey. The regional geology was synthesized in terms of definable stratigraphic successions, and 26 individual units were characterized by structure top and isopach maps. The hydrostratigraphy was developed through several iterations starting from the stratigraphy and lithology of the strata. Complex groups of aquifers and/or aquitards exhibiting generally common overall characteristics were grouped into hydrostratigraphic systems. Thirteen hydrostratigraphic units were identified in the Phanerozoic succession. The hydrogeological regime in aquifers was described using isopach, salinity distributions and freshwater hydraulic-head distributions. Cross-formational flow was evaluated using plots of pressure variation with depth in selected wells. Because the study area is situated at the feather edge of the Alberta Basin, topography and physiographic features exert a strong influence on the flow regime within most aquifers. In the most general sense, fluid flow is to the northeast toward the edge of the basin. Areas of high topography, such as the Birch and Pelican mountains, act as local recharge areas, introducing fresh meteoric water to aquifers unprotected by significant confining strata. The valleys of the Athabasca River system represent discharge areas for aquifers at outcrop or subcropping near them. The salinity of formation waters generally increases with depth. This is the result of a combination of factors like temperature, hence solubility increase with depth, dissolution of deep Devonian evaporitic beds, and dilution near the surface by meteoric water introduced by local flow systems. In terms of flow regime and overall characteristics, the hydrostratigraphic units can be grouped into pre-Prairie Formation aquifers, Beaverhill Lake-Cooking Lake aquifer system, Grosmont-to-Wabamun aquifers, and Cretaceous aquifers. The aquifers below the Prairie evaporite exhibit regional flow-regime characteristics. Overall high formation water salinity is associated with the proximity of Elk Point Group evaporites. The Beaverhill Lake-Cooking Lake aquifer system has hydrogeological characteristics consistent with an intermediate-to-local flow regime. Within subcrop and outcrop areas, local physiographic influences are superimposed over a regional northeastward flow trend. The Grosmont aquifer and Winterburn-Wabamun aquifer system may act locally as a 'drain' for aquifers in hydraulic continuity above and below. The flow of formation waters is generally to the northwest, towards discharge at outcrop along the Peace River. The Cretaceous aquifers are characterized by low salinity and local flow regime.The synthesis of this vast amount of information on the hydrogeological regime of formation waters in northeast Alberta was carried out under a jointly funded research project by the Alberta Research Council and Environment Canada.

Spider records from four wildland parks in northeastern Alberta


Author(s): Nordstrom, W., & Buckle D.

Year: 2002

Abstract:
Several wildland parks and two ecological reserves have recently been established in the northeast corner of Alberta (Figure 1). Colin-Cornwall Lakes Fidler-Greywillow, La Butte Creek and Maybelle River Wildland Parks are located in the Canadian Shield Natural Region. Egg Island and Athabasca Dunes Ecological Reserves are also located in that Natural Region. Birch Mountains, Marguerite River and Richardson River Dunes Wildland Parks are within the Boreal Forest Natural Region (Alberta Environmental Protection 1998). These wildland parks contain numerous and important examples of Alberta's biodiversity. Much of it is poorly understood or unknown, particularly the invertebrate fauna. The spider fauna is no exception. As Aitchison and Sutherland (2000) state, "…information on the composition and functioning of the boreal forest arachnid community [in Canada] remains sketchy". The spider specimens that were collected during this survey are the first for these wildland parks of northeastern Alberta.

Supplemental fisheries life history data for selected lakes and streams in the AOSERP study area


Author(s): Herbert, B. K.

Year: 1979

Abstract:
During 1977, various rivers and Jakes from the MacKay, Richardson, and Maybelle river drainages, the Ells River headwaters, and the east slope of the Birch Mountains were spot sampled for fish. Life history information and location data for the 672 fish, of 17 species, collected from these areas are presented in table format. The 17 species collected during this. survey are as follows: Arctic Grayling, Lake Whitefish, Lake Cisco, Lake Trout, Northern Pike, Longnose Dace, Lake Chub, Pearl Dace, Longnose Sucker, White Sucker, Burbot, Trout-Perch, Brook Stickleback, Ninespine Stickleback, Yellow Perch, Walleye, and Slimy Sculpin.

Synecology and autecology of boreal forest vegetation in the Alberta Oil Sands Environmental Research Program study area


Author(s): Eulert, G. K., & Hernandez H.

