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REPORT SUMMARY

This report brings together and synthesizes the available information on fish distribution, 
movements, critical habitat and food web for the lower Slave River north of the 60th parallel. 
The report is composed of seven major sections. The first section discusses background 
information, the original relevant questions posed by the NRBS, and three general models of 
the function of large rivers. The second section gives a description based on the literature of 
the environment in the lower Slave River including information on geography and surrounding 
habitat, climate, primary productivity and invertebrate faunal composition. The seasonal 
climatic variation is great and this results in striking changes in the primary productivity and 
invertebrate faunal composition.

The third section considers the distribution and abundance of fishes in time and space to 
provide a context for the interpretation of the findings of contaminants studies. Twenty-seven 
species of fish have been recorded to occur in the lower Slave River. The section provides a 
description from data gathered by the Northern Rivers Basin Study and previous studies of 
spatial distribution between the Slave River, Salt River and the Slave River Delta and of 
micro-habitat usage in the Delta. Seasonal and longer term variation in species composition 
are described. Fish species composition varies between the major areas of the lower Slave 
River and seasonally due to spawning migrations. The spring spawners such as goldeye, 
flathead chub and walleye dominate shortly after ice break-up. Fall spawners such as lake 
whitefish and inconnu become abundant during the months of September and October. Pike, 
flathead chub and goldeye remain relatively abundant throughout the open water season. 
Goldeye is the most abundant species of fish in the lower Slave River. Based on gillnet 
catches the diversity of major fish species has not changed to anyTecognizable degree from 
the late 1970’s to the present.

Radio-telemetry and floy-tagging studies of harvested fish species, such as inconnu, burbot, 
lake whitefish, walleye are synthesized in section four to provide information on the range of 
movement in and out of the lower Slave River. Inconnu utilize the river for spawning in the 
fall but then return to Great Slave Lake for most of the rest of the year. Radio-telemetry and 
tagging results showed that inconnu migrate around much of the western basin of Great Slave 
Lake during the winter. They appear to travel along the southern shoreline during the summer 
and return to the Slave River by the fall. Lake whitefish also use the Slave River for spawning 
in the fall but may remain in the river until the next spring. Burbot appear to be sedentary 
most of the year but will undertake a winter spawning migration within the river to the Delta. 
Only limited information exists on pike and walleye movements. Walleye probably utilize 
Great Slave Lake for foraging while pike remain in the river and the Delta.

The demographic characteristics of inconnu, burbot, lake whitefish, lake cisco, goldeye, 
northern pike, flathead chub, longnose sucker and walleye are examined in section five.
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Inconnu are fast growing and short lived in the Slave River compared to other locations. This 
may be due to exploitation or because they are at the southern end of their range. Their 
limited age structure makes them more vulnerable to the effects of changes in the 
environment. Burbot, on the other hand, are quite long lived in the lower Slave River. They 
appear to be relatively unstressed as a population at this time. Most of the other species do 
not show unusual patterns in their demographics compared to other conspecific populations or 
indications that they might be vulnerable to moderate environmental change.

Section six summarizes the available information on the diets of the major fish species in the 
Slave River and Delta in order to construct a piscine food web. The food web of the Slave 
River was highly dependent on the invertebrate community for its base. Foraging species, 
such as cyprinids, whitefish, suckers and goldeye, consumed invertebrates and were in turn 
consumed by top predators such as burbot, pike, walleye and inconnu. Three fish species, 
pike, goldeye and lake whitefish played dominant roles in that they could influence many 
other species of fish and invertebrates. These species, plus burbot, were also important in the 
food web of the Slave River delta. In general, the food webs are complex and may have 
predator-prey circularities where one species preys upon juveniles of another, while also being 
the prey to the adults.

Finally, section seven provides a summary of the major findings and knowledge gaps 
uncovered by the synthesis. There are 22 recommendations made for further work in the areas 
of biological monitoring, studies of habitat needs of fishes, and modelling. Monitoring 
requirements are divided into monitoring population function and species diversity. It is 
recommended that baseline data on the vital parameters of populations of goldeye and other 
forage species be gathered. As well, because of their vulnerability to change studies on the 
growth patterns of juvenile fishes should be done. Regular monitoring of the vital parameters 
of fishes is recommended. A quantitative model of the effects of environmental change on the 
life history trajectory should be developed. Regular monitoring of the diversity of fishes and 
invertebrates should be carried out.

To accurately determine the potential and actual consequences of environmental changes to 
fish populations a greater understanding of the distribution and movement patterns must be 
achieved. It is recommended that studies of distribution and movements under the ice, in the 
backwaters and tributaries of the lower Slave River and during the flood-pulse phase be 
undertaken. Quantitative models integrating distribution, movement patterns and the risk of 
exposure to environmental degradation, such as contaminants should be developed.

It is clear from this work that the lower Slave River is a unique part of the NRB. The 
biological community is relatively isolated from other communities upstream but it is probably 
vulnerable to perturbations further upriver.
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1.0 GENERAL INTRODUCTION TO FISH HABITAT STUDIES IN LARGE RIVERS

1.1 Background, General Questions and Prologue

The development of various industrial projects and increasing demands on use in northern 
Alberta river systems was a concern in the late 1980’s and continues to be so. The Northern 
Rivers Basin Study (NRBS) was proposed in 1989 and culminated in a plan that addressed 10 
intial questions. This plan was presented to the NRBS Board soon after the start of the Study 
on September 27, 1991. From this the Board developed sixteen guiding questions for the 
science program focussed on aquatic-ecosystem health and functioning in the major river 
systems that might be affected - the Peace, Athabasca and Slave Rivers. The Food Chain 
Component was formed to conduct studies to address questions about how industrial effluents 
affect fish. The NRBS Board posed the following questions related to fish:

1 -a How has the aquatic ecosystem including fish and/or other aquatic organisms been
affected by exposure to organochlorines or other compounds?

6 What are the distribution and movement of fish species in the Peace, Athabasca and 
Slave Rivers? Where and when are they most likely to be exposed to changes in water quality 
and where are their important habitats?.

8 Recognizing that people drink water and eat fish from these river systems, what is the 
current concentration of contaminants in water and edible fish and how are these levels 
changing through time and by location?

It was quickly recognized that there was an insufficient understanding of the fish community 
and the basic biology of fish species to allow interpretation of toxicological results in terms of 
exposure or to determine if the biota had been affected. As Prowse and Conly (1996) state 
“The range of potential studies (in hydrological impacts) was constrained by the lack of 
comprehensive understanding of the structure and function of the biotic environment of the 
affected river and delta systems. Knowledge of preferential use of fisheries habitat, for 
example was very limited”. With this in mind, studies commenced on the Peace and 
Athabasca Rivers consisting of field surveys of fish movement, distribution and habitat and 
life history, field surveys and laboratory experiments of food sources and food chain pathways 
(Mill et al. 1996). Prior to 1994, studies on the Slave River were mainly confined to the 
portion of the river south of 60° N. latitude, at least partly because it was felt that more was 
known about the north of 60 portion of the Slave than the other parts of the study area. In late 
1993, it was recognized that the Slave River north of 60° N latitude was probably a unique 
component of the system and deserved separate NRBS investigations of the biota as a 
contextual background to the findings of contaminants studies. Realizing that there was only 
one full open water season left for field work and that limited resources were available, the 
scientific program had to be directed towards what was tractable. It was decided to conduct
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studies in three areas: 1) Fish movements: using long-term radio telemetry studies of selected 
species and catch-per-unit-effort analysis of changes in abundance; 2) studies of vital rates (i.e. 
growth, age at maturity, fecundity and other parts of the life history trajectory) of key 
harvested species; 3) a direct study of the diets and food web in the fish community. The first 
study would characterize the habitat usage patterns of fish species in time and space in the 
system. The second would serve to give a baseline to assess changes in productivity within 
fish resources valued for their monetary or nutritional worth to man.. The third would provide 
a model of the configuration of the fish community and the interactions therein, defining 
trophic levels and the basis for fish productivity in the entire community. The first and third 
studies would be instrumental in developing a model to interpret the likelihood of exposure to 
contaminants and given the presence of contaminated fish, their probable fate and transport 
within the Slave River. The second allows assessment of sub-lethal effects on the fish 
themselves.

A synthesis of these studies and previous work related to fish communities in the Slave River 
north of 60° (i.e. the lower Slave River) from the perspective of habitat requirements of fish in 
the lower Slave River was requested by the NRBS on December 22, 1995. Previous studies 
would provide information: on fish movements from floy tagging, radio-telemetry, catch 
effort analysis and traditional knowledge (Flett et al. 1995); to augment the available 
information on vital rates of fish community species; on the diet in selected areas such as the 
Slave River Delta. Combining the results and in some cases re-analyzing data from previous 
studies and the NRBS studies into a synthesis would give the most comprehensive picture of 
habitat requirements of fishes. One additional theme to those posed in the NRBS questions 
was: Has the fish community changed over the last 15 years?.

This report is broken into seven major sections: 1) A general overview perspective on 
defining habitat requirements in aquatic communities; 2) A description of the biotic and abiotic 
environment surrounding the lower Slave River fish community; 3) Distribution and 
abundance of fishes in time (seasonal and long-term) and space; 4) Geographic migratory 
patterns; 5) Demographic characteristics and vital rates of fish species; 6) Fish community and 
food web; 7) A summary of the major results and a compendium of the scientific 
recommendations for studies of the fish community in the future.

1.2 Aquatic communities, habitat requirements and probability of exposure

Fish communities in rivers have some unique features to their habitat which cannot be 
understood using concepts borrowed from studies of lake or stream communities (Johnson et 
al. 1995). Large rivers have been studied less than small streams and lakes, partly because they 
are more difficult to sample but also because there has been no clear theoretical basis for how 
large river ecosystems operate (Davies and Walker 1986). To discuss the habitat requirements 
of a community of fishes in a large river, such as the lower Slave River and relate them to the 
effect of anthropogenically driven changes, such as dams, mill effluents impacts of logging, is
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a formidable task. Recently, there have been three major theoretical models of large river 
function , the river continuum concept (Vannote et al. 1980) the flood-pulse concept (Bayley 
1995, Junk et al. 1989) and the riverine productivity model (Thorpe and DeLong 1994), 
which are useful in inter-relating such elements as hydrology, contamination, fish movements 
and communities. Awareness of these concepts will place our studies on fish into a wider 
context of the entire aquatic ecosystem.

1.2.1 The River Continuum Concept

Rivers move. Fish move. Each of these can bring contaminants into an ecosystem. The River 
Continuum Concept focusses on the movement of the river. The concept states that forested 
river systems, such as the Slave River, have a longitudinal structure that results from a 
gradient of physical forces that change predictably along the length of the river. These forces 
produce a continuum of morphological, hydrological and biological features from the 
headwaters to the mouth. The unidirectional nature of water movement in the river means that 
anthropogenic effects may reach far downstream from their point source.

The river-continuum concept assumes that energy for biological production comes from three 
sources: local inputs of organic matter from terrestrial vegetation (allochthonous inputs), 
primary production within the stream (autochthonous production), and transport of organic 
material from upstream. The importance of these energy sources varies along the continuum 
(Figure 1).

The structure and function of the biotic communities along the river continuum is predicted to 
develop in dynamic equilibrium with the physical environment, and thus, it should be 
predictable based on the variability of the environment and the source of energy (Ward and 
Stanford 1983). For example, large rivers ( those that are greater than sixth order - Strahler 
1957) buffer temperature and flow variation compared to smaller systems. Leaf litter inputs 
are minor in large rivers and primary productivity is reduced due to turbidity. The main 
energy source is particulate organic matter transported downstream, thus collectors are the 
dominant invertebrate group (Johnson et al. 1995).

Thus, it is clear that disruption of the system upstream may have powerful effects downstream 
but the mechanism may not be immediately obvious. For example, contaminants or flow 
changes may affect fish populations downstream directly by being transported in the water 
column but they also might affect fish populations downstream by disrupting the physiology 
of decomposers of detritus (Less available decomposed food for invertebrates - less 
invertebrates for fish to feed upon) or by preventing the detritus energy source from reaching 
downstream.

1.2.2 The Flood Pulse Concept

The Flood-Pulse concept focusses, at least partly, on movement by fishes. The flood-pulse
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concept states that the most important hydrological feature of large rivers is the annual flood 
pulse, which extends the river onto the floodplain (Bayley 1995, Figure 2). Floodplains are 
highly productive and typically contain extensive riparian forest and a variety of aquatic 
habitats such as backwaters, marshes and lakes. During a flood the aquatic organisms migrate 
out of the channel and onto the floodplain to use newly available habitats and resources. As 
the flood waters recede nutrients and organic matter from the floodplain are funnelled back 
into the main channel, side channels and backwaters, along with newly produced biomass, 
such as young fish, invertebrates and waterfowl.

Under the flood-pulse concept, biotic communities should evolve adaptations to take 
advantage of the dynamic interaction between water and land. Thus, fish spawning time, 
juvenile and adult movements are all adapted to the opportunities that the flood pulse presents. 
The major zone of activity is the moving littoral (Junk et al. . 1989). which is an inshore 
zone from the water’s edge to a few meters in depth. This zone traverses the floodplain as 
flooding and drawdown take place. High turnover rates of organic matter and nutrients are 
predicted to occur largely as a result of this movement. During flooding nutrients previously 
mineralized during the preceding dry phase are dissolved and enter the main river. The 
moving littoral provides an excellent nursery grounds for fish and near optimum environment 
for many invertebrates, especially those associated with macrophytes (Junk 1973). Fish need 
to grow quickly through the flood period to reach sufficient size to reduce predation losses 
when the water volume subsequently reduces to its minimum and to reduce overwinter 
mortality in temperate systems (Bayley 1995).

In general, river floodplain biota have high annual growth and mortality rates. They have 
evolved life-history strategies that enable then to quickly colonize large areas. They are 
therefore mobile active species that undergo aggregations and dispersions throughout the 
season. This ability helps them persist in the system over time because the flood pulse is 
variable in magnitude and different areas are available in different years.

The flood-pulse concept introduces a strong component of lateral movement to our view of the 
system. The critical habitat for fishes incorporates the surrounding areas of the channel. As 
well, it incorporates a powerful seasonal effect, which is clearly the case for sub-Arctic 
systems such as the Slave River. The habitat changes with the season and the necessary 
habitat for reproduction of a fish species may not be same as the appropriate rearing or feeding 
habitat - a diversity of species specific habitat usage and seasonal migratory patterns within 
the river result.

Thus, the perception of fish habitat requirements in large rivers must include not only a 
cartographic sense of the habitat as the main channel environment surrounding the fish 
populations of the lower Slave River but upstream areas, the moving littoral and areas lateral 
to the channel, and the seasonal dynamics upstream of, lateral to and within the channel itself. 
Preservation of habitat will maintain species diversity and enhance production of harvested 
fishes (Bayley 1995).
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While one logical approach is to study these systems from the bottom up, level by level 
starting with hydrology, Bayley (1995) connected the flood pulse effect to fish yield. Yield 
from multispecies fisheries can be regarded as integrating a variety of aquatic and terrestrial 
processes in the river-floodplain (Bayley 1995). All available data on riverine fisheries 
indicated that yields were higher on river-flood plains than one might expect from the increase 
in surface area alone in flooding.

If fish are integrators then we can benefit from studies of their vital rates which will 
presumably reflect all of the influences of the surrounding habitat throughout their lives. How 
fish use the environment in space and over the season can define key areas of habitat that must 
be preserved. Studies of the diet can give an indication of what are necessary items (such as 
key species of invertebrates ) for their survival items. Keeping in mind that the riverine 
habitat is much greater than it superficially appears we can get some ideas regarding the 
likelihood of exposure to anthropogenic effects or given an exposure what might the pathway 
leading to the effect’s arrival.

1.2.3 The Riverine Productivity Model (RPM)

The riverine productivity model assumes that a substantial portion of the organic carbon 
assimilated by animals comes from local plants (autochthonous production - phytoplankton, 
benthic algae, aquatic vascular plants and mosses) and direct inputs from the riparian zone 
(i.e leaves and other sources) throughout the open water season. Thorpe and DeLong (1994) 
hypothesized that food webs in large rivers characterized by a restricted channel and adequate 
firm substrate would be driven by the above two sources of organic carbon. Additionally, 
they proposed that primary productivity, especially from phytoplankton is a significant 
contributor to secondary productivity. The macroinvertebrate community will be 
dominated by grazers rather than filterers and gatherers. Thorpe and DeLong (1994) made no 
predictions regarding the fish community structure and therefore the applicability to our 
concerns may be limited.

Rather than challenging the concepts of earlier theories Thorpe and DeLong (1994) suggested 
that the applicability of the various hypotheses will vary depending on the river size and 
geomorphology. The river continuum concept is most appropriate for headwater streams and 
small rivers, whereas the flood pulse concept is limited to large floodplain rivers. The RPM is 
relevant to large rivers with constricted channels and firm substrates in the photic zone. The 
concepts are not mutually exclusive and rivers probably conform to varying degrees to all three.

1.2.4 Application to the Slave River

These theories give some context with which to consider the lower Slave River but as Davies 
and Walker (1986) state we do not really understand the ecology of large rivers. Large sub
Arctic river systems such as the lower Slave River are even less well understood because of
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their relative remoteness and generally poor models of the ecology of winter-bound systems. 
According to Barton (1986) no study has been designed to identify annual variations in species 
composition or production of the biota.

Water recognizes no political boundaries and therefore there is a need to acknowledge that the 
lower Slave River is connected (how connected is the question) to the Peace, Athabasca and 
upper Slave rivers and Great Slave Lake. What occurs in these systems could potentially 
affect the fauna of the lower Slave. Scientifically, we must recognize that rivers are unified in 
their ecology even if we must (for tractability) study them piecemeal.

The description of habitat requirements includes all factors that affect the survivorship and 
health of fishes both at an individual and population level. Thus, one must consider the 
abiotic factors in the environment such as water flow, discharge, temperature, other climatic 
factors, chemistry, and so on, and the biotic factors both autochthonous and allochthonous.
The lower trophic levels, as well as the fish food web should be described. The purpose of 
this report is to focus on the fish community because that is where the environmental impacts 
of development that affect man will be observed. However, the ecosystem is an integrated 
entity and an understanding of the environment as perceived by the fish is essential to an 
appreciation of the cascading ecological consequences of environmental degradation. Thus, I 
will give a model of the habitat base via a synthesis of information from studies of other 
systems and the limited information available for the Slave River.

