Title | Physical controls on water migration in above ground elemental sulphur blocks |
Publication Type | Thesis |
Year of Publication | 2007 |
Authors | Bonstrom, K. L. |
Pagination | 403 pages |
Date Published | 04/2007 |
Publisher | University of Saskatchewan Department of Geological Sciences |
Place Published | Saskatoon, SK |
Publication Language | eng |
Keywords | hydrology, model, modeling, sulphur and SO2, UofS |
Abstract | Elemental sulphur (S0) is produced from processing bitumen from the oil sands region, Alberta. Long term storage of this S0 is under consideration. The objective of the current study was to determine the controls on water migration in variably saturated S0 blocks. Based on visual observations of S0 blocks, they were characterized as a hydrophobic fractured porous media. Thus, measurements of the hydraulic characteristics, including porosity (n) and hydraulic conductivity (K) of the matrix and the fractured media, were undertaken. These data were used to create characteristic relationships of unsaturated K (Kunsat) and volumetric moisture content (θ) change with change in positive injection pressure (Ψ). AAnalyses showed that the mean total matrix n (nm) was 0.094 ± 0.035 (n = 280), the mean n available for water migration (na) was 0.065 ± 0.044 (n = 8) and the mean (geometric) K for the matrix was 2.0 x 10-6 ± 2.1 x 10-6 ms-1. In the case of vertical fractures, the aperture frequencies were measured to be 2.5, 10.0 and 21.0 m-1 for fractures with apertures > 1.4, 1.4 to 0.6 and < 0.6 mm respectively while the frequency of horizontal fractures, were measured to be 1.7 and 3.7 m-1 for with apertures > 1.4, and < 1.4 mm respectively. The fracture n (nf) was determined to be 0.0135. θ – Ψ relationships were determined for both the fractured and non fractured media. From these plots, water entry values of 9 mm and 1 m were determined for the fracture pore space and the matrix pore space, respectively. |
URL | http://library.usask.ca/theses/available/etd-04252007-114610/unrestricted/KBonstromThesis.pdf |
Locational Keywords | Athabasca Oil Sands Region (AOSR) |
Active Link | |
Group | OSEMB |
Citation Key | 53215 |