Skip To Content

TitleInvestigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water
Publication TypeJournal Article
Year of Publication2016
AuthorsHuang, R., McPhedran K. N., Sun N., Chelme-Ayala P., & El-Din M. G.
Secondary TitleChemosphere
Volume146
Pagination5 pages
Date Published03/2016
Publication Languageeng
ISSN Number00456535
Abstract

Naphthenic acids (NAs) from oil sand process-affected water (OSPW) were liquid–liquid extracted using six organic solvents (n-pentane, n-hexane, cyclohexane, dichloromethane, ethyl ether, and ethyl acetate) at three pHs (2.0, 8.5, and 12.0). The NAs exist in ionic (ions) and non-ionic (molecules) forms in the water phase depending on their dissociation constants and the solution pH. Results showed the extractability of NA molecules depends on the solvent polarity and the extractability of NA ions on the water solubility in solvent. The organic solvent type and solution pH were found to not only impact the extracted amounts of each NA species, but also the NAs distribution in terms of molecule carbon number and hydrogen deficiency. Overall, it is concluded that ethyl ether can be used as an alternative to dichloromethane (DCM) given their similar extraction efficiencies and extracted NA profiles. This is important since DCM is known to have metabolic toxicity and transitioning to the safer ethyl ether would eliminate laboratory DCM exposures and risk to human health. Despite the higher extraction efficiency of NAs at pH 2.0, extraction at pH 12.0 could be useful for targeted extraction of low-concentration nonpolar organic compounds in OSPW. This knowledge may assist in the determination of the specific NAs species that are known to have chronic, sub-chronic and acute toxicity to various organisms, and the potential targeting of treatment to these NAs species.

URLhttps://www.researchgate.net/publication/287195059
DOI10.1016/j.chemosphere.2015.12.054
Locational Keywords

Athabasca Oil Sands Region (AOSR)

Short TitleChemosphere
Citation Key54642

Enter keywords or search terms and press Search

Search this site


Subscribe to the site

Syndicate content

Bookmark and Share