As another approach to the problem we might ask “how do communities respond to 
disturbances?”. Krebs (1988) uses the analogy of imagining a community as a billiard ball 
rolling on a topography set by the environment. The ball comes to rest in a low spot in the 
topography and we can call the resting position the natural or original community. If we 
disturb the system by hitting the ball slightly - the way we would perturb a community with a 
small oil spill - the ball rolls uphill a ways and then returns to the original position - the 
system is locally stable. A major force (e.g. the Bennett dam) may move the ball to a new 
locally stable position on the topography, that is, the community does not return to its original 
configuration.

A change in configuration is defined as when the species present in the community and their 
abundances change dramatically. According to Krebs (1988) at present, we can measure 
changes to some of the common species in our communities, so we have only a crude ruler on 
which to measure biological disturbances. The configuration of a community is most clearly 
seen in the abundances of each species and in its food web. By comparing the results of 
previous studies such as Tripp et al. (1981) and McLeod et al. (1985) to our own we may be 
able to determine if the composition of the fish community has changed since 1978. As a 
baseline of the community configuration we also define the food web.

The major question in determining the food relations among members of a community is “who 
eats whom?” Food webs are organized by two major processes: “vertically” by predation and 
“horizontally” by competition. Because fishes grow through a large range of sizes during their
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lives, fish communities commonly have “circular” food webs where the adults of prey species 
may feed on the juveniles of their predators. For example, rainbow smelt live in the open 
waters of Lake Erie and are eaten by lake trout, lake whitefish, blue pike and sauger (Zaret 
1980). As these species were reduced during the 1940’s and 1950’s, smelt increased in 
abundance. The “predator” species declined further because their young fry were fed upon by 
older smelt. The concept of “predator” and “prey” is reversible depending on the size of the 
fish, and the question of who eats whom results in a complex answer.

The response of fish communities to disturbances has been modelled successfully by Zaret 
(1980) based on the maximum size of a species, their life history and trophic position. Fish 
communities can be divided into three size related groups:

Large fishes: feed on fish, are highly predatory, often having low growth rates, and have older 
age at maturity, populations that are stable over time, and are highly desirable species for 
fisherman (e.g. inconnu, burbot).

Medium-sized fishes: feed on small fish, plankton and benthic invertebrates, exhibit moderate 
population fluctuation, and are desirable species for fishermen (e.g. walleye).

Small fishes: feed on plankton and benthic invertebrates, show high growth rates, and 
younger age-at-maturity, exhibit great population fluctuations, and not always desirable 
species for fishermen (e.g. flathead chub, goldeye).

As stress is applied to the fish community, larger forms fade away gradually and medium
sized forms collapse irregularly. The small fishes are the most resilient to stresses and tend to 
retain high but fluctuating abundance.

The habitat requirements for fishes are highly variable depending upon the species. Some fish 
may be adapted for high velocity water, others to withstand low oxygen. The species may use 
the system mainly for reproduction and appear only seasonally or may complete their entire 
life cycle within the system. To define habitat requirements comprehensively is therefore an 
enormous task. Given the limited amount of information on the Slave River it cannot be fully 
attained at this time. However, as a reasonable starting point we might attempt to characterize 
the use of the habitat in time and space by various fish species. In other words, what species 
are where and when. At least, then the potential impacts of development could be described in 
terms of what species might be affected. Ultimately, the impacts of development will most 
likely be recognized by the lowered abundance, productivity or extinction of fish species. 
These impacts cannot be measured without first, information on the temporal and spatial 
patterns and some information on fish productivity. Second, we should consider for the most 
important harvested species whether their vital rates make them vulnerable to environmental 
degradation. Following this we must consider if changes to the community composition and 
abundance of fishes has already taken place by examination of the available information and 
compare it to our results. Finally, we should consider the inter-relationships between species
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in terms of potential competition, predation and trophic pathways by which environmental 
degradation such as contaminants could work their way through the food chain. The last 
consideration will be particularly important to consumers of fish from the area since most 
harvested species are piscivorous predators near the top of the fish food web and therefore are 
likely to concentrate contaminants in their flesh.

The key concept in this work is to develop an ecological context with which to interpret the 
effects of contaminants and other anthropogenic impacts. Because fish species in a 
community occupy different niches and therefore have different movement patterns and 
trophic relationships with other species they will vary in their probability of exposure to 
anthropogenic effects (R. Hesslein, DFO Central and Arctic Region, pers. comm.). We will 
endeavour to develop a model of movements in time and space coupled with the position of 
the species in the food web that can give an estimate of their likelihood of exposure.

Geology, climate and habitat types will determine the amount and distribution of primary and 
secondary productivity and hence will have a profound influence on the distribution of fishes.

1.3 Immediate Background for Development of NRBS Slave River Studies

Impacts of development on aquatic systems are often most noticeable, especially to the public, 
in their effects on fish populations. Many fishes are top predators in the aquatic food chain. 
As such, they can be most severely affected by the bio-magnification of toxicants in the 
system. These same species can also be important as food for humans and as part of a 
traditional lifestyle for aboriginal peoples (Flett et al. 1995). For example, fishing was noted 
by Flett et al. (1995) as one of the most common traditional life skills maintained by the 
aboriginal population of the community of Fort Smith. Through fishing the public will 
monitor the health of a system by making personal observations on changes in numerical 
abundance, average size and condition of the animals that they catch. Because of their size 
and value fish are the most visible aquatic animals to the public. Fish kills are noticed.

For aboriginal peoples of communities such as Fort Smith, fishing continues to be an activity 
that most traditional resource users practice (Flett et al. 1975). Important riverine fish species 
harvested for human consumption and dog food are northern pike, lake whitefish, walleye, 
goldeye, burbot, sucker and inconnu (Flett et al. 1995). Flett et al. (1995) states that 
traditional users identified that there had been declines in the numbers available, size and flesh 
quality of fish in the area near Fort Smith.

The degree of accumulation and transport of toxicants in fish depend upon their concentration 
in the ecosystem and the behaviour and biology of the fish species. In particular, the patterns 
of movement and diet of a fish species will determine the extent to which it is affected. The 
life history traits of each species, such as size at age, age at maturity, age structure, fecundity, 
and egg size are considered to be optimized by evolution. These traits integrate the effects of 
cumulative impacts of ecosystem changes on the species in question through the individual
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fish and, ultimately, the population. To understand the effects of ecosystem change on fish one 
must understand their movement patterns in time and space, their dietary and trophic 
(foodweb) relationships and their demographics.

The Slave River and its delta has been the least studied of the three watersheds with major 
deltas in the Mackenzie River Basin (Tripp et al. 1981). McLeod et al.( 1985) noted that 25 
fish species occurred in the Slave River proper, with all except chum salmon (Oncorhvnchus 
keta) and emerald shiner (Notropis atherinoides) also present in the delta. The river is 
considered to be an important area for spawning of species such as inconnu (Stenodus 
leucichthvs). lake whitefish (Coregonus clupeaformis). burbot (Lota lota) and walleye 
(Stizostedion vitreum) (Tripp et al. 1981). According to traditional wisdom, riverine fish 
species that are most frequently used or observed by members of the Fort Smith community 
are northern pike, lake whitefish, walleye, goldeye, burbot, sucker, inconnu, mountain 
whitefish, rrainbow trout and chub (Flett et al. 1995). The Slave River system has been noted 
by Katapodis and Yaremchuk (1994) as being highly vulnerable to resource development.

Tripp et al. (1981) employed floy tags to mark 4044 fish (mostly goldeye) which included 334 
lake whitefish, 495 burbot, 413 walleye but only 18 inconnu. From their results, Tripp et al. 
(1981) proposed that inconnu and lake whitefish migrate through the delta in late summer 
and early fall to spawn upstream (Figure 3). Large concentrations of both species have been 
observed in the vicinity of the rapids at Fort Smith during late fall. Tripp et al. (1981) also 
suggested that walleye move through the delta to spawn in the Slave River during the spring. 
Some return to feed in the delta shortly after spawning while others return in early fall to feed 
before continuing on to overwintering areas in Great Slave Lake. Burbot were reported to 
move into the delta area to spawn from late freeze-up to late December. Although it is likely 
that most return to Great Slave Lake, some burbot apparently move upstream as far as Fort 
Smith after spawning. Burbot, walleye and inconnu thus represent a range in expected 
migratory tendency from least migratory to most migratory, respectively. These piscivorous 
predators are all important for subsistence fishing with the best subsistence fishing areas 
located in the upper Slave River near Fort Smith (Tripp et al. 1981). These authors 
recommended that the movements in time and space of the inconnu and lake whitefish in the 
upper Slave River were the most important areas for further study. Such studies would 
provide the best opportunity to tag fish to assess the importance of the Slave River to 
commercial and subsistence fisheries in Great Slave Lake.

Floy tagging studies by Tripp et al. (1980, 1981) and Fuller (1947, 1955) indicated that 
inconnu began rapid upstream movement into the Slave River during mid-August with peak 
movements occurring near the end of August or early September. Radio-telemetry studies by 
McLeod et al. (1985) showed that the inconnu separated into upper river spawners 
(Cunningham Landing to Rapids of the Drowned) and mid-river spawners (Pointe Ennuyeuse 
to below Grand Detour). Rapid downstream (post-spawning) movement was recorded in 
mid-October. Fourty-six inconnu were fitted with radio-transmitters and movements
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followed by aerial surveys. However, their studies did not commence until the spawning run 
was well underway and therefore could not characterize the earliest seasonal period of the 
migration. As well, since tags were inserted into the intestinal tract the inconnu could only 
be tracked during the period just prior to spawning when they were not feeding.
Post-spawning and longer term movements would not have been possible to follow since the 
tags would prevent normal feeding activities.

McLeod et al. (1985), also, observed a well defined run of burbot in the Slave River delta 
after November 1, prior to freeze-up. However, radio-tagged fish movements did not follow a 
definable pattern. Most fish showed little movement. This may have been due to the effect 
of the tags on feeding.

Jalkotsky (1976) noted that the walleye run in the Slave River begins in the last week of May 
and continues until the second week in June. Average walleye size was from 0.7 to 0.9 kg. A 
fall run of walleye occurs from late September to freeze-up.
Tripp et al. (1981) provide some information on the life cycles of various species in the Slave 
River delta area. However, the samples taken were limited. For lake whitefish, a full 
analysis of life history traits ( size at age, age specific fecundity, egg size and maturity ) 
was only accomplished on 12 fish. For inconnu, age and growth characteristics were 
measured on only 26 fish with a full analysis on only 9 fish. There was growth information 
on 143 burbot but only 20 fish analyzed fully. Growth data were available for 240 walleye 
but only 4 fish were analyzed fully for life history traits. These traits are the keys to 
understanding population growth and mortality rates and thus stock productivity. Usually, a 
minimum sample size of 200 or more fish per stock per species are considered necessary for 
this type of analysis.

McLeod et al. (1985) provided some data but no analysis in their appendices on the growth 
rate, and age at maturity of inconnu, lake whitefish and burbot but did no work on 
age-specific fecundity or egg size.

Boag and Westworth (1993) studied the Slave River south of the Northwest Territorial 
Boundary focussing on species considered important to sportfishing. They noted that the 
sportfish catch in this southern section of the Slave river consisted of northern pike, (Esox 
lucius) goldeye, (Hiodon alosoides) walleye and burbot (most important to least important, 
respectively). No age specific information was generated in the study. Results of tagging in 
terms of movements were not noted in the report. The report focussed on fish inventory.

Analysis of dietary information and food web from diet is generally lacking. Tripp et al. 
(1981) record gut contents for a number of species but provide no synthesis of this 
information. There is no mention of it in the executive summary of their document.
McLeod et al. (1985) and Boag and Westworth (1993) did not examine trophic relationships.

According to Bodden (1980), fish have traditionally been an important source of food for the
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people of Fort Resolution, providing up to 40% of the food consumed by people and 100% of 
the food required to maintain sled dogs. Lake whitefish and inconnu are the most highly 
prized fish for both humans and dogs, followed by burbot, walleye and to a lesser extent 
by northern pike and longnose suckers (Catostomus catostomus). A few people fish 
throughout the year in the Slave River delta. Fishing intensity is generally greatest during the 
fall spawning migrations of the major species in the Slave Delta, especially lake whitefish, 
inconnu and burbot. Of 9715 fish taken in the Slave River delta during the 1976-77 season 
burbot were estimated to account for 45.3% of the total catch, followed by lake whitefish 
(25.7%), longnose sucker (10.8%), inconnu (9.4%), pike (7.9%), and walleye (0.9%)
(Bodden 1980).

McLeod et al. (1985) recorded a substantial subsistence fishery in the vicinity of Fort Smith 
during the fall. Inconnu contributed the greatest yield to the domestic catch (43.8% and 
49.1% of the total catch by weight in 1983 and 1984, respectively), although, lake whitefish 
was numerically most abundant. A significant subsistence fishery for burbot, taking roughly 
4408 kg in 1984-85 occurred at the Cunningham Landing/Salt River area (McLeod et al. 
1985)

MacDonald and Smith (MS, 1993) also noted the importance for subsistence of lake whitefish, 
inconnu and burbot in the Slave River basin. They noted that inconnu had the highest harvest 
followed by lake whitefish and burbot. They listed eight species as being key species to 
monitor : lake whitefish, inconnu, burbot, northern pike, walleye, goldeye, white sucker 
(Catostomus commersoni) and longnose sucker.

Historically, the lake whitefish has been the most important species for commercial harvest in 
the Great Slave Lake followed by lake trout, inconnu, northern pike and walleye (Tripp et al. 
1981). More recently, the dominant species have been lake whitefish, inconnu, walleye and 
burbot (C. Day Dept of Fisheries and Oceans, Pers. Comm.). Although they do not use the 
delta extensively, large concentrations of lake whitefish are found in the Slave River near 
Fort Smith in the fall. However, because lake whitefish is not a piscivore, they would be less 
likely to accumulate toxic substances. Among the others, lake trout does not occur in the 
Slave River. Thus, inconnu, pike, walleye and burbot are most suitable for detailed study 
because they are piscivores throughout most of their lives, they are abundant in the Slave 
River and they are important for both commercial and aboriginal subsistence harvest. Of 
these, the least is known regarding the movements and life history variation of inconnu.

Prior to the NRBS there has been much useful work on the fish populations of the Slave 
River . However, work on movements was based on floy tagging studies with only one study 
using radio-tracking. The number of fish floy tagged has not generally been sufficient for 
inconnu. McLeod’s radio-telemetry study is thorough but represented only a single year of 
effort and missed the early part of the migration and the longer term movements. There was 
no radio-tracking information examining inter-annual variation in fish movements. Only very 
limited information existed to understand and characterize the demographics and life history
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Figure 5 The lower Slave River at Fort Smith.
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traits important to stock productivity of key species for human consumption. There was only 
spotty dietary information with no integration and synthesis nor was there any inter-annual 
comparisons of diet and trophic positions. Therefore, Tallman et al. (1996a, NRBS report # 
_) examined the migration of two species, inconnu and burbot, representing the expected 
extremes of migratory behaviour in the harvested species, using radio-telemetry techniques 
employing external tags. As well, they interpreted the movements of all fish species based on 
catch per unit effort analysis. Tallman et al. (1996b, NRBS report #_) examined the variation 
in life history traits important to productivity in inconnu and burbot - specifically size at 
age, age at maturity, age-specific fecundity and egg size by collecting fish and analyzing 
appropriate samples. Finally, Tallman et al. (1996c, NRBS Report #_) conducted a thorough 
examination of the diets of species at all levels of the fish food web. This synthesis report 
describes the habitat requirements and probability of exposure of the fish community using the 
information from the NRBS reports and previously published studies on the Slave River 
system.

In this report I have tried to emphasize the community aspects of the fishes in the Slave River 
system . In spite of this, some areas such as vital rates are best represented on a species-by
species basis.

2.0 Description of the Slave River Environment - Background Synthesis

2.1 Study Areas

2.1.1Geography and Surrounding Habitat

The Slave River is, by far, the largest tributary of Great Slave Lake and divides the Interior 
Plain to the west and the Pre-Cambrian Shield to the east (Rosenberg and Barton 1986; Fig.
3). From the Rapids of the Drowned at Fort Smith, NWT, the river flows approximately 320 
km to the Slave River Delta at Great Slave Lake. Three study areas were chosen for 
comparison: 1) the Slave River Delta, 2) the Slave River, immediately downstream of the
Rapids of the Drowned near Fort Smith, NWT (60°00’N, 111°53’W) and 3) the lower Salt 
River.

Vegetation around the lower Slave River consists of boreal forest on the western side and sub
arctic forest on the eastern side (Brunskill 1986). There are grass-sedge-muskeg meadows, 
deciduous (trembling aspen, balsam, poplar, white birch) and coniferous trees( black and white 
spruce, tamarack, balsam fir, lodgepole and jack pine) (Brunskill 1986). The drainage area 
downstream Fort Fitzgerald (just south of Fort Smith) is about 606,000 km2 (Brunskill 1986).

The Slave River Delta is located midway along the south shore of Great Slave Lake 
approximately 13 km north-east of Fort Resolution (61°10’N, 113°40’W). It covers an area of 
approximately 78 km2 (English 1979). The delta is comprised of very diverse habitat types,
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compared with the main stem river proper, as a result of the numerous and variably sized 
channels. Landforms range from large mud flats on the outer edges of the Delta, to cut-bank 
levees ranging in height from 0.25 m to 3 m (English 1979). Shoreline habitat ranges from 
heavily vegetated shorelines on gently sloping banks to steeper banks with narrow littoral 
zones and little vegetation.

The delta consists of four main channels that connect the Slave River to Great Slave Lake:
1) Resdelta, 2) Middle Channel, 3) Old Steamboat Channel and 4) East Channel. Most delta 
sampling occurred along these channels (Figure 4). Resdelta Channel is the largest channel 
through the delta, accounting for 86% of the water flow (Tripp e t  a l. 1981), with maximum 
depths ranging from 12 m to 32 m (Tripp e t  a l. 1981; per. obs). The other main channels 
ranged from 5 m to 12 m deep and depths of 1 to 2 m occur in minor channels.

The delta of the Slave River is smaller and less complex than the Peace-Athabasca Delta 
(Tripp et al. 1981). It has been less closely studied although Kindle (1918) and Rawson 
(1950) recognized its importance to Great Slave Lake. According to Brunskill (1986) the 
active portion, with four major channels, is an arcuate 75 km2 protruding into Great Slave 
Lake (Fig. 4). Twenty-six million tonnes of sediment per year on average pass through the 
delta and are deposited primarily in the large western basin of Great Slave Lake (Brunskill 
1986). For further description of the Slave River delta refer to English (1996).

The lower Slave River near Fort Smith (Figure 5) is more homogenous with a maximum width 
of approximately 3 km (Vanderburgh and Smith, 1988). It is a mainstem habitat (Barton 1986) 
characterized by turbid, fast flowing water and steep river banks. It is strongly seasonal and 
both turbidity and discharge variations are significant. The steep banks reduce flooding but 
water levels and velocities fluctuate and the river bed is unstable. The bed of the lower Slave 
River bed is a patchwork of moving gravel, sand, silt and clay. The banks erode as water 
levels oscillate and a high concentration of suspended solids is maintained, so that light 
penetrates but a few centimetres during most of the open water season. The cut-bank levees 
can reach up to 35m high (Vanderburgh and Smith 1988) and, consequently, very narrow 
littoral zones result, deterring aquatic plant establishment.

The Salt River, is the largest tributary on the Slave River, located 25 km downstream of Fort 
Smith (Figure 6.). It is a meandering and narrow river, compared with the Slave River, with 
an average maximum depth of 1 to 2 m and a maximum width of about 60 m. It also differs 
from the Slave River in having greater amounts of aquatic vegetation present. The Salt River 
is a particularly important refuge area for migratory and feeding fishes.

Average annual discharge in the lower Slave River from Fort Fitzgerald is 110 km2a-l making 
it the largest river flowing northward in North America next to the Mackenzie River 
(Brunskill 1986). The total dissolved salts (TDS) average 120mg H; conductivity - 253mS 
cm 1. Like most of the Interior Plains rivers the pH is basic at 8.0 and other chemical 
characteristics are also typical of rivers of the region (See Brunskill 1986 for details). The
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Slave River has the second highest levels of total dissolved phosphorous relative to other 
rivers in the Mackenzie River drainage basin (7.0 ppm; Brunskill 1986, second only to the 
Athabasca River at 13 ppm). Most other rivers in the Mackenzie River drainage have total 
dissolved phosphorous levels an order of magnitude less.

2.1.2 Climate

Winter (defined by average daily mean temperature below 0°C) lasts 175-200 days (Brunskill 
1986). Mean daily temperatures are -20 to -26°C in January and 16-20°C in July. Annual 
mean daily solar radiation is 275-300g cal cm 1 with extremes in December-January (25-75) 
and May-July (500-550).

2.1.3 Primary Productivity

Low-light penetration prevents the growth of macrophytes (although they are abundant in the 
Salt River) but the algal flora is rich. Blue-green alga dominate numerically during the cooler 
months but from June to August they are replaced by diatoms.

Autochthonous (i.e. within system) primary production is probably relatively unimportant in 
the trophic dynamics because light penetration is so limited - by suspensoids in summer and 
ice and snow in winter (Barton 1986). Microbial processing of allochthonous (i.e. originating 
externally) material is likely the dominant food base for macro-invertebrates based on the 
correspondence between bacterial and macro-invertebrate densities (Barton 1986).

Allochthonous inputs are substantial. Objects projecting from the river bed , such as logs or 
anchor lines, quickly accumulate debris that is colonized by invertebrates. According to 
Barton (1986) this offers attachment sites for filter-feeders such as S im u liu m  a r c t ic u m  

(midges), B r a c h y c e n tr u s  and hydropsychids, and food for shredders like P te r o n a r c y s  d o r s a ta  

and surface scrapers like B a e t is ,  H e p ta g e n ia  and E p h e m e r e l la  in e r m is . In turn, these are 
preyed upon by stoneflies.

2.1.4 Secondary Productivity - Invertebrate faunal composition, life cycle.

The faunal composition of the bedrock of the Slave River I infer from the study by Barton 
(1980) of the lower Athabasca. Trichoptera and E p h e m e r e l la  spp. along with stoneflies were 
major components of the community. In the unstable sediments the community is dominated 
by chironomids and oligochaetes.

Tripp et al. (1981) collected invertebrates from the Slave River Delta using Ponar and Ekman
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grabs during September- November and May-June. In the main channels, standing stocks at 
less than 5-m depth were higher in autumn than spring (2031 vs 742 animals nv2), but not in 
deeper water (88 vs 177 nv2). The decline in abundance with depth was attributed to the 
increasing amount of sand towards the mid-channel. Sandy substrate supported mainly 
animals too small to be captured by 600mm sieves used in sampling.

At depths below lm in the main channels, the dominant chironomids were C h ir o n o m u s  in 
autumn and P o ly p e d i lu m  in spring, whereas in deeper water P r o c la d iu s  was most abundant in 
both seasons (Tripp et al. 1981). C h ir o n o m o u s  and P r o c la d iu s  were also the most abundant 
chironomids in minor channels, where the substratum was silty and depth rarely exceeded 2m. 
Other chironomids (e.g. T a n y ta r s u s ,  P a g a s t i e l la ) ,  Oligochaeta, D a p h n ia  and P is id iu m  were 
abundant, and the mean standing stock in the minor channels was similar to that of the most 
productive part of the main channel (c. 4900 animals nr2). Over 90% of the invertebrates 
associated with macrophytes were Oligochaeta, Corixidae, Chironomidae and Gastropoda, in 
that order. Chironomid larvae were more abundant in shallow water, whereas snails were 
more abundant in deeper water.

Barton (1986) proposed that two factors were important in the ecology of delta lakes and 
ponds: high turbidity due to wind mixing in the shallow basins and annual flooding. Turbidity 
affords large zooplankters some protection from predators, but also limits phytoplankton 
productivity. Gallup et al. (1971) suggests that the principal energy source for these lakes is 
flood borne organic matter broken down by bacteria, especially in summer when the 
temperatures are high. Zooplankters use the combination of high temperatures, abundant 
bacteria and low visibility to reproduce throughout the summer and sustain high numbers 
despite heavy predation by fish.

There has been little direct study of the macrobenthos populations of the Slave River. Based 
mainly on studies at the Bigouray River, Barton (1986) proposed a general model of the 
seasonal patterns of the benthic invertebrate community for the Mackenzie River system 
including the Slave River. These animals are the major conduit of energy transfer from the 
rest of the biological community into the fish food chain.

During winter most flowing waters are ice-covered. Water temperatures remain near freezing 
and discharge is generally low. However, the lower Slave River has sections that are open 
well into the winter due to powerful flow patterns. Benthic community composition and 
abundance remains constant, although many slow-growing species are growing steadily, and 
fast-growing stoneflies are developing rapidly. Drift densities are minimal but benthic 
community concentrations are at a peak due to deep water aggregations of animals avoiding 
frozen areas of the river bed (Clifford 1978). Many first-order streams freeze into the 
substratum and activity ceases completely (Barton and Wallace 1980).

Spring starts with the disappearance of the winter ice and emergence of winter (fast-seasonal) 
stoneflies. Slow-seasonal mayflies resume rapid growth and maturation. Most nymphs of 
L e p to p h le b ia  c u p id a  migrate into the surrounding marshes, where they emerge (Clifford et al.
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1979), and adult corixids fly to muskeg pools where they breed (Barton and Wallace 1980). 
Water temperatures quickly rise to 15°C due to the long daylength and lack of shade from the 
undeveloped riparian vegetation. By the end of spring, over one-third of aquatic insects have 
begun their reproductive periods.

In summer temperatures rise to about 20°C and discharge declines in the latter half of the 
season (Clifford 1978). In early June, the chironomid standing stock is minimal, as the early 
species have emerged and the fast-seasonal summer generations are just beginning to be 
active. Most non-seasonal stoneflies emerge at this time. As the season progresses, the rapid 
growth, development and recruitment of many species cause standing stocks and composition 
to fluctuate more than in other seasons (Clifford 1978). Submerged vegetation provides more 
substrata for Corixidae, Ephemeroptera, Simuliidae and Chironomidae. By the end of August 
85% of the insect taxa have completed reproduction (Clifford 1978).

The remaining species complete their reproduction in autumn as stream temperatures decline 
(Clifford 1978). The numerical standing stock reaches a maximum. Discharge continues to 
decline but rises abruptly when frost stops evapotranspiration by the muskeg vegetation. The 
macrophytes die and epiphytic invertebrates return to the sediments (Boerger 1981).

3.0 Distribution and abundance of fishes in time and space

3.1 Introduction

Although the Slave River system has been noted as being highly vulnerable to resource 
development (Katapodis and Yaremchuk 1994), the Slave River and its delta has been the 
least studied of the three watersheds having major deltas in the Mackenzie River Basin (Tripp 
et al. 1981). As many as 23 species occur in the Slave River proper, and it is also considered 
to be an important area for spawning of species such as inconnu (S te n o d u s  le u c ic h th y s ) , lake 
whitefish (C o r e g o n u s  c lu p e a fo r m is ) , burbot (L o ta  lo ta )  and walleye ( S t iz o s te d io n  v itr e u m )  
(Tripp et al. 1981).

Information on the changes in time and space can be broken down into studies of spatial 
distribution both on a macro and micro-scale and studies of temporal changes, either daily, 
seasonal or across years. Tripp et al. (1981) and Tallman et al. (1996c) provide information on 
the seasonal changes in the in time and space. Tripp et al. (1981), McLeod et al. (1985) and 
Tallman et al. (1996c) provide information on large scale spatial distribution and changes over 
long time scales. Tripp et al. (1981) is the only source for micro-habitat preference 
information from the lower Slave River. There is no available data on daily movements.
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3.2 Fish species abundance changes in time and space over the annual cycle.

3.2.1 Spatial distribution large scale - Abundance variation between the Slave River 
delta, Slave and Salt rivers.

Three scientific studies of the Slave River fish fauna - - Tripp et al. (1981), McLeod et al. 
(1985), and our study (Tallman et al. 1996a) can be used to generate a synthesis of the large 
scale spatial distribution of fishes in the Slave River, Salt River and Slave River Delta. As 
well, the NRB traditional knowledge study by Flett et al. (1995) may be used for verification 
of the spatail and temporal patterns of fishes’ distribution. Knowledge of these patterns of 
will aid in assessment of the likelihood of exposure to water quality changes in the northern 
rivers basin. Sampling methods varied. Tripp et al. (1981) used more seine net and trap 
sampling than McLeod et al. (1985) or Tallman et al. (1996c). For the most part I have 
focussed on the major species - those vulnerable to gillnet sampling which was common to all 
programs. However, Tripp et al.’s seine catches provide useful information on forage species.

Lake whitefish were much less abundant in the Slave River Delta than in the Slave River near 
Fort Smith and the Salt River (Tripp et al. 1981, Tallman et al. 1996c, Table 1) For example, 
Tripp et al. (1981) noted that in early October, 1979 gillnet catches averaged 14.7 fish per hour 
compared to 0.7 fish per hour over the same period in the Delta. However, in the fall 
collections of McLeod et al. (1985, Appendix B) there were substantial numbers of lake 
whitefish in the Delta, the mid-river and near Fort Smith. In contrast, the three forms of 
ciscos recorded by Tripp et al. (1981) ( C o r e g o n u s  a r t e d i i  and two other undefined forms) were 
found in the Delta and the Slave River channel just upstream but Tallman et al. (1996c) did 
not capture any in the Salt River or the Slave River near Fort Smith. McLeod et al. (1985, 
Appendix B) found the same result in the fall of 1983 and 1984.

Goldeye were the most abundant fish in both the Slave River and in the Delta (Tripp et al. 
1981; Tallman et al. 1996c, McLeod et al. 1985 in Appendix B). Northern pike were also 
very abundant in the Delta (Tripp et al. 1981, McLeod et al. 1985, Appendix B) and 
moderately so in the Slave River near Fort Smith. Flett et al. (1995) recorded that pike were 
the most frequently utilized or encountered fish species by residents of Fort Smith. Juvenile 
pike were abundant in the Salt River mouth (Tallman et al. 1996c). Flathead chub were 
present but less abundant in the Slave River Delta than in the Slave River channel (Tripp et 
al. 1981, McLeod et al. 1985, Tallman et al. 1996c). Tripp et al. (1981) found trout-perch, 
P e r c o p s is  o m is c o m a y c u s , to be the most abundant small fish species in the Delta and the 
Slave River channel immediately upstream. Tallman et al. (1996c) found evidence of trout- 
perch in the stomachs of other species but did not capture any in the Slave River near Fort 
Smith. Burbot were present in low abundance in the Delta and throughout the Slave and Salt 
rivers (Tripp et al. 1981, Tallman et al. 1996c). Flett et al. (1995) noted that residents of Fort 
Smith described the Salt River as important habitat for burbot. Longnose sucker were present 
in low abundance in the Slave River and its Delta but not in the Salt River while the white
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sucker was only present in the Salt River. Flett et al. (1995), also, identified the Salt River 
as an important area for sucker species. Walleye were moderately abundant throughout the 
Slave and Salt rivers (Tallman et al. 1996c). McLeod et al. (1985 in Appendix B) record that 
walleye abundance increased substantially in the fall in the Delta compared to the riverine 
habitats. Some smaller species (Arctic lamprey, L a m p e tr a  ja p o n ic a ,  round whitefish, 
P r o s o p iu m  c y l in d r a c e u m  , Arctic grayling, T h y m a llu s  a r c t ic u s , lake chub, C o u e s iu s  p lu m b e u s ,  

emerald shiner, N o tr o p is  a th e r in o id e s , spottail shiner, N o tr o p is  h u d so n iu s , pearl dace, 
S e m o tilu s  m a r g a r i ta , yellow perch. P e r e a  f la v e s c e n s , slimy sculpin, C o ttu s  c o g n a tu s ,  

spoonhead sculpin, C o ttu s  r i c e i ) inhabit the Delta and extreme lower reaches of the Slave 
River, only (Tripp et al. 1981, Tallman et al. 1996c). Of these it is doubtful that Arctic 
lamprey, Arctic grayling, and pearl dace are limited to this area because they are normally 
quite successful in river and stream environments (Scott and Crossman 1973). However, 
except in stomach contents, they have not been captured upstream of the area surveyed by 
Tripp et al. (1981). .

3.2.2 Spatial variation small scale - Abundance variation by micro-habitat type

Tripp et al. (1981) measured seasonal variation in minnow seine catches for 11 species of fish 
in four different kinds of inshore habitat: shallow, vegetated areas with a low gradient; shallow 
unvegetated areas with a low gradient; deep, vegetated areas with a steep gradient; and deep 
unvegetated areas with a steep gradient. Overall, fish tended to be twice as abundant in 
shallow well vegetated areas as they were in the other three habitat types. Lake whitefish 
young-of-the-year, flathead chub, pearl dace, burbot young-of-the-year, trout-perch, P e r c o p s is  

o m is c o m a y c u s , and spoonhead sculpin young-of-the-year preferred shallow well vegetated 
areas. On the other hand, northern pike and emerald shiners preferred vegetated areas 
regardless of depth, while young-of-the-year and small juveniles of longnose suckers preferred 
shallow water, regardless of the presence of vegetation. Lake chub and goldeye distributed 
themselves without regard to depth or vegetation (See Tripp et al. 1981 - Table 19.).

3.2.3 Seasonal Variation - Change in abundance and composition over the year.

Seasonal movements of fish will cause the community composition to change. As community 
composition changes the relative probability of exposure to water quality changes will change 
according to the species. Tripp et al. (1981) provides useful information on the pattern of 
seasonal movement in the Slave River Delta. McLeod et al. (1985) focussed on the fall 
period near Fort Smith and therefore cannot provide a complete picture of movement patterns 
in this area. Tallman et al. (1996a and 1996c) sampled throughout the season, including 
winter near Fort Smith. Thus, the data on changes in abundance and species composition in 
the delta and main part of the lower Slave River can be blended to give a more detailed picture 
of activities of fish species in the lower Slave River.

In the late May after ice break-up, the fish community in the Slave River was dominated by
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high numbers of flathead chub, P la ty g o b io  g r a c i l i s , walleye, S ti z o s te d io n  v itr e u m  v itr e u m ,  

and goldeye, H io d o n  a lo s o id e s  (Tallman et al. 1996c) (Appendix 3). Goldeye were also 
abundant during the spring in the Slave River Delta in 1980 although they were not in 1979 
(Tripp et al. 1981). Flathead chub were generally abundant in the Delta during the May (Tripp 
et al. 1981). Juvenile pike, E s o x  lu c iu s , are also present in certain areas near Fort Smith and 
in the Delta (Tripp et al. 1981; Tallman et al. 1996c) (Appendix 3). Tripp et al. (1981) 
proposed that adult pike overwinter in the Great Slave Lake or the Delta . After spring 
spawning near Fort Smith adult pike gradually moved into the Delta over the course of the 
season, presumably to feed (Tripp et al. 1981). The following year large numbers of pike in 
spawning condition were captured in the Delta demonstrating that in some years spawning 
probably occurs there (Tripp et al. 1981) . Traditional knowledge of the Fort Smith 
community supports the above in that whitefish, pike and goldeye are reported to be abundant 
in the spring after the ice goes out (Flett et al. 1995). Longnose sucker is also relatively 
abundant at the end of May near Fort Smith (Tallman et al. 1996c). (Appendix 3). Moderate 
numbers of lake whitefish were found by Tallman et al. (1996c) (Appendix 3). Tripp et al. 
(1981) also found an increase in the abundance of lake whitefish in the Slave River Delta after 
ice break-up but the numerical abundance was much lower than at Fort Smith. They 
attributed this to the general downstream movement by lake whitefish that stay and overwinter 
in the Slave River after spawning the previous fall. Absent near Fort Smith were burbot, 
inconnu, ciscos and white sucker (Tallman et al. 1996c(Appendix 3 ). Young of the year 
burbot were abundant in the Delta (Tripp et al. 1981).

I suspect that the high catches of chub, goldeye and walleye are due to aggregations for the 
purpose of spawning. If so we would place the spawning of these species in early spring 
shortly after river break-up. According to Scott and Crossman (1973) details of the spawning 
habits of flathead chub are unknown but available information indicates that spawning takes 
place in summer. Olund and Cross (1961) reported collections of males and females in 
spawning condition, taken in the Milk River in August 1955. However, McPhail and Lindsey 
(1970) reported the capture of females with large ovaries of almost free eggs, and one spent 
female in the Mackenzie River at 64° N, on June 27. Olund and Cross (1961) suggested that 
spawning occurred when water levels receded to the seasonal low during mid-summer. 
However, the seasonal low in the Slave River would be in fall. The nature of the Slave River 
may encourage spring spawning in this system. The biology of goldeye is well studied in 
Canada. In most locales spawning occurs in the spring from May to the first week of June 
starting just after the ice breaks and continuing over a period of 3-6 weeks (McPhail and 
Lindsey 1970, Battle and Sprules 1960, Kennedy and Sprules 1967, Pankhurst et al. 1986) . 
According to Scott and Crossman (1973) walleye spawning occurs in spring or early summer 
(early April in southwestern Ontario to the end of June in the far north) depending on the 
latitude and water temperature. Normally, spawning begins shortly after the ice breaks up at 
temperatures ranging from 5.6-11.1 °C. Spawning grounds are commonly in rocky areas in 
white water below impassable falls in rivers. Tripp et al. (1981) found two major seasonal 
migrations of walleye through the Delta. The first was an upstream spawning migration 
starting in mid-April before spring breakup and continuing through most of May. The second
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migration is a downstream migration to Great Slave Lake that starts in late august and 
continues until freeze-up, and possibly later. Based on these criteria we suspect that the 
Rapids of the Drowned is the spawning area for walleye in the lower Slave River. On the 
other hand, Tripp et al. (1981) thought that the Salt River might be an important area. Pike are 
early spring spawners - probably so early here that there was no distinct evidence of a 
spawning aggregation. Spawning takes place immediately after the ice melts in April to early 
May when water temperatures 4.4 - 11.1°C. Pike also tend to spawn in small tributaries and 
therefore may have been massing elsewhere in the system. Since longnose suckers are 
recorded to spawn in the spring as soon as the water temperature exceeds 5° C (Harris 1962, 
Geen et al. 1966) I would expect that spawning had occurred around mid-May. What was 
observed in our work was the tail end of the aggregation. According to Geen et al. (1966) 
spawning takes place 152-279mm deep, with a current of 30 to 45 cm per second and a bottom 
gravel of 50-100mm in diameter. Tallman et al. (1996c) found that the high numbers of lake 
whitefish were due to the presence of juveniles near the Salt River area.. The Salt River may 
serve as a nursery area for this species. Whitefish may also have been attracted away from 
Great Slave Lake to take benefit from the more rapidly warming river. The absence of 
inconnu at this time is not surprising. In other studies inconnu have typically used certain 
rivers only for reproduction in the fall. Burbot were never very susceptible to the gear and 
thus may have been present in deeper areas or not been caught because they were relatively 
sedentary. White sucker were only found in the Salt River area.

In the early part of June the abundancies of the spring spawning species were tapering off but 
still generally high. Lake whitefish and northern pike juveniles were abundant at this time.
The pike may have been attracted by the whitefish and chub concentrations. All nine major 
species (flathead chub, goldeye, burbot, inconnu, lake whitefish, walleye, northern pike, 
longnose and white sucker) were present near Fort Smith over the course of June and July but 
no major aggregations appeared to occur. In the Delta, Tripp et al. (1981) recorded peaks of 
abundance of longnose sucker in late June (1979) and early July. These fish were thought to 
be post-spawners from the spring spawning aggregation upstream.

In the latter part of August the fall spawning species such as inconnu and lake whitefish begin 
to increase in abundance (Flett et al 1995). Inconnu first appeared in the Slave River near the 
beginning of August (Tallman et al. 1996c)(Appendix 3). The run peaked between September 
1 and September 15 and again between October 1 and 15 and was estimated to have ended in 
the latter part of October. By October 21 most inconnu seemed to have left the Slave River. 
However, due to the formation of the ice few sets were made during this period.

Little information exists on the biology of inconnu in Canada (Scott and Crossman 1973). 
Upstream runs into Great Slave Lake tributaries are protracted throughout the summer. 
Spawning is thought to occur in the early fall only every 2,3 or 4 years (Scott and Crossman 
1973). However, Tallman et al. (1996c) placed spawning in the Slave River in mid-October 
and Tallman et al. (1996a) found that a male tagged on the spawning grounds returned to the 
Slave River the following season. Tripp et al. (1981) found two peaks of inconnu abundance
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in the fall in the Slave River delta - one as part of the upstream spawning run in late August 
and early September and the other as a concerted downstream run out of the system in late 
October. In contrast, McLeod et al. (1985, Appendix B) captured relatively few inconnu 
below the Rapid of the Drowned near Fort Smith. They were detected in low numbers during 
mid-September in 1983 and 1984. Regardless, radio telemetry by McLeod et al. (1985) 
suggested several areas near Fort Smith were inconnu spawning grounds in the fall. As 
well, mark-recapture experiments established that the inconnu run in 1984 was between 
15,856 to 24,638 fish (95% confidence limit on the mean abundance - McLeod et al. 1985). 
McLeod et al. (1985, Appendix B) found that inconnu were abundant in the mid lower Slave 
River during the first two weeks of October . In the delta, inconnu showed two peaks of 
abundance in late August - early September and in the third week of October in 1983 and 1984 
(McLeod et al. 1985, Appendix B). These probably represent the upstream run of pre- 
spawners and the downstream run of post-spawners, respectively.

Tallman et al. (1996c) recorded that lake whitefish became abundant in the Slave River during 
August and the CPUE steadily climbed to a peak in the first two weeks of October (
Appendix 3). Tripp et al. (1981) noted a transient peak in abundance of lake whitefish in the 
Slave River Delta in late August, presumably from migrating pre-spawners. McLeod et al. 
(1985, Appendix B) , sampling from the second week in September onward, also, found that 
abundance below Rapids of the Drowned increased steadily to a peak in the first two weeks of 
October. In the Delta, McLeod et al (1985) observed a similar pattern in 1983 but with 
sampling prior to September in 1984 found that the highest CPUE was during mid to late 
August. According to Rawson (1947) spawning occurred in Great Slave Lake from late 
September to October. Therefore, the peak abundance in the Slave River is presumably a 
spawning run. Lawler (1965) suggested that spawning in Lake Erie was delayed until the 
temperature dropped to 7.8°C and below. This agrees well with the what was observed in the 
Slave River by Tallman et al. (1996c, Appendix 3). Tripp et al. (1981) proposed that the base 
of the rapids on the Slave River near Fort Smith was likely a major spawning area. They 
found that after October 10 water temperatures were 7.5°C and most of the males were 
running milt. In 1994, both sexes were ready to spawn by mid-October (Lange and Tallman, 
unpublished data). By the beginning of November lake whitefish appeared to have left the 
Slave River. However, due to the formation of the ice Tallman et al. (1996c) made few sets 
during this period. Floy tagging results of Tripp et al. . (1981) suggest that after spawning 
most adults return to Great Slave Lake. Nonetheless, a substantial proportion of adults and 
juveniles apparently over-wintered in the Slave River (Tripp et al. 1981).

Spawning usually occurs in shallow water at depth of less than 8m but spawning has been 
reported in deeper waters by Koelz (1929). It often takes place over a hard or stoney bottom 
but sometimes over sand. The Slave River has ample locations with this type of habitat. In 
northern waters individuals may spawn only every second year (Scott and Crossman 1973).

Burbot were only occasionally captured in the gillnets, thus, their apparent abundance was
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quite low (Tripp et al. 1981, McLeod et al. 1985, Tallman et al. 1996b) (Appendix 3). This 
might have reflected their lack of numbers or their lack of movement during most of the 
season. Tallman et al. (1996a) found that radio-tagged burbot were relatively sedentary, 
Tallman et al. (1996c) found goldeye were abundant with post-spawning peak catches 
occurring between August 1 and August 15 and October 15 and October 31, 1994 . They 
were undoubtably the most dominant fish in the Slave River system. McLeod et al. (1985, 
Appendix B) also recorded a peak in abundance around mid-October in the river. The peak 
in the late fall is possibly a preparatory phase for over-wintering. Reductions of the goldeye 
community from environmental changes would probably impact on the entire community of 
the Slave River including birds and mammals. On the other hand, Sandheinrich and Atchison
(1986) show that anthropogenic changes such as those of the Missouri River could result in 
greater habitat for goldeye.

Except for May (noted above) longnose sucker were present in low numbers during the open 
water sampling period. (Appendix 3). Tripp et al. (1981) recorded a peak of abundance in 
the Slave River Delta in late September (1979) and late October (1980) which they attributed 
to downstream movements to over-wintering areas by fish that stayed upstream during the 
summer. White sucker only inhabited the Salt River (Appendix 3). Their abundance there 
was relatively low (Tallman et al. 1996c).

Northern pike, and walleye, and flathead chub are significant members of the Slave River fish 
community and were present in moderate abundance throughout the open water sampling 
period (Tallman et al. 1996c, Appendix 3). Juvenile pike were abundant in the Salt River.
This tributary is likely a spawning area for pike. After the spring walleye had an aggregation 
in October in preparation for over-wintering.

The abundance of flathead chub may be important to monitor in the future because flathead 
chub are susceptible to flow changes in river systems. They are considered to be a 
specialized species for systems, such as the Slave River, characterized by high turbidity, wide 
seasonal fluctuations in flow and a wide channel that is in constant state of change (Pflieger 
and Grace 1987) Traditionally, the Slave delta showed about four year cycles of flooding 
and drying (Tom Unka, Fort Resolution Native Band Environmental Council). Since the 
construction of the Bennett Dam these cycles have been destroyed. Pflieger and Grace
(1987) found that flathead chub declined in abundance to the point of extirpation after 
extensive man-made alterations to the Missouri River that restricted the river such that the 
turbidity and sediment load were reduced and the natural-flow regimen modified.

Minimal information is available regarding the species composition of the lower Slave River 
during the ice-covered winter season. Limited sampling using gillnets in 1994 and 1995 
during December produced most of the major species except inconnu (Alison Little, Univ. Alta 
and Fernand Saurette, DFO, Wpg, pers. comm.). However, CPUE was low suggesting that 
the various species may use only restricted portions of the river for over-wintering or may 
have mostly left to over-winter in Great Slave Lake.
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3.2.3.1 Relationship to temperature and flow patterns

According to Tallman et al. (1996c) inconnu first entered the Slave River in August when 
water temperatures were between 19 and 20° C and continued to enter throughout the fall 
period as temperatures declined to around 10° C (Appendix 3). They exited at much lower 
temperatures with the last fish leaving when the water temperature was around 5° C. Tallman 
et al. (1996c) found a significant negative correlation (r = -.92893) between the water 
temperature and the catch per unit effort of inconnu (p = 0.0009).

Inconnu enter the system when discharge levels are beginning to taper off but are still high 
(around 4000 to 5000 cubic meters per second) (Appendix 3). The discharge level fell steadily 
throughout the fall to a level of 2000 cubic meters per second. Tallman et al. (1996c) found 
no significant correlation between inconnu abundance and discharge level in the system (r = - 
.009, p = 0.9765)

In 1995, field workers observed that the early drop in temperatures in the system coincided 
with a slightly earlier spawning readiness in the inconnu than in 1994. Other authors (Alt 
1987, Nikol’skii 1961) believe inconnu to have specific temperature requirements for 
spawning. The abundance of inconnu in the system was independent of water flow. Even 
so, alterations to the system that might increase or charge the temperature and discharge 
patterns in the system would presumably have detrimental effects on the inconnu reproduction.

In 1994, lake whitefish CPUE began increasing when water temperatures were between 19 
and 20° C and they continued to enter throughout the fall period as temperatures declined to 
around 10° C (Tallman et al. 1996c) . They exited at much lower temperatures with the last 
fish leaving when the water temperature was around 5° C. Tallman et al. (1996c) found a 
significant negative correlation (r = -0.8668) between the water temperature and the catch per 
unit effort of lake whitefish (p = 0.0053). Lake whitefish enter the system when discharge 
levels are beginning to taper off but are still high (around 4000 to 5000 cubic meters per 
second). The discharge level fell steadily throughout the fall to a level of 2000 cubic meters 
per second. Tallman et al. (1996c) found no significant correlation between lake whitefish 
abundance and discharge level in the system (r = .1246, p = 0.6850). Ciscos were not 
observed by Tallman et al. (1996c) but McLeod et al. (1985, Appendix B) and Tripp et al. 
(1981) found that they were abundant in the Slave River Delta from early October through to 
mid-November. At the end of October they were the most abundant fish. McLeod et al.
(1985) proposed that they were spawning at this time in the Salt River or near Fort Smith.

Pike CPUE was highest when water temperatures were warmest in July (around 20° C). 
However, Tallman et al. (1996c) found no correlation between water temperature and 
abundance of pike (r = -0.0224, p = 0.9580). There was also no relationship between 
discharge and pike abundance ( correlation = 0.2362, p = 0.4371).
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There was no significant correlation (r = 0.0410) between the water temperature and the catch 
per unit effort of goldeye (p = 0.9232). There was no significant correlation between goldeye 
CPUE and discharge level in the system (r = 0.2725, p = 0.3678).

Longnose sucker were present all the time and therefore there was no significant correlations 
between their CPUE and water temperature or discharge (r = -0.5966, -0.0142, respectively; p 
= 0.1184 and p = 0.9632, respectively)

Judging from the overall pattern from the two years walleye abundance fluctuated from May 
though to the end of October (Tallman et al 1996c). Not surprisingly, the CPUE was not 
significantly correlated with water temperature or discharge ( r = -0.4283, p = 0.2898 and 
Correlation = 0.2839, p = 0.3472, respectively).

3.2.4 Summary of fish distribution

The main point of this section is that the Slave River serves a richly diverse and abundant fish 
community. Reproductive activities are probably taking place during at least 3 out of the four 
seasons of the year. Two major groups, the spring spawners including goldeye, walleye, 
northern pike, flathead chub and the suckers and fall spawning species, such as inconnu, lake 
whitefish and ciscos, use the river or its delta. The presence of juveniles and adults of some 
species outside of their particular spawning season suggests that the system also is an 
important area for feeding and rearing of fishes (Tallman et al. 1996c).

3.2.5 Evidence for changes in the fish community in the lower Slave River.

Resource users have stated that there have been declines in total numbers and individual fish 
size in recent years (Flett et al. 1995). In the past there were numerous burbot near Fort Smith 
and lake whitefish were available for harvest in the river for longer periods during the year 
(Flett et al 1995). The four major studies of the Slave River biota - Tripp et al. (1981), 
McLeod et al. (1985), McCart (1986) and our study can be used to formulate some idea 
regarding whether there have been changes in the fish community over the last 15 years (Table 
1). The fact that the W.A.C. Bennett dam was constructed on the Peace River gives one the 
opportunity to assess the long distance impacts of a major development upstream. In as much 
as the analysis of community changes could be confounded by differences in sampling regime 
I will describe the methodology used by each study and re-analyze using only data collected 
under a standardized protocol.

As a first attempt to answer the question of whether there has been changes in the Slave River 
community one can look at the total diversity of fishes captured by various research programs 
from 1971 to the present. Thirty species of fish have been reported from the Slave River, its 
tributaries and delta (Falk and Dalkhe 1975, Tripp et al. 1981, McLeod and O’Neill 1983, 
McLeod et al. 1985, McCart 1986, Tallman et al. 1996a,b,c, Table 1). Three of these, Dolly
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Varden char, S a lv e l in u s  m a lm a , mountain whitefish, P r o s o p iu m  w i l l ia m s o n i , and longnose 
dace, R h y n ic h th y s  c a ta r a c ta e ,  are attributed to McCart (1986), only, who uses Falk and 
Dalkhe (1975), McLeod and O’Neill (1983) and McLeod et al. (1985) as sources. The other 
27 species are recorded in Tripp et al. (1981), McLeod et al. (1985) or Tallman et al. 
(1996a,b,c). However, McLeod and O’Neill (1983) record only the occurrence of chinook 
salmon in the Liard River. Falk and Dalkhe (1975) report research catches in streams on the 
south side of Great Slave Lake from Hay River up to but not including the Slave River. 
McLeod et al. (1985) do not report catches of Dolly Varden, longnose dace or mountain 
whitefish and therefore it is difficult to determine the validity McCart’s (1986) report that they 
occur in the lower Slave River. Twenty-three of the twenty-seven species are reported by 
Tripp et al. (1981) from collections made between 1978 and 1980. McLeod et al. (1985) 
sampling only in the fall of 1983 and 1984 found 18 species including 2 , rainbow trout, 
O n c o r h y n c h u s  m y k is s  and lake char, S a lv e l in u s  n a m a y c u s h  not reported by Tripp et al. (1981). 
Discounting the three aforementioned species (Dolly Varden, mountain whitefish and longnose 
dace) then up to 25 species were present in the early 1980’s. . Tallman et al. (1996c) report 
only 19 species and thus it superficially appears that there has been about a 20% drop in 
species abundance. The species not found were chum salmon, O n c o r h y n c h u s  k e ta , lake cisco, 
C o r e g o n u s  a r te d i i ,  the small bodied cisco, C o r e g o n u s  s p p . , round whitefish, P r o s o p iu m  

c y l in d r a c e u m , pearl dace, S e m o ti lu s  m a r g a r i ta , and the slimy sculpin, C o ttu s  c o g n a tu s . .  

Tallman et al. . (1996c) reported both chinook and sockeye salmon (O n c o r h y c h u s  n e r k a )  not 
reported previously by neither Tripp et al. (1981) nor McLeod et al. (1985)
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Table 1. List of scientific names, common names, and codes for fish species collected in the lower 
Slave River (SL), Slave River Delta (SLD) and Salt River (SALT), 1978-1995.
Family /Generic Name Years Common Name Code Location
Petromyzontidae
L a m p e tr a  ja p o n ic a 78-80,83,84,94,95 arctic lamprey 1-2-3 ARLP SL/ SLD
Salmonidae
O n c o r h y c h u s  k e ta 78-80 chum salmon 1 CHUM SLD
0 .  n e r k a 95 sockeye salmon 3 SOCK SL
0 .  ts h a w y ts h a < 86,95 chinook salmon 3-4 CHIN SL
0 .  m y k is s 83,84 rainbow trout2 RNTR SL/SLD
S a lv e l in u s  n a m a y c u s h 83,84,94.95 lake char 2-3 LKTR SLD
S. m a lm a < 86 Dolly Varden 4 DVCR SL
C o r e g o n u s  c lu p e a f o r m is 78-80,83,84,94.95 lake whitefish 1-2-3 LKWT SL/SLD/SALT
C. a r te d i i 78-80,83,84 lake cisco 12 LKCS SLD
C o r e g o n u s  sp p . 78-80,83,84 small cisco '-2-3 SMCS SLD
S te n o d u s  le u c ic h th y s 78-80,83,84,94,95 inconnu '-2-3 INCO SL/SLD
P r o s o p iu m  c y l in d r a c e u m 78-80,83,84 round whitefish 12 RDWT SLD
P r o s o p iu m  w ill ia m s o n i* < 86 mountain whitefish 4 MTWT SL
Esocidae
E s o x  lu c iu s 78-80,83,84,94,95 northern pike1-2’3 NTPK SL/SLD/SALT
Hiodontidae
H io d o n  a lo s o id e s 78-80,83,84,94,95 goldeye *-2-3 GOLD SL/SLD/SALT
Cyprinidae
C o u e s iu s  p lu m b e u s 78-80,94,95 lake chub *-3 LKCB SLD
P la ty g o b io  g r a c i l i s 78-80,83,84,94,95 flathead chub 1-2>3 FHCB SL/SLD/SALT
N o tr o p is  a th e r in o id e s 78-80,94,95 emerald shiner1-3 EMSH SL/SLD/SALT
N o tr o p is  h u d s o n iu s 78-80,94,95 spottail shiner '-3 SPSH SL/SLD/SALT
R h y n ic h th y s  c a ta r a c ta e * < 86 longnose dace 4 LNDC SL
S e m o tilu s  m a r g a r i ta 78-80 pearl dace 1 PLDC SL/SLD
Catostomidae
C a to s to m u s  c a to s to m u s 78-80,83,84,94,95 longnose sucker >-2-3 LNSK SL/SLD/SALT
C a to s to m u s  c o m m e r s o n i 78-80,83,84,94,95 white sucker >'2-3 WTSK SALT
Gadidae
L o ta  lo ta 78-80,83,84,94,95 burbot 1-2-3 BRBT SL/SLD/SALT
Gasterosteidae
P u n g it iu s  p u n g i t iu s 78-80,94,95 ninespine stickleback *-3 NSST SL/SLD/SALT
Percopsidae
P e r c o p s is  o m is c o m a y c u s 78-80,84,94,95 trout-perch 1-2-3 TRPH SL/SLD/SALT
Percidae
S tiz o s te d io n  v itr e u m  

v itr e u m 78-80,83,84,94,95 walleye >-2-3 WALL SL/SLD/SALT
P e r e a  f la v e s c e n s 78-80,94,95 yellow perch 1-3 YWPH SL/SLD*
Cottidae
C o ttu s  c o g n a tu s 78-80 slimy sculpin 1 SLSC SLD
C o ttu s  r ic e i 78-80,94,95 spoonhead sculpin 1-3 SLSC SL/SLD/SALT
1 Tripp et al.( 1981), 2 McLeod et al (1985),3 Tallman et al (1996c), 4 McCart (1986)
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Notwithstanding, each of the major studies (Tripp et al. 1981, McLeod et al. 1985 and 
Tallman et al. 1996c) emphasized somewhat different methods for capture and focussed on 
somewhat different portions of the Slave River. Tallman et al. (1996c) used mainly gillnets 
with occasional hand seining. Tripp et al. (1981) used a combination of gillnets, traps and 
hand seining. McLeod et al. (1985) used gillnets and hand seining. Tripp et al. (1981) also 
focussed on the Delta with some work in the Slave River channel. McLeod et al. (1985) 
sampled only in the fall and distributed effort over the Delta, mid-lower River and near Fort 
Smith. Tallman et al. (1996c) sampled extensively near Fort Smith in the Slave and Salt rivers 
and did about 20% of their sampling in the Slave River Delta.

If one examines only gillnet catches then Tripp et al. (1981), McLeod et al. (1985) and 
Tallman et al. (1996c) each captured only 14 species in total (Table 2). The species list for 
Tallman et al. (1996c) excludes only the ciscos captured by Tripp et al. (1981). These 
appeared very late in October almost exclusively in the Delta. At this time in 1994 and 1995 
the river and delta were in transition from open water to ice cover and sampling could not be 
undertaken. If Tallman et al. (1996c) could have achieved the same level of coverage of the 
Delta as Tripp et al. (1981) it seems probable they would have caught the ciscos. McLeod et 
al. (1985) captured a couple of specimens identified as rainbow trout and round whitefish 
which neither Tripp et al. (1981) nor Tallman et al. (1996c) caught in gillnets. Similarly, 
while McLeod et al. (1985) failed to gillnet neither trout-perch nor yellow perch, Tripp et al. 
(1981) and Tallman et al. (1996c) caught only a few specimens of these species. Tallman et al. 
(1996c) caught one chinook and one sockeye salmon.
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Table 2. List of fish species collected by gillnet in the lower Slave River , Slave River Delta 
and Salt River, 1981-1995 by various studies. X = captured; - = not captured.

Family /Generic Name Tripp et al. 
(1981)

McLeod et al. 
(1985)

Tallman et al. 
(1996c)

Salmonidae
O n c o r h y n c h u s  n e rk a X
0 .  t s h a w y ts h a - - X
0 .  m y k is s - X -
S a lv e l in u s  n a m a y c u s h - X X
C o r e g o n u s  c lu p e a fo r m is X X X
C . a r te d i i X X -

C o r e g o n u s  sp p . X X -
S te n o d u s  le u c ic h th y s X X X
P r o s o p iu m  c y lin d r a c e u m - X -

Esocidae
E s o x  lu c iu s X X X
Hiodontidae
H io d o n  a lo s o id e s X X X
Cyprinidae
P la ty g o b io  g r a c i l i s X X X
Catostomidae
C a to s to m u s  c a to s to m u s X X X
C a to s to m u s  c o m m e r s o n i X X X
Gadidae
L o ta  lo ta X X X
Percopsidae
P e r c o p s is  o m is c o m a y c u s X X
Percidae
S tiz o s te d io n  v itr e u m  v itr e u m  X X X
P e r e a  f l a v e s c e n s X - X
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To compare relative abundance estimates among Tripp et al. (1981), McLeod et al. . (1985) 
and Tallman et al. (1996c) I used the data from gillnet catches of major species : lake 
whitefish, inconnu, goldeye, northern pike, flathead chub, longnose sucker, white sucker, 
burbot and walleye. To make the data comparable between Tallman et al. (1996c) and 
McLeod et al. (1985) I combined the data for mid-River and Slave River near Fort Smith from 
McLeod et al. (1985) Tables 4.3 and 4.4 for both years and divided by number of sites 
represented (4 in total). Since other species were caught I then adjusted the totals to sum to 
100%. To calculate an average percentage catch over 1994 and 1995 I used the data in Tables 
2-10 from Tallman et al. (1996c) and averaged the CPUE over the entire sampling period to 
form the basis for calculating percentages.

There have been fluctuations in the relative abundance of these species between 1978 and 
1995 (Table 3). Lake whitefish have remained relatively stable at between 5 and 10% of the 
catch. However, the observation from traditional knowledge that whitefish are available for 
less time during the year might be reflected in the drop in their percentage in the gillnet catch 
of McLeod et al. (1985) of around 10% to the 5% level recorded in Tallman et al.’s (1996c) 
data. Interestingly, inconnu have apparently increased steadily as a percentage of the total 
population since the early period. Historically, the subsistence fishery in the area has been 
much more intense than it is presently (Jalkotsky 1976, Bodden 1980, Tripp et al. 1981, 
MacDonald and Smith 1983, McLeod et al. 1985). During the last two years only one 
aboriginal fisherman was targeting inconnu in the Slave River near Fort Smith. As well, over 
the last few years, the Department of Fisheries and Oceans has progressively extended a 
spring conservation zone for inconnu in the nearshore areas along the south shore of Great 
Slave Lake (C. Day, DFO management biologist). The combination of much lower 
subsistence fishing in the river and more protection in Great Slave Lake may be resulting in an 
increase in the Slave River inconnu abundance. Goldeye have fluctuated greatly in 
percentage of the catch but overall they have been and continue to be the dominant species in 
the Slave River. Presently, they account for about half the catch by numbers of the major 
species in the river. Northern pike are also an abundant species although their relative 
importance may have waned somewhat since the late 1970’s. One should note that Tripp et al. 
(1981) sampled more heavily in the lower end of the Slave River channel where the more 
sluggish flows would favour northern pike. Flathead chub represent a small component of 
the gillnet catch in these studies ranging from about 1 to 5%. White sucker are also present 
throughout but rather low in abundance contributing less than 1%. In contrast to inconnu the 
longnose sucker appears to be becoming less important with time. The relative contribution 
drops from almost 9% to about 1% of the catch. Similarly, burbot is also less evident now 
compared with in the late 1970’s. This agrees well with the observations from traditional 
knowledge (Flett et al. 1995). Walleye is, also, an important fish in the system. The relative 
contribution to the catch has fluctuated from around 21% to 5% to 15%. The rather low value 
of 5% found by McLeod et al. (1985) is probably a result of not sampling at times other than 
the fall period. As we saw above, the composition of the community changes dramatically 
over season in relation to the influxes of spawners of different species. Therefore, McLeod 
et al.’s (1985) results may not be completely comparable to the others. Comparing only Tripp 
et al. (1981) and Tallman et al. (1996c) one can see that except for inconnu,burbot and 
longnose sucker the community composition has not changed much.
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Table 3. Percentage of the gillnet catch for each species recorded by Tripp et al. (1981), 
McLeod et al. (1985) and Tallman et al. (1996c) for the Slave River Channel.

Species Tripp et al. 
(1981)

McLeod et al. 
(1985)

Tallman et al. 
(1996c)

Lake whitefish 5.28% 9.32% 5.56%
Inconnu 1.26% 4.15% 9.30% .
Goldeye 21.49% 64.87% 46.33%
Northern Pike 30.26% 12.51% 18.14%
Flathead Chub 2.07% 0.72% 4.50%
Longnose Sucker 8.90% 2.11% . 1.06%
White Sucker 0.23% 0.15% 0.33%
Burbot 9.84% 1.68% 0.02%
Walleye 20.68% 4.51% 14.75%
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4.0 Geographic migratory patterns

4.1 Introduction
To build a model of the expected likelihood of exposure of fishes to a source of contaminants 
or other anthropogenic effects on the Slave River it is necessary to understand their 
movement patterns throughout their lives. Some species are highly migratory and thus the 
possible interactions with anthropogenic effects are potentially complicated and have wide 
geographic implications. Other species are less mobile through their lives and therefore may 
be exposed intensely to local sources and those directly upstream but are unlikely to import or 
export a problem. For example, inconnu are thought to be highly migratory in other systems 
such as the lower Mackenzie River (K. Howland, unpublished data). Limited radio-tracking of 
fish tagged at the Slave River delta revealed that inconnu migrate to spawning areas upstream 
(McLeod et al. 1985). On the other hand, burbot are thought to be relatively sedentary most 
of the year with a spawning migration during the winter months (Scott and Crossman 1973). 
There is little scientific information on the longer term movements of burbot or inconnu in the 
system. The longer term movements could be important to the transport of contaminants to 
and from the system. Therefore, under the NRBS Tallman et al. (1996a) used regular 
sampling and radio-telemetry techniques to investigate the timing and extent of movements of 
inconnu and burbot in the lower Slave River. In addition, using literature directly concerned 
with the Slave River system and other species specific accounts I will attempt to describe the 
probable movement patterns throughout the life cycle of each of the major species in the Slave 
River that have been described in section 3.0.

4.2 Radio-telemetry Studies
Radio-telemetry is a specialized technique that allows detailed tracking of individual fish. 
Compared to floy tagging, radio-telemetry techniques have the advantage that one can detect 
an individual several times over the course of its migration as compared to usually only once 
when the fish is caught. On the other hand, radio-telemetry can only be done on a limited 
number of individuals at once (usually less than 50) whereas floy tagging can involve 
thousands of fish. McLeod et al. (1985) and Tallman et al. (1996a) did radio-telemetry on 
Slave River species. McLeod et al. (1985) followed species for a shorter time period but gave 
more detailed information on movements. Tallman et al. (1996a) were able to track fish for 
up to a year and thus give a more complete picture of the long term movements. I will discuss 
both studies below.

4.2.1 Tracking Methods
McLeod et al. (1985) tracked the movements of inconnu, lake whitefish and burbot using 
radio-tagging. Inconnu and lake whitefish were tagged in 1983; in 1984 the tagging effort 
concentrated on inconnu and burbot. They implanted Smith Root Incorporated model P-40- 
1000L-6V transmitters into the stomach of larger inconnu by insertion through the 
oesophagus. For smaller inconnu and lake whitefish a model p-40-500L-3V transmitter was 
attached , externally beside the dorsal fin. The expected life span of these transmitters was 
180 and 150 days, respectively. Burbot had transmitters with life expectancies of 300-350 
days were inserted into the stomach.
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Aerial tracking surveys for inconnu and lake whitefish were conducted during September and 
October using low altitude passes (1300m) of the River. Tracking for burbot was done from 
late November, 1984 to March, 1985 at 250m altitude.

Tallman et al. (1996a) radio-tagged inconnu at the Ft. Smith Marina (Rapids of the Drowned) 
(N = 12) and at Buffalo Crossing (N = 4) between August 15, 1994 and September 01, 1994. 
These were thought to be aggregating pre-spawners. Nine more inconnu were tagged as 
spawners at Fort Smith Landing in the last week of September and first week of October,
1994. The tag used was an external radio-tag, model # 1035 available from Advanced 
Telemetry Systems 470-1st Ave. N., Box 398 Isanti, Minnesota, 55040. Each tag had a battery 
life-span of nine-months from the time of activation.

Fish were tracked using a radio-receiver mounted on an aircraft or hand-held receiver in a boat 
by Department of Fisheries and Oceans area office personnel from Hay River. The majority of 
tracking was conducted from a Cessna 185 plane using dual Larsen NMO-40 whip antenna 
attached to the wing struts. Tracking was done on a weekly basis after the initial tagging until 
December ;9, 1995 when most of the inconnu had cleared the system. Additional tracking was 
done January 9, 1995, January 27, 1995, January 31, 1995, and February 15, 1995 to confirm 
that inconnu had moved out of range into Great Slave Lake. The average altitude of the 
tracking aircraft was 1500 meters with two transects one upstream and one downstream.

Sixteen burbot were tagged at Bell Rock between November 25 and December 12, 1994 using 
the same type of tag as for the inconnu (Tallman et al. 1996a). Fish were tracked using a 
radio-receiver mounted on aircraft or hand-held receiver in a boat. Initial tracking was done 
after tagging on December 9, 1995. Additional tracking was done January 9, 1995, January 
27, 1995, January 31, 1995, February 15, 1995 and twice during June, 1995 to confirm that 
burbot had moved out of range into Great Slave Lake. The average flying altitude of the 
tracking aircraft was 1500 meters.

4.2.2 Inconnu Movement
According to McLeod et al. (1985) most inconnu exhibited fallback (i.e. downstream 
movement likely related to handling stress) after radio tagging, before recommencing upstream 
migration. Some individuals dropped back to Great Slave Lake after tagging and in 1984, one 
such inconnu re-entered the Slave River via Jean River (which drains into the Great Slave 
Lake approximately 5 km east of the ResDelta Channel) rather than through the Delta 
channels. Factors such as high water temperatures during August of both years, holding, and 
handling stress also appeared to contribute to fallback after tagging and release. Inconnu may 
have been more susceptible to handling and fallback at spawning time (O’Neil et al. 1982) . 
Delay in migration was most evident with early-run inconnu. During mid-August upstream 
movement was delayed about 12 days, while fish tagged in early September delayed only 5.4 
days (McLeod et al. 1985).

Upon recommencing upstream migration, inconnu exhibited an average movement of 25.6 -
3 8



35.9 km/day (1984 - 1983, respectively) between the Delta and their spawning areas (McLeod 
et al. 1985). During the early portion of their migration, inconnu were often located in slow- 
flowing side-channel habitat; however after the third week in September they were rarely 
found in these areas, instead preferring main channel locations.

Several movement patterns were observed during radio tracking. After moving through the 
Delta, upstream migration of radio-tagged inconnu was rapid and continual over the lowermost 
180 km of river, until reaching the vicinity of Brule Point. Upstream movement ended in this 
vicinity for some fish, with the remainder of the spawning population continuing to various 
points as far upstream as Rapids of the Drowned at Fort Smith. McLeod et al. (1985) found 
no inconnu located above Rapids of the Drowned in either year of the study. Upon reaching 
the upstream limit of migration, individuals either remained in the general vicinity until 
spawning occurred, or dropped back to downstream spawning locations. McLeod et al. 
(1985) concluded that the inconnu spawning population in the Slave River can be separated 
into two main groups: 1) Upper-River spawners, exhibiting movements consisting of: a) 
upstream migration to the base of Rapids of the Drowned followed by random movements and 
holding in the area, with spawning presumably occurring between 517 and 520 km 
downstream from the river origin; b) upstream migration to the Cunningham Landing area 
followed by short random movements until spawning occurred; and 2) mid-river spawners, 
exhibiting movements consisting of: a) upstream migration, occasionally as far as Cunningham 
Landing but often terminating below Grand Detour: dropping back to mid-river locations until 
spawning; b) upstream migration to mid-river with random movements and fallback to the 
area of Pointe Ennuyeuse where spawning occurred.