Year: 1980

Abstract:
A review of the literature pertaining to the forest ecology of the Alberta Oil Sands Environmental Research Program (AOSERP) study area was completed. Because of the complex nature of the vegetation pattern, the dynamic interactions of overstory species, and the relation of understory species to the nature and type of the canopy, the stands are discussed on the basis of relatively pure overstory species dominance. Dominant species examined were: aspen, jack pine, balsam poplar, paper birch, white spruce, black spruce, tamarack and balsam fir. The ecological factors discussed for each of these and 12 other understory species include soil and moisture requirements, reproduction, establishment, growth, successional roles, sensitivity to pollutants, and the nature of associated species. Fire is the major disturbance factor of the boreal forest. Aspects of fire discussed are: the nature, causes, incidence and extent of fire; its influence on soil heat balance, soil pH, and nutrient availability; and the general effect on the vegetation mosaic. General dynamics of vegetation are discussed and summarized for muskegs and related wetlands, river and lake shores, uplands, lowlands and the understory. The literature relating to North American concepts of communities, climax and succession is summarized to clarify usage of these terms and to illustrate the diversity of views that exist. Five approaches to studying and classifying vegetation are discussed: (1) physiognomic classification; (2) the ordination (continuum) view of vegetation; (3) floristic classification; (4) the North American approach based on physiognomy and dominance, and (5) biophysical land classification. For each approach, a general description of its characteristics, data requirements, advantages, disadvantages and applications are discussed. The report concludes with a discussion of data gaps and recommends studies needed to fulfill AOSERP objectives.

Ten thousand years before the fur trade in north-eastern Alberta


Author(s): Ives, J. W.

Year: 1993

Abstract:
In this article, Ives presents a vision of the Native people of northern Alberta from an archaeological viewpoint. To do this, he discusses environments and human adaptations, a chronological framework of events and processes in the human prehistory of the region, and results of archaeological projects that give us specific insights into ways of life in the prehistoric past. Although the community of Fort Chipewyan is a "historical" fixed settlement, Ives includes the lower Peace River and adjacent Caribou Mountains, the Peace-Athabasca Delta and Lake Athabasca, and the lower Athabasca River and adjacent Birch Mountains in this review, since the seasonal activities of prehistoric peoples would have routinely taken them throughout much of these areas. Photographs and sketches of prehistoric tools and debitage are included, as well as maps depicting archaeological sites and the distribution of prehistoric sites on the former Alsands lease. Ives presents evidence of hundreds of sites throughout this region, and explains that the larger site concentrations coincide with the locations of the Athabasca Cree at the onset of the fur trade hence, the locations were chosen for fur trade posts. Ives suggestion that the very existence of the fur trade was inextricably tied to an ancient history of land use that took shape over the last ten thousand years is both founded and fascinating.

The distribution foraging behaviour and allied activities of the white pelican in the Athabasca oil sands area


Author(s): Ealey, D. M.

Year: 1979

Abstract:
From mid to late summer 1977 an investigation was made of the distribution and foraging of White Pelicans in the Birch Mountains. This study was linked with a breeding investigation undertaken at the pelican rookery as part of the Alberta Oil Sands Environmental Research Program. Aerial surveys, ground observations, prey analysis and prey sampling were conducted. Pelicans were observed to regularly use foraging/loafing areas up to 69 km from the rookery. Timing of diurnal arrivals and departures from all locations showed that the birds belonged to the same population. A shift in concentrations of the pelicans was detected over the summer. Reasons for this shift were advanced. Trends in diurnal and seasonal activities were determined for the pelicans away from the rookery. Basic behavior seemed comparable to that observed at the rookery. The behavioural observations indicated the importance of foraging areas and loafing bars. Habitat features varied considerably for these locations but basic criteria were established for each. The locations of the foraging/loafing areas were determined for lakes in an intensive study area. The diet of juvenile pelicans included brook stickleback, northern pike and lake whitefish. The total fish consumption of the Birch Mountains population of White Pelicans was estimated at between 19.7 and 24.8 tonnes during the 1977 season. It is recommended that this investigation of distribution and foraging of White Pelicans be continued.

Wood bison and the early fur trade


Author(s): Ferguson, T. A.

Year: 1993

Abstract:
The intent of this paper is to present data from fur trade records documenting the depletion of the northern Alberta wood bison, or buffalo, as perceived by fur traders prior to 1840 and to consider the implications of these data for temporary game management strategies, especially involving Aboriginal harvesters.