Skip To Content

TitleNumerical modelling of complex slope deformations
Publication TypeThesis
Year of Publication1997
AuthorsBenko, B.
VolumeGeological Sciences
IssuePh. D.
Pagination366
Place PublishedUniversity of Saskatchewan
Publication Languageen
Abstract

This thesis presents the analysis of complex slope deformations through the application of numerical modelling techniques. Complex slope deformations, in this thesis, include cases where the use of more conventional analytical tools such as limit equilibrium techniques or the use of empirical criteria are not readily applicable. Such a scenario often results from adverse geological and environmental conditions or from human activity. Examples of complex slope deformations are the influence of underground mining on a slope, or situations where rigid jointed rocks overly relatively weak layers. The use of numerical modelling techniques, both continuum and discontinuum, in the analysis of slope stability problems has increased rapidly in the last decade and proved valuable in the analysis of complex geomechanical problems. Two numerical modeling programs FLAC (Fast Lagrangian Analysis of Continua) and UDEC (Universal Distinct Element Code) were used in this thesis. Three main groups of problems were investigated: (1) The analysis of deformation associated with rigid jointed rocks overlying relatively weak layers including a case study involving deformation taking place in the foundation of the Spis Castle in Slovakia. It was demonstrated that the type of deformation in such cases depends on the strength, deformability and thickness of the weak layer as well as the jointing pattern of the overlying rocks. It was shown, that the deformations at Spis castle are governed primarily by the presence of a weak, plastic "creep zone" under the base of the travertine blocks on which the castle is founded. (2) The analysis of toppling deformation in a weak rock slope comprising several lithostratigraphic units at the Luscar Mine, Alberta. It was found that the instability mechanism in the initial phase was flexural toppling, confined to a distinct quasi-linear failure surface which provided the shear plane for subsequent sliding movement. A prediction of slope stability for a plan

URLhttp://search.proquest.com/docview/304400008
Topics

Geology

Locational Keywords

Luscar

Active Link

http://www.worldcat.org/oclc/654960287

Group

Science

Citation Key41068

Enter keywords or search terms and press Search

Search this site


Subscribe to the site

Syndicate content

Bookmark and Share