In 1983, post-spawning dispersal from suspected upstream spawning areas began during the 
period of October 3rd to October 6th with most fish having left by October 20 (McLeod et al. 
1985). A defined and relatively brief post-spawning migration was recorded in the Delta 
between October 15 and October 25, 1983 (McLeod et al. 1985). In the initial part of the run 
the catch was made up of spent females whereas in the latter part spent males predominated. 
No inconnu were captured between October 28 and November 11 indicating that the spawning 
migration was probably over. In 1984, out-migration began on October 10 with most 
migrating between October 13 and October 20. All radio-tagged fish had reached Great Slave 
Lake by October 23. Tripp et al. (1983) recorded a brief out-migration of spent female 
inconnu in the lower Slave River between October 22 and October 24, 1979.

Table 4 shows the initial tagging date, recapture dates and locations for all inconnu tagged 
by Tallman et al. (1996a). Figure 7 shows the locations of tagging of inconnu in 1994. 
Figures 8, 9 and 10 show the geographic locations of recaptures of inconnu between 
August and October 15, 1994, October 15 and October 30, 1994, November 1, 1994 
and July, 1995, respectively. Tallman et al. (1996a) detected inconnu in the Slave River 
up to October 25, 1994. After this point it was presumed that all fish were in Great Slave 
Lake. For example, tracking on January 9, 1995 revealed no inconnu in the river even 
though all burbot radio-tagged in December were detected. Fish numbers 3, 12, 13, 14, 23 
and 24 were not seen again after initial tagging. Assuming that they did not expire they

3 9
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probably proceeded directly to Great Slave Lake. This seems reasonable because several fish 
were seen only as re-captures or detections in the Great Slave Lake between February and late 
June, 1995 (fish numbers 9, 10, 11, 15, 18, 20, 21, 25). These results suggest that fish could 
return to the lake as early as August 22 (fish number 3). Other fish were detected several 
times proceeding down the river after tag and release (fish number 1, 2, 4, 5, 6, 8, 10, 11, 16, 
17, 18, 19, 20, 21, 22 ). For example, fish number 5 was tagged on August 25, 1994 at Fort 
Smith Landing. The fish was detected at Cunningham Landing on October 9, 1994, at Salt 
River On October 11, Cunningham Landing on October 15, Bell Rock on October 18, and 
downstream of Pointe Ennuyeuse on October 25. Fish number 8, which was tagged at Fort 
Smith Landing on August 30, 1994, was detected upstream of Cunningham Landing on 
October 11, at Cunningham Landing on October 15, upstream of Grand Detour on October 18 
(twice), downstream of Pointe Ennuyeuse on October 25 and then not detected after this point. 
Fish 10 was tagged August 31, 1994 moved to Cunningham Landing by October 6, Pointe 
Ennuyeuse by October 18 (twice) and was detected at MacConnell Island in the Res Delta 
Channel on June 9, 1995. Another fish (number 25) was detected close by near Steamboat 
channel on June 9, 1995. Two other fish (18 and 21) were detected near the mouth of the 
nearby Jean River on June 9, 1995, also. The others were probably out of range at this point. 
G. Low (DFO area biologist, pers comm.) has tracked inconnu from the Buffalo River into 
Great Slave Lake and suggested that once in the lake the inconnu swim at depths too deep for 
the signal to reach the receiver . If depth were a factor in radio transmission then this could 
account for some tracking problems in the Slave River, as well.

All inconnu that were detected or recaptured in 1995 were in Great Slave Lake except fish 
number 10 which was detected at McConnell Island in the Res Delta channel of the Slave 
River delta on June 9, 1995. Fish number 2 was captured near the mouth of Hay River, on 
the south shore of the lake well to the west of the Slave River, on July 11, 1995. Fish number 
9 was captured on June 26, 1995 at Caribou Islands, in the northern part of the lake. Fish 11 
was captured on February 1, 1995 at the Simpson Islands at the edge of the east arm of Great 
Slave Lake. Fish number 15 was captured on March 31, 1995 in the Simpson Islands, also.
On June 9, Fish 18 and 21 were detected one km north of the mouth of the Jean River and fish 
25 was detected 3 km north of Steamboat Channel. Re-captures are consistent with the radio
tracking. Three fish were re-captured in the river during the month of October. One fish with 
radio-tag was re-captured March 31, 1995 in the Eastern Arm of Great Slave Lake. Another 
fish (number 15) was also captured at Simpson Island on March 31, 1995. Fish numbers 18 
and 21 were detected at 1km north of the mouth of the Jean River on June 9, 1995. Fish 20 
was captured on June 21, 1995 at Pointe de Roche. Fish 25 was captured on June 9, 1995 
3km north of Steamboat Channel. With the exception of fish number 9 all fish captured or 
detect in the warmer months were close to the shore or in the channels of river deltas. The 
fish detected or captured in the winter were in the deeper part of the lake. (Suggests two 
things: that it is possible for a fish to live some time with a radio-tag attached and that the 
inconnu go into the Great Slave Lake for the winter.

Based on the above the annual pattern of migration for adult inconnu can be summarized as 
follows: Inconnu begin migration into the Slave River in mid-summer, migrating upstream to
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spawning areas in the mid-river and below Rapids of the Drowned near Fort Smith. There they 
hold for several days to weeks until they spawn in the second to third week of October. The 
post-spawning migration to Great Slave Lake takes place over a few days to a couple of weeks 
and is completed by the end of October. During the winter the fish disperse through Great 
Slave Lake progressively moving around the western basin following a large counter-clockwise 
gyre present there. During the spring they begin to aggregate along the southern shore of the 
western basin and proceed towards the Slave River. Some will not enter the river and wait to 
spawn the following year but others will return the same year to enter the river in mid summer.

4.2.3 Lake Whitefish Movement
McLeod et al. (1985) fitted four lake whitefish with radio transmitters between October 1 and 
October 13, 1983. Only one individual was detected on a single occasion 813 km downstream 
from the place of tagging. One was recaptured by the commercial fishery in Great Lake the 
following June. McLeod et al. (1985) concluded that the whitefish moved down to Great 
Slave Lake after tagging.

4.2.4 Burbot Movement
McLeod et al. (1985) and Tallman et al. (1996a) attempted radio-telemetry studies of burbot 
movements. McLeod et al. (1985 ) tagged 12 burbot and followed them during the winter of 1984.

According to McLeod et al. (1985) movements of radio-tagged burbot did not follow a 
definable pattern. Of the fish located on two or more surveys, six exhibited distinct upstream 
movements ranging from 40 to 280 km from the release sites. The remaining six stayed in the 
same general area or exhibited fallback to a short distance downstream of the release site.
Only one fish exhibited distinct upstream migratory behaviour - it moved 32 km by November 
27 five days after release. It was not located again until March 25, 1985 upstream of 
Cunningham Landing. The five remaining burbot which moved upstream exhibited little 
movement until mid-January. McLeod et al. (1985) surmised that the active upstream 
movements represented a feeding or spawning-related activity in mid-winter. Robins and 
Deubler (1955) reported burbot in the Susquehanna River migrating downstream to spawn. 
MacCrimmon (1959) found that burbot took a post-spawning feeding run up tributary rivers of 
Lake Simcoe. Koops (1960 in Chen 1969) reported burbot in the Elbe River moved upstream 
from the lower reaches of the river to the upstream tributaries for spawning.

Table 4 shows the initial tagging date, recapture dates and locations for all burbot tagged by 
Tallman et al. (1996a). Figure 11 shows the geographic locations and times of re-captures. 
Tallman detected burbot in the Slave River Fish on January 5, 1995 and January 31, 1995. 
Beyond this point there was no further detection and it was presumed that all fish were in 
Great Slave Lake. Interestingly, no fish were detected with land based reconnaissance on 
January 27, 1995. Fish number 29 was the only fish detected on January 31, 1995. Although 
tracking included the nearshore southern Great Slave Lake
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area from Hay River to the tip of the Slave Peninsula, no fish were detected. Tallman et al. 
(1996a) proposed that the benthic dwelling habit of the burbot meant that they were out of 
range for radio-telemetry. Fish that move in deeper water are less detectable. It is possible 
that the tags did not function well given that the fish were tagged under very cold conditions. 
They did not think that there was mortality or the tags failed because on January 9, 1995 they 
detected nearly all the fish and if the fish expired they might expect these the tags to continue 
transmitting from one fixed location. Similarly, if the tags worked initially as confirmed by 
the January 9 detections then they should not be affected by the temperature of the water. 
Assuming that the tags worked well, it appears that there was only slight movement of burbot 
from the initial site of capture. If there was directed movement in the river (suppose 
downstream to the delta) a larger percentage of the burbot would have been detected because 
there are unavoidable shallow areas. The most plausible explanation is that burbot had moved 
into deeper sections of the river and thereby escaped detection.
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Table 4. Tagging, tracking and recapture dates and locations for radio-telemetry of 
inconnu and burbot on the Slave River and Great Slave Lake, 1994 and 1995.

F is h  # S p e c ie s S ex F req E v en t D a te  T ag g e d L o c a tio n C o o rd in a te s T ra c k in g  M o d e

IA In c o n n u M 4 9 .1 7 0 T a g g e d 2 0 -A u g -9 4 B u ffa lo  C ro s s in g 6 0 -0 6 -3 4 N  1 1 2 -1 4 -0 4 W
-B D e te c te d 9 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W W a te r
2 A In c o n n u F 4 9 .3 5 0 T ag g e d 2 0 -A u g -9 4 B u ffa lo  C ro s s in g 6 0 -0 6 -3 4 N  1 1 2 -1 4 -0 4  W
-B D e te c te d 5 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 I1 -5 3 -3 2 W L a n d
-C D e te c te d 1 5 -O c t-9 4 C u n n in g h a m  L a n d in g 6 0 -0 1 -4 0 N  1 1 2 -0 7 -3 3 W W a te r
-D C ap tu re d * l l - J u l - 9 5 H a y  R iv e r 6 O -0 2 -0 0 N  115 -4 5 -0 0 W
3 A In c o n n u 4 9 .2 7 0 T ag g e d 2 2 -A u g -9 4 B u ffa lo  C ro s s in g 6 0 -0 6 -3 4 N  1 1 2 -1 4 -0 4  W
4 A In c o n n u 4 9 .2 3 0 T ag g e d 2 2 -A u g -9 4 B u ffa lo  C ro s s in g 6 0 -0 6 -3 4 N  1 1 2 -1 4 -0 4  W
-B D e te c te d 1 8 -O c l-9 4 P o in te  E n n u y e u s e 6 0 -4 9 -0 0 N  1 13-O 2-O 0W A ir
5 A In c o n n u 4 9 .1 9 0 T ag g e d 2 5 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  J 1 1 -5 3 -3 2 W
-B D e te c te d 9 -O c t-9 4 C u n n in g h a m  L a n d in g 6 0 -0 1 -4 0 N  1 1 2 -0 7 -3 3 W W a te r
-C D e le c te d 11-O c t-9 4 S a i t  R iv e r 6 0 - 0 6 - 13N  11 2 -1 3 -2 9 W A ir
-D D e te c te d lS - O c t-9 4 C u n n in g h a m  L a n d in g 6 0 -0  M O N  1 1 2 -0 7 -3 3 W W a te r
-E D e te c te d 1 8 -O c t-9 4 B ell R o c k 6 0 - 0 I - 2 0 N  112 -0 5 -0 0 W A ir
-F D e te c te d 2 5 -O c t-9 4 D o w n  P te . E n n u y e u s e 6 0 -4 4 -0 0 N  11 2 -1 0 -0 0 W A ir
6 A In c o n n u 4 9 .2 9 0 T ag g e d 2 8 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 - 0 5 N  1 1 1 -5 3 -3 2 W
-B D e te c te d !8 -O c t-9 4 U p  C u n n in g h a m  L a n d in g 6 0 -0 2 -3 0 N  1 1 2 -0 I -0 0 W A ir
7 A In c o n n u M 4 9 .2 1 0 T ag g e d 3 0 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 I -0 5 N  1 1 1 -5 3 -3 2 W
-B C ap tu re d * 3 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W
8 A in c o n n u M 4 9 .3 3 0 T ag g e d 3 0 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  11 1 -5 3 -3 2 W
-B D e te c te d 11-O c t-9 4 U p  C u n n in g h a m  L a n d in g 6 0 -0 2 -3 0 N  11 2 -0 1 -0 0 W A ir
-C D e te c te d 1 5 -O c t-9 4 C u n n in g h a m  L a n d in g 6 0 -0  M O N  11 2 -0 7 -3 3 W W a te r
-D D e te c te d l8 -O c t- 9 4 U p  G ra n d  D e to u r 6 0 -2 0 -0 0 N  1 1 2 -3 4 -0 0 W A ir
-E D e te c te d 1 8 -O c t-9 4 U p  G ra n d  D e to u r 6 0 -2 1 -0 0 N  11 2 -3 8 -0 0 W A ir
-F D e te c te d 2 5 -O c t-9 4 D o w n  P te . E n n u y e u s e 6 0 -4 7 -0 0 N  1 13 -4 9 -0 0 W A ir
9 A In c o n n u F 4 9 .2 5 0 T a g g e d 3 0 -A u g -9 4 F t. S m ith  L a n d in g 6 0 - 0 I - 0 5 N  1 1 1 -5 3 -3 2 W
-B C ap tu re d * 2 6 -Ju n e -9 5 C a r ib o u  Is la n d 6 2 -0 7 -2 5 N  113 -4 9 -0 0 W
I0 A In c o n n u F 4 9 .4 7 0 T ag g e d 3 1 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 - 0 5 N  1 1 I-5 3 -3 2 W
-B D e te c te d 6 -O c t-9 4 C u n n in g h a m  L a n d in g 6 0 - 0 I - 4 0 N  1 1 2 -0 7 -3 3 W L a n d
-C D e te c te d 1 8 -O c t-9 4 U p  P o in te  E n n u y e u s e 6 0 -4 5 -0 0 N  1 I2 -5 8 -3 0 W A ir
-D D e te c te d 18 -O c t-9 4 U p  P o in te  E n n u y e u s e 6 0 -4 5 -0 0 N  1 1 2 -5 8 -3 0 W A ir
-E D e te c te d 9 -Ju n e -1 9 9 5 M c C o n n e ll  Is lan d 6 0 -4 8 -0 0 N  112 -5 6 -0 0 W A ir
11A In c o n n u M 4 9 .1 2 0 T ag g e d 3 1 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  I1 1 -5 3 -3 2 W
-B D e te c te d 9 -O c t-9 4 C u n n in g h a m  L a n d in g 6 0 -0  M O N  1 1 2 -0 7 -3 3 W W ater
-C C ap tu red * 1-F e b -9 5 S im p s o n  Is la n d  (G .S .L .) 6 1 -4 5 -0 0 N  1 13 -0 0 -0 0 W
12A in c o n n u M 4 9 .1 0 0 T ag g e d 3 1 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W

13A In c o n n u M 4 9 .1 4 0 T a g g e d 31 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 I-5 3 -3 2 W
-B D e te c te d 5 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 I-5 3 -3 2 W L a n d
I4 A In c o n n u F 4 9 .5 7 0 T a g g e d 3 1 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W

15A In c o n n u M 4 9 .5 5 0 T ag g e d 3 1 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  11 1 -5 3 -3 2 W
-B C a p tu re d ’ 3 1 -M a r-9 5 S im p s o n  Is la n d  (G .S .L .) 6 1 -4 5 -0 0 N  1 1 3 -0 0 -0 0 W
16A In c o n n u F 4 9 .5 9 0 T a g g e d 3 1 -A u g -9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W
-B C ap tu re d * I5 -O c t-9 4 C u n n in g h a m  L a n d in g 6 0 - 0 I - 0 5 N  1 1 1 -5 3 -3 2 W
I7 A In c o n n u M 4 9 .7 5 0 T a g g e d - 12 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 - 0 5 N  111-5 3 -3 2 W
-B D e te c te d 1 5 -O c t-9 4 R o c k y  P o in t 6 0 - 0 2 - I 4 N  1 1 1 -5 4 -3 3 W A ir
18A In co rm u M 4 9 .6 3 0 T a g g e d 1 2 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 - 0 5 N 1 1 1 -5 3 -3 2 W
-B D e te c te d 1 5 -O c t-9 4 R o c k y  P o in t 6 0 - 0 2 - 14N  1 1 1 -5 4 -3 3 W W a te r
-C D e te c te d 18 -O c t-9 4 U p  S a l t  R . 6 0 -0 5 -0 0 N  1 I2 -1 4 -0 0 W A ir
-D D e te c te d 9 -J u n -9 5 I k m  N . o f  m o u th -J e a n  R. 6 1 -2 5 -0 0 N  11 3 -3 5 -0 0 W A ir
I9 A In c o n n u M 4 9 .9 1 0 T ag g e d 13 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  111 -5 3 -3 2 W
-B D e te c te d 1 5 -O c t-9 4 R o c k y  P o in t 6 0 - 0 2 - I4 N  1 1 1 -5 4 -3 3 W A ir
2 0 A Inconn.u M 4 9 .8 7 0 T ag g e d I3 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W
-B D e te c te d l5 -O c t- 9 4 R o c k y  P o in t 6 0 - 0 2 - 14N  111-5 4 -3 3 W W a te r
-C D e te c te d l8 -O c t- 9 4 U p  G ra n d  D e to u r 6 0 -1 8 -3 0 N  1 1 2 -2 5 -0 0 A ir
■D C ap tu re d * 2 1 -J u n -9 5 P o in t  d e  R o c h e 6 0 -5 4 -0 0 N  116 -0 9 -0 0 W
2 1 A In c o n n u M 4 9 .7 9 0 T ag g e d 13 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 I1 -5 3 -3 2 W
-B D e te c te d I5 -O c t-9 4 R o c k y  P o in t 6 0 -0 2 -  14N  1 1 1-5 4 -3 3 W W a te r
-C D e te c te d 1 8 -O c t-9 4 U p  G ra n d  D e to u r 6 0 - I 6 -0 0 N  1 1 2 -2 2 -0 0 W A ir
-D D e te c te d 9 -J u n -9 5 Ik m  N . o f  m o u th -J e a n  R . 6 1 -2 5 -0 0 N  1 1 3 -3 5 -0 0 W A ir  •
2 2 A In c o n n u M 4 9 .6 1 0 T ag g e d 1 3 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W
-B D e te c te d 1 8 -O c t-9 4 B u ffa lo  C ro s s in g 6 0 -1 0 -3 0 N  1 1 2 -1 6 -0 4  W A ir
2 3 A In c o n n u F 4 9 .7 7 0 T ag g e d 13 -O c t-9 4 F t. S m ith  L a n d in g 6 0 - 0 I - 0 5 N  I I I -5 3 - 3 2 W

2 4 A In c o n n u F 4 9 .3 9 0 T ag g e d 1 3 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 -0 5 N  1 1 1 -5 3 -3 2 W

2 5 A In c o n n u F 4 9 .3 7 0 T ag g e d I3 -O c t-9 4 F t. S m ith  L a n d in g 6 0 -0 1 - 0 5 N  1 1 1 -5 3 -3 2 W

-B D e te c te d 9 -Ju n -9 5 3 k m  N  o f  S te a m b o a t  C h . 6 1 -2 0 -0 0 N  113 -4 5 -0 0 W A ir
2 6 A B u rb o t 4 9 .4 9 0 T ag g e d 13 -D e c -9 4 B e ll R o ck 6 0 -0 1 -2 0 N  1 1 2 -0 5 -0 0 W
-B D e te c te d 9 -J a n -9 5 B e ll R o c k /S a l t  R iv e r 6 0 -0 1 -3 5 N  1 1 2 -0 6 -3 3 W A ir
2 7 A B u rb o t 4 9 .4 1 0 T ag g e d 13 -D e c -9 4 B ell R o ck 6 0 -0 1 -2 0 N  112 -0 5 -0 0 W
-B D e te c te d 9 -J a n -9 5 B e ll R o c k /S a l t  R iv e r 6 0 -0 1 -3 5 N  1 1 2 -0 2 -5 5 W A ir
2 8 A B u rb o t 4 9 .0 8 0 T ag g e d 1 4 -D e c -9 4 B e ll R o ck 6 0 -0 1 -2 0 N  11 2 -0 5 -0 0 W
-B D e te c te d 9 -Ja n -9 5 B e ll R o c k /S a l t  R iv e r 6 0 -0 1 -0 8 N  1 I 1 - 5 I -3 7 W A ir
2 9 A B u rb o t 4 9 .4 3 0 T a g g e d 14-D e c -9 4 B e ll R o ck 6 0 -0 1 -2 0 N  112 -0 5 -0 0 W

-B D e te c te d 9 -Ja n -9 5 B e ll R o c k /S a l t  R iv e r 6 0 -0 1 -4 9 N  1 I1 -5 4 -3 4 W A ir
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-c D e te c te d 3 1 -Ja n -9 5 H o o k  L ak e 6 0 -4 2 -6 5 N  U 2 - 5 2 -6 7 W A ir
3 0 A B u rb o t . 4 9 .8 1 0 T a g g e d 1 4 -D e c -9 4 B e ll  R o c k 6 O -0 I-2 0 N  112 -0 5 -0 0 W
-B D e te c te d 9 - J a n -9 5 B e ll R o c k /S a l l  R iv e r 6 0 - 0 2 - 16N  I I 2 -0 0 -0 2 W A ir
3 1 A B u rb o t . 4 9 .8 9 0 T a g g e d I4-D C C -94 B e ll R o ck 6 0 -O I-2 0 N  112 -0 5 -0 0 W
-B D e te c te d 9 - J a n -9 5 B e ll R o c k 6 O -0 I-2 0 N  112 -0 5 -0 0 W A ir
3 2 A B u rb o t . 4 9 .8 3 0 T a g g e d 1 4 -D e c -9 4 B e ll  R o c k 6 0 - 0 I - 3 5 N  M 2 -0 6 - 3 3 W
-B D e te c te d 9 - J a n -9 5 B e ll  R o c k /S a l t  R iv e r 6 0 -0 2 -4 7 N  1 1 2 -0 I -4 9 W A ir
3 3 A B u rb o t . 4 9 .0 2 0 T a g g e d !5 -D e c -9 4 B e ll  R o ck 6 0 -0 1 -2 0 N  112 -0 5 -0 0 W
-B D e te c te d 9 - J a n -9 5 B e ll R o c k /S a l t  R iv e r 6 0 -0 1 -2 0 N  1 1 2 -0 4 -1 2 W A ir
3 4 A B u rb o t . 4 9 .5 1 0 T a g g e d !5 -D e c -9 4 B e ll R o ck 6 0 -0 1 -2 0 N  112 -0 5 -0 0 W
3 5 A B u rb o t . 4 9 .4 5 0 T a g g e d 1 5 -D e c -9 4 B ell R o ck 6 0 -0 1 -2 0 N  112 -O 5-00W
-B D e te c te d 3 1 -Ja n -9 5 U p  F o rt S m ith  L a n d in g 5 9 -5 4 .0 0 N  1 1 1 -4 3 .5 0 W A ir
3 6 A B u rb o t . 4 9 .0 4 0 T ag g e d l5 -D e c -9 4 B e ll  R o ck 6 0 -O I-2 0 N  1 12-05-O 0W
-B D e te c te d 9 -J a n -9 5 B e ll  R o c k /S a l t  R iv e r 6 0 -O I-5 8 N  111 -5 5 -0 4 W A ir
3 7 A B u rb o t  . 4 9 .6 7 0 T ag g e d 16-D e c -9 4 B e ll  R o c k 6 O -0 I-2 0 N  1 1 2 -0 5 -0 0 W
3 8 A B u rb o t . 4 9 .7 1 0 T ag g e d 16-D e c -9 4 B e ll R o ck 6 0 - 0 I - 2 0 N  112 -0 5 -0 0 W
-B D e te c te d 9 -J a n -9 5 B e ll  R o c k /S a lt  R iv e r 6 0 -0 1 -4 9 N  1 1 2 -0 8 -4 4 W A ir
3 9 A B u rb o t . 4 9 .7 3 0 T ag g e d 1 6 -D e c -9 4 B e ll  R o ck 6 O -O I-2 0 N  I1 2 -0 5 -0 0 W
-B D e te c te d 9 -J a n -9 5 B e ll R o c k 6 0 -0 2 -0 9 N  1 1 1 -5 4 -5 4 W A ir
4 0 A B u rb o t , 4 9 .6 5 0 T ag g e d 16-D e c -9 4 B e ll R o ck 6 0 -0 1 -2 0 N  1 1 2 -0 5 -0 0 W
-B D e te c te d 9 -J a n -9 5 B e ll  R o c k /S a l t  R iv e r 6 0 -0 1 -SON I I I -5 4 - 0 2 W A ir
4 1 A B u rb o t . 4 9 .6 9 0 T ag g e d 1 6 -D e c -9 4 B e ll R o ck 6 0 -0 1 -2 0 N  112-05-O O W
4 2 - . 4 9 .5 3 0 n o t u sed 4 2 4 9 .5 3 0
4 3 4 9 .0 6 0 n o t  u se d 4 3 4 9 .0 6 0
4 4 4 9 .3 1 0 n o t u se d 4 4 4 9 .3 1 0
4 5 4 9 .8 5 0 n o t u se d 4 5 4 9 .8 5 0

N .B . T ra c k in g  v ia  a i rc ra f t  o n  0 1 -N o v -9 4 , v ia  la n d  o n  2 7 -J a n -9 5 , b u t  n o  h i ts  re c o rd e d  

* C o m m e rc ia l  c a tc h  o f  In c o n n u  ra d io  ta g  w ith in  G re a t  S la v e  L a k e .

Tallman et al. (1996a) radio-tracking results for burbot are consistent with the model that 
this species remains relatively sedentary until individuals begin their winter spawning 
migration. In conversations with the local fisherman it appears that spawning migration 
occurs in February, similar to most burbot populations (Scott and Crossman 1973). In the 
process of tagging during December, 1994, Tallman et al. (1996a) found no evidence that 
the fish were close to spawning. None had ripe eggs or running milt, for example. After 
spawning all burbot may return to Great Slave Lake perhaps to reside in off-shore areas or 
more likely to rest deep in the Slave River delta since tracking along the south shore and in 
the river in 1995 did not reveal any tagged burbot.

Radio-tracking of a bottom dwelling species such as burbot will not be very effective if the 
fish migrate to water greater than 5 meters in depth. Below this depth, it is thought that 
the radio signal attenuates and becomes hard to detect when tracking. In the Slave River 
and its delta there are many places with depths of up to 25 meters. Great Slave Lake, of 
course, has waters of great profundity. Thus, it was difficult to determine the exact fate of 
the radio-tagged burbot. Although such tags are not available at present, future studies 
could use tags with stronger batteries for multi-year tracking.

4.3 Floy Tagging Studies
McLeod et al. (1985) performed mark-recapture experiments using floy tags attached to 
inconnu, lake whitefish, burbot, northern pike, walleye, longnose sucker, goldeye and 
cisco. McLeod et al. (1985) did not report the sample sizes tagged of any species. 
Therefore, the following account gives information on the re-captures, only. Whether 
enough fish were tagged for an effective study cannot be assessed.
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4.3.1 Inconnu
Eighty-two inconnu, tagged between August 15 and September 23 just downstream of the 
junction between the Slave River and Jean River were re-captured after 0 to 54 days at 
large (McLeod et al. 1985 - Appendix Table C3) . Only two fish did not exhibit upstream 
movement. One was caught four days after release 10 km downstream and the other 
showed no movement after 9 days. Since the rest were at large for longer periods these 
results probably reflect the short-term effects of post-tagging trauma. Most of the other 
80 fish migrated 282 km upstream to be caught near Fort Smith. Six fish migrated 185 
km to the mid-lower river area. Eight additional inconnu tagged in 1983 were recovered 
in the Slave River near Fort Smith during the fall of 1984. Since radio-tracking and catch 
per unit effort results indicate that the inconnu leave the Slave River for Great Slave Lake 
until the next spawning period these fish appear to be repeat spawners after only one year.
It is also possible that the trauma of tagging prevented them from spawning in 1983 and 
they returned in 1984. McLeod et al. (1985) recorded other evidence of site fidelity.
An inconnu tagged September 25, 1980 in the Slave River near Fort Smith was recovered 
in the river in October, 1984 only 14 km downstream from its original tagging location 
(McLeod et al. 1985 - Table C l ) .  Four inconnu tagged in the Slave River in between 
September 20 and October 23, 1983 were recaptured in Great Slave Lake (McLeod et al. 
1985 - Appendix Table CIO). One was captured in March, 1984 near Sulphur Point. 
Another was captured near the mouth of the Buffalo River July 5, 1984. The other two 
were captured on the 2nd and 3rd of September, 1984 at Grant Point.

4.3.2 Lake Whitefish
Twelve recaptured lake whitefish, tagged between September 10 and October 18, 1983 did 
not show a very consistent pattern (McLeod et al. 1985 - Appendix Table C4 and C5.) Six 
did not move at all. Four tagged near the Jean River junction move upstream 2 to 282 km. 
Two tagged in October near Fort Smith moved downstream 14 km. They were at large 
between 0 and 25 days. Recaptures from 1984 (McLeod et al. 1985 - Appendix Table C5) 
show a similar pattern Three fish tagged between August 17 and September 5 at the Jean 
River junction migrated upstream 282 km to near Fort Smith. Two tagged later on 
October 3rd and October 16th at Fort Smith moved 0 km and 2 km downstream. Overall 
there appears to be a migration upstream in late August through September to sites near 
Fort Smith and a downstream migration in October from near Fort Smith out of the system. 
Four lake whitefish were recovered after a year in the Slave River near Fort Smith 
(McLeod et al. 1985 - Appendix Table C6 and C7). Seven lake whitefish tagged in the 
Slave River in 1983 were recaptured in Great Slave Lake (McLeod et al. - Appendix Table 
CIO). Three were recaptured near Dawson Landing in late July and early August. Two 
were captured near Sulphur Point, one at the Buffalo River mouth and one at Grant Point.

4.3.3 Burbot
Mark-recapture information for burbot show a highly sedentary animal in the fall compared 
to other species in the Slave River (McLeod et al. 1985). Of nine burbot tagged between 
September 24 and October 21, 1984 and recovered between September 30 and October 25,
1984 only one moved three km downstream. The other eight were caught in the same 
locations that they were released in.
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4.3.4 Northern Pike
On the short term floy-tagged northern pike move little. Of 11 pike recaptured in 1983 
between 2 and 46 days after tagging eight did not move at all, two moved 2 km and one 
went 175 km downstream (McLeod et al. 1985 - Appendix Table C8). On the longer term, 
out of four pike recaptured after 361 to 2147 days after tagging one went some distance 
(166 km downstream) while the others went 0, 6 and 14 km (McLeod et al. 1985 - 
Appendix Tables C8 and C9). In addition a pike tagged on September 9, 1983 was 
recaptured in Great Slave Lake on August 30, 1984 near Grant Point. Other than the three 
pike that travelled some distance downstream there was no consistent direction to 
movements(McLeod et al. 1985 - Appendix Tables CIO).

4.3.5 Walleye
Floy-tagged walleye exhibited substantial movements both in the short and long term. A 
walleye tagged September 22, 1983 near Jean River junction was recaptured at Fort Smith , 
282 km upstream, on November 11, 1983 (McLeod et al. . 1985 - Appendix Table C8).
Five other walleye tagged in the Slave River were recaptured in 1984 near Fort Smith 
between 259 and 293 km upstream after being at large between 208 and 1851 days(McLeod 
et al. 1985 - Appendix Table C9). Two walleye tagged in the Slave River in the fall of 
1983 were capture near Dawson Landing Great Slave Lake in the fall of 1984.

4.3.6 Goldeye, Cisco and Longnose Sucker
McLeod et al. (1985) records four tagging returns for goldeye. In all cases the goldeye 
appeared to have migrated downstream between 15 and 290 km. One was captured in 
Great Slave Lake at Dawson Landing.
One cisco was tagged and re-captured on the same day after no movement. One longnose 
sucker tagged in the Slave River was recovered in Great Slave Lake (McLeod et al. 1985).

4.4 Larval Drift Studies
Tripp et al. (1981) collected samples of the drift of young of the year of several species in 
the lower Slave River during the spring of 1979 and 1980. The earliest species to drift 
were coregonids possibly inconnu, lake whitefish or cisco in mid -May. Burbot and Arctic 
lamprey follow in the first two weeks of June. Longnose sucker appeared about 10 days 
after the burbot.

4.5 Species by species life-cycle model of seasonal movement patterns
(based on radio-tracking, floy tagging, CPUE studies, larval drift studies and general 
literature on each species)

Fish species migrate for three main reasons: 1) to seek suitable spawning habitat; 2) for 
feeding and rearing habitat; 3) to take refuge from unfavourable environmental conditions. 
From a survey of the literature , the information above and the catch per unit effort results 
of Tallman et al. (1996c, noted below )it is possible to construct a model of the general
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pattern of temporal and spatial migration over the course of the life cycle of each of the 
major species in the lower Slave River.

4.5.1 Inconnu Life Cycle
Inconnu spawn in the fall in the Slave River and the resulting zygotes incubate in the gravel 
until spring breakup when they are likely transported downstream into Great Slave Lake. 
The juveniles feed and rear in the lake for several years occupying nearshore areas early in 
the spring and the offshore areas the rest of the year . They likely follow a lake migration 
pattern around the western basin of Great Slave Lake swimming in the large count- 
clockwise gyre in the basin.

As they mature they begin to participate in the spawning runs in the tributaries of Great 
Slave Lake. Although, it has not been confirmed it is thought that inconnu stocks have 
natal site fidelity and therefore there is at least one distinct stock per spawning river. The 
rationale for this is that inconnu do not seem to be restricted by distance or geographic 
barriers from colonizing or re-colonizing any suitable spawning habitat yet successive 
spawning rivers have been depleted of inconnu without any recovery.
Inconnu first appeared in the Slave River near the end of July (Table A, Appendix 1) and 
the run peaked between September 1 and September 15. The end of the run was estimated 
to be in the latter part of October. By October 21 most inconnu had left the Slave River.

Radio tracking and floy tagging results suggest that the upstream migration of inconnu to 
their spawning sites probably occurs during August and September (McLeod et al. 1985, 
Tallman et al. 1996a). Inconnu may initially swim upstream until they reach a barrier (i.e 
Rapids of The Drowned). Some may spawn there but others move about in the reaches of 
the river just downstream of the rapids in search of suitable spawning sites. The radio
telemetry results of McLeod et al. (1985) and Tallman et al. (1996a) indicate that until mid- 
October the inconnu were still in close proximity to the tagging sites near Fort Smith. 
Therefore, spawning probably takes place in those first two weeks of October. Spawning 
takes place at two major locations: in the mid-river and near Fort Smith below Rapids of 
the Drowned. Between October 15th and 30th the fish begin to migrate downstream 
(Tallman et al. 1996a). After this period all inconnu are presumably in Great Slave Lake, 
probably in off-shore areas (since tracking along the south shore and in the river did not 
reveal any tagged inconnu).. In 1995 all fish that were detected or re-captured were 
outside the river within Great Slave Lake (Tallman et al. 1996a).

After the winter period the inconnu become available to fisherman’s nets in the areas closer 
to shore. Tallman et al. (1996a) found that inconnu from the Slave River use a large part of 
the lake basin in the course of a year.

Tallman et al. (1996a) observed a number of captures and detections of post-spawning 
radio-tagged inconnu in 1995 well to the west of the Slave River. The pattern in time and 
space of captures and detections in Great Slave Lake suggests that fish migrate throughout
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most of the lake basin and that there is a progressive movement in a counter-clockwise 
direction throughout the winter into the next summer. The limited floy tag re-captures from 
Great Slave Lake also support this assertion. This pattern follows the direction of current 
movement around the lake which proceeds in a large counter-clockwise gyre. Based on the 
changes in the geographical locations of catch of inconnu in the commercial fishery over 
the annual cycle, George Low (Department of Fisheries and Oceans, Hay River, pers 
comm.) has also suggested that the above pattern of movement occurs as the year 
progresses. If this is true, then any contaminants in the fish at Fort Smith would be 
transported throughout Great Slave Lake and into commercially sold fishes.

4.5.2 Burbot Life Cycle
In contrast to the inconnu burbot were remarkably sedentary. Burbot spawn during the 
mid-winter under the ice presumably in the Slave River delta and the Slave River channel 
just upstream (Tripp et al. 1981 - but see below for an alternate possibility of a spawning 
location). The eggs are semi-pelagic (Scott and Crossman 1973). The young of the year 
drift downstream a few weeks after ice break up. The rearing area of this species is 
probably the Delta or the bottom areas of Great Slave Lake.
At some point in their life it seems likely that the burbot establish a geographically limited 
feeding territory in the river and remain in this location except for spawning movements to 
and from the Slave River Delta. Floy tagged and radio-tagged adult burbot travelled almost 
no distance in most cases. Tallman et al. (1996c) proposed that during most of the 
warmer months burbot hold in small feeding territories along the river, delta and Great 
Slave Lake. Their lack of success in capturing burbot using gillnets during the summer 
months would corroborate this. On the other hand, it is possible that burbot are able to 
avoid capture by gillnets. Burbot are chiefly nocturnal animals and are well equipped to 
find their prey in the absence of visual stimuli (McCrimmon and Devitt 1954). Perhaps 
they can feel the gillnet and thereby avoid it.

Once mature burbot begin migrations within the Slave River to and from the spawning area 
in and near the Delta. Hewson (1955) noted that not all mature burbot spawn every year 
and thus some individuals may not move from their home territory. Burbot were more 
readily caught using set lines which is the method employed by local fishermen targeting 
burbot after freeze-up. The lack of abundance precluded meaningful statistical analyses of 
CPUE by time period, location and mesh size on this species (Table B, Appendix 1).

Burbot are thought to spawn in January or February in the Slave River (Fred MacDonald, 
Dene fisherman, Fort Smith, pers. comm.) On the other hand there has also been a run in 
late November reported (F. Saurette, DFO, pers. comm.). Spawning usually occurs in lakes 
in less than 2m of water over sand or gravel bottom in shallow bays or on gravel shoals 
between 2-3m deep (Scott and Crossman 1973). Water temperature during spawning is 
usually around 0.6 - 1.7°C. Based on the literature and their own results, McLeod et al. 
(1985) proposed the following behaviour and spawning pattern for burbot in the Slave River: 
1) a pre-spawning feeding run occurs from Great Slave Lake into the Slave River Delta
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near or just after freeze-up. Some of these fish immediately migrate as far upstream as 
Rapids of the Drowned, while others likely remain in the Delta or lower river. Spawning 
by the latter group probably occurs in or immediately above the Delta; this is followed by 
an upstream post-spawning movement by some individuals.

2) A pre-spawning feeding run or concentration also occurs in the Cunningham Landing 
area during the early winter (late November to early January). Spawning also occurs in this 
vicinity.

Judging from the state of the gonads in December Tallman et al. (1996c) suggested that 
spawning probably occurs around February. Most burbot were around 10-15% GSI. 
Normally, GSI’s must reach close to 25% at spawning. In this respect Slave River burbot 
would spawn at a similar time as most other Canadian populations (Scott and Crossman 
1973).

4.5.3 Goldeye life cycle
Goldeye are the dominant species in the Slave River system (Tallman et al. 1996c). They 
spawn in the spring probably in early to late May shortly after the ice breaks up. However, 
spawning may continue for a period of 3 to 6 weeks while the water temperature is between
10.0 - 12.8 C° (Scott and Crossman 1973). Egg shedding takes place in pools in turbid 
rivers such as the Slave (Battle and Sprules 1960, Kennedy and Sprules 1967). The 
geographical location of spawning is in the Slave River is not known but Tripp et al. (1981) 
concluded that there was little evidence of spawning in the Delta. The high catches near 
Fort Smith suggest that spawning areas might be in pools below the Rapids of the Drowned 
(Table C, Appendix 1 , Tallman et al. 1996c).

The eggs are semi-buoyant and hatch in about two weeks (Battle and Sprules 1960).
The larvae must be in habitats or have some behavioral adaptations where they are 
unlikely to drift because Tripp et al. (1981) recorded few in drift collections. Pulses of 
high abundance appear in the spring, August and in the fall suggesting that the distribution 
within the Slave River may shift depending on environmental conditions (Table C. 
Appendix 1) McLeod et al. (1985) also found a pulse of CPUE of goldeye late in the 
season. Possibly the fish are aggregating prior to over-wintering.

Because of its importance in the Slave River more information is needed regarding the 
habitat needs of this species.

4.5.4 Lake Whitefish Life Cycle
Lake whitefish spawn in the fall, probably below Rapids of the Drowned near Fort Smith, 
at Cunningham Landing and in other areas of the Slave River between these areas and 
Grand Detour (McLeod et al. . 1985). The eggs are deposited in relatively silt free 
substrates often situated on the outside perimeter of river meanders (McLeod et al. 1985). 
The eggs develop throughout the winter until pelagic larvae emerge around the time of ice
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break-up (Tripp et al. 1981). The larvae drift downstream with the current to Great Slave 
Lake. Presumably, some rearing takes place in Great Slave Lake. However, the juvenile 
whitefish were caught in large numbers at times in the river near Fort Smith and in the 
Slave River delta (Tallman et al. 1996c, Tripp et al. 1981). Therefore, some must remain in 
or migrate back into the Slave River. It is uncertain whether these remain permanent 
residents of the river until mature or whether at some size they also migrate into the Great 
Slave Lake.

The adult fish return to the river in the last two weeks of August and numbers continue to 
increase until October as the spawners aggregate. McLeod et al. (1985) placed spawning in 
late October but Tallman et al. (1996c) found that lake whitefish abundance had declined in 
the last two weeks of this month. Spawning probably occurs sometime in the middle of 
October (Table D, Appendix 1).
Neither Tallman et al. (1996c) nor McLeod et al. (1985) detected a defined post-spawning 
downstream migration. Mcleod et al. (1985) noted that CPUE increased in late October 
and early November and proposed that this might represent a post-spawning migration. 
Some out-migration to Great Slave Lake after freeze-up or during the following spring and 
early summer was noted by McLeod et al. (1985). It is presumed that all spawners do 
eventually return to Great Slave Lake to feed and recover before returning to spawn.

4.5.5 Northern Pike Life Cycle
Northern pike spawn in the early spring. Tripp et al. (1981) thought that northern pike 
probably moved to warmer areas upstream from the Delta to spawn, before the lower Slave 
River had cleared itself of ice in late May. Indirect evidence from the seasonal abundance 
of young-of-the-year supported this interpretation since it suggested that young-of-the-year 
migrated downstream late in the summer to rearing areas in the lower Slave River and 
Slave River Delta. As well, Tallman et al. (1996c) found that in early June there were large 
numbers of pike juveniles near the mouth of the Salt River in the upper part of the lower 
Slave River. While it has not been confirmed the shallow Salt River would probably 
warm quickly in the spring and make suitable habitat for northern pike spawning, In 1980, 
Tripp et al. (1981) found many pike in spawning condition in the Slave River delta and so 
they concluded that, in some years, spawning might occur in this area. They suggested that 
pike might be opportunistic regarding spawning site choosing the delta when conditions are 
favourable. According to Tripp et al. (1981) peak spawning occurred between May 4 to 
May 26 at water temperatures ranging from 5 to 14°C.

Eggs usually hatch after 12-14 days and young remain attached to aquatic vegetation for an 
additional 6-10 days (Scott and Crossman 1973). The requirement for vegetation to attach 
to also supports the idea that the Salt River may be the main spawning area because it is 
well vegetated. Once free-living growth is rapid and the juvenile pike start to re-distributed 
themselves into feeding territories. As noted above there is probably displacement of 
juveniles downstream in the early to late summer. The preferred habitat of pike is 
usually slow moving heavily vegetated areas (Scott and Crossman 1973). In general, once
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a feeding territory has been established pike are rather sedentary (Scott and Crossman 
1973). This certainly seems to be the case for the Slave River population (McLeod et al. 
1985).

Tallman et al. (1996c) found that northern pike were present in moderate abundance 
throughout the open water sampling period in 1994 (Table E, Appendix 1). In 1995 they 
were present in consistently higher numbers throughout the sampling period with 
substantial abundance recorded in the first two weeks of June and the last two weeks of 
August (Table E, Appendix 1). The increase in 1995 was probably due to better sampling 
coverage of the juvenile pike population in the area. More sampling was done in the Salt 
River area where juvenile pike were abundant.

4.5.6 Flathead chub life cycle
Both Tripp et al. (1981) and Tallman et al. (1996c) reported high CPUE of flathead chub in 
the spring suggesting aggregations for the purposes of spawning (Table F, Appendix 1). 
Tripp et al. (1981) found that small flathead chub were taken in minnow seines in the 
spring and early summer. However, the literature suggests that spawning occurs in the 
summer (Scott and Crossman 1973). Both Tallman et al. (1996c) and Tripp et al. (1981) 
found that CPUE results were fluctuating and no clear pattern emerged regarding seasonal 
movements. Tripp et al. (1981) hypothesized that flathead chub might overwinter in Great 
Slave Lake leaving the river entirely. Regardless, the biology of this species in the Slave 
River remains obscure and more work on its importance would be useful.

4.5.7 Walleye Life Cycle
Tallman et al. (1996c) found that walleye had two major periods of aggregation, in the 
spring and in the fall (Table G, Appendix 1). The spring aggregation is probably for 
spawning. Normally, walleye spawn shortly after spring breakup at temperatures ranging 
from 5.5 to 11.0°C (Scott and Crossman 1973). Preferred spawning areas are rocky areas 
in white water below falls or at the base of rapids. A likely spawning area is located at 
Rapids of the Drowned near Fort Smith. Tripp et al. (1981) thought that tributary streams 
such as the Salt River might be important, also. Tripp et al. (1981) concluded that there are 
two major migrations through the Delta. The first is an upstream spawning migration 
starting in mid-April before spring breakup and continuing through most of May. The 
second is a downstream migration to Great Slave lake that starts in late August and 
continues on at least freeze-up and possibly later. Tallman et al. (1996c) proposed 
aggregations in the fall were in preparation for over-wintering. The tagging results of 
Mcleod et al. . (1985) showing extensive downstream movements in the fall corroborate 
this interpretation. The walleye were found by Tripp et al. (1981), McLeod et al. (1985) 
and Tallman et al. (1996c) to be a significant part of the fish community in the Slave River 
during the open water season. The offspring must hold in the river during the summer and 
possibly remain there to rear until they become mature adults. The adults apparently 
over-winter in Great Slave Lake.

4.5.8 Lake Cisco Life Cycle
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Cisco appear to utilize mainly the lower reaches of the Slave River near the Delta. Tallman 
et al. (1996c) failed to capture any cisco while Tripp et al. (1981) concentrating on the 
Delta area found them to be relatively abundant. The cisco appear to utilize the lower 
reaches of the river and Delta for spawning in late October and early November. The 
juveniles may rear in the outer Delta but more likely spend there rearing years in Great 
Slave Lake. The adults are only briefly present in the Slave River system.

4.5.9 Longnose Sucker Life Cycle
Longnose sucker is a spring spawner (Tripp et al. 1981). It was one of the most abundant 
species in the Delta but was present in low numbers upstream except in spring when 
spawning was occurring (Tripp et al. 1981, Tallman et al. 1996c Table H, Appendix 1). 
Spawning probably takes place in the Salt River area or areas of moderate flow. Tripp et 
al. (1981) found peaks of abundance in the Delta in late June and early July and interpreted 
this as indicative of a post-spawning downstream migration. Fish taken at this time were 
spent (Tripp et al. . 1981). The young suckers remain in the gravel for two weeks after 
hatching and emerge in June (Scott and Crossman 1973). The fry then begin feeding 
although it is unknown whether they remain in the river or migrate into Great Slave Lake. 
Adults appear to spend much of their time in Great Slave Lake or the Delta area migrating 
upstream in the spring for spawning.

4.5.10 Summary of migratory types in the Slave River
Overall, the Slave River appears to be home to four different migratory types of fish. 1) 
There are highly ( i.e. long distance) migratory species such as inconnu and perhaps lake 
whitefish that are chiefly lake dwellers but use the Slave River for spawning in the fall. 2) 
There are other species who migrate moderate distances, that are spring or early summer 
spawners such as goldeye, flathead chub and northern pike and are moderately to highly 
abundant residents within the system. 3) There are species that are highly migratory 
spring spawners overwintering in the Delta or Great Slave Lake, such as walleye. 4) 
Finally, there is burbot and perhaps others which are sedentary in the system. This species 
apparently has low abundance yet can be readily caught using set lines during the winter 
and are also winter spawners.

5.0 Demographic characteristics and vital rates

5.1 Introduction
The intensity of the impact of contaminants and other anthropogenic effects can often be 
determined by the demographic characteristics of fish populations. Fishes that live a long 
time will have many more opportunities to accumulate the effects on the system. For 
example, a contaminant that enters transiently into the food chain will be more likely to be 
concentrated in a long lived animal than a short lived one. Furthermore, if the source 
persists then the longer lived animal will go through more annual cycles of exposure than a 
shorter lived animal.
The individual vital rates such as age at maturity,fecundity, growth rate and longevity
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determine the probability that a species or population will persist in the environment. For 
harvested fishes they also determine the potential yield and fishing rate that can be applied. 
For example, fishes that grow slowly, mature late and are not fecund cannot withstand the 
same level of exploitation as species that have high growth rates, earlier age at maturity and 
greater fecundity. Information on these traits is key to resource management.

Finally, the pattern or trajectory of vital rates - the life history trajectory of Stearns (1992 - 
integrates all the events that happen during a fish’s life. Growth reflects the evolutionary 
trade-off between energy applied to maintenance of the individual (respiration, repairing 
injuries, avoiding predators, etc), reproduction and the accumulation of size. The 
trajectory evolves in the environment to sustain the maximum fitness in the organism. In 
evolutionary terms, anthropogenic effects are experienced by the fish as a change in the 
environment that the trajectory is adapted to. For example, a contaminant may interfere 
with metabolism causing increased energy to be expended on maintenance and less on 
growth, fecundity and early maturation. Or it may directly interfere with the development 
of sex products resulting in a rapid decline in the population through recruitment failure.
An increase in flow might require greater energy resources to be used, again resulting in 
reduced growth and an altered life history trajectory.

In this section I will summarize the available information on the life history trajectories of 
fish species in the Slave River.

5.2 Inconnu Vital Rates
Tripp et al. (1981) sampled only 26 fish spread over 3 years for age and therefore many 
age-groups were missing from their results. As well, their samples were taken mainly in 
the Slave River delta and could have included resting fish from other stocks in Great Slave 
Lake. McLeod et al. (1985) collected information on age and length but it had to be 
converted into usable form. Therefore this analysis follows that of Tallman et al. (1996b) 
and the translated data of McLeod et al. (1985).

Growth curves (Fig. 12) show that male and female inconnu grow at similar rates up to age 
six. After this age, growth of the males slows down relative to females. Comparing 
inconnu collected in 1994 (Tallman et al. 1996b) to those collected in 1983-84 (McLeod et 
al. 1985) there appears to be no trend in size at age in that inconnu do not appear to be 
generally getting larger or smaller at age presently, compared to the mid-1980’s(Table 5). 
Growth appears to be somewhat slower in the initial ages in Tallman et al.’s (1996b) data 
and faster in the older ages.
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Table 5. The mean length at age for inconnu in the Slave River and Delta recorded by 
McLeod et al. (1985) and Tallman et al. (1996b).

Age Mean Length (mm)/N Mean Length (mm)/N
McLeod et al. (1985) Tallman et al. (1996b)

1 240.5 11
2 394.1 11
3 485.5 11
4 559.5 12
5 659.2 5 628.3 17
6 716.8 10 659.7 17
7 763.7 13 753.5 45
8 820.6 28 816.0 59
9 856.5 2 828.1 52
10 808.5 13 857.3 4
11 876.5 19 919.0 1
12 940.7 17 924.0 1
13 938.5 2 952.0 1
14 1037.0 2
15
16
24 1100.0 1

For northern fishes that do not spawn annually there is no straight forward way of 
determining age at maturity. For these types of populations the proportion of mature fish 
typically increases with age, peaking at an age determined by spawning frequency, age at 
first maturity and mortality (Morin e t  a l .  1982). Tallman et al. (1996b) considered age at 
maturity to be the age at which mature fish first showed up in the spawning population. 
The distribution of ages for mature inconnu (Fig. 13) suggests that females mature later 
than males for this population. Males from the Slave River are recruited into the spawning 
population between ages 5 and 6, but are most abundant at age 7, while females first 
appear in the spawning population at age 7 and become most abundant at age 9.Fecundity 
of inconnu from the Slave River ranged from 68,015 to 182,959, eggs per female.
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Fecundity tended to increase with body size (Fig. 14), but had no clear relationship with 
age (Fig. 15). Mean and standard deviation for age-specific fecundities are listed in the 
table below. Both mean fecundity and the variation around the mean increased with age.

Age Mean Fecundity Standard Deviation Sample Size
7 108,086 + 16,023 6
8 114,532 + 22,760 10
9 124,473 + 33,443 13

Diameter of fresh eggs for spawning inconnu in the lower Slave River (Appendix 3) 
increased from 1.6 mm in mid-August to 2.5 mm in mid-October just prior to spawning. 
Individual dry weight (g) increased from 1.5 mg in mid-August to 4.3 mg in mid- 
October. Both egg diameter and egg weight show a similar pattern of increase over the 
prespawning period, suggesting that both measures of egg size work equally well.

Age-frequency distributions of inconnu from the Slave River (Fig. 13) show that the 
spawning component of this population has a very narrow age distribution. The most 
abundant age classes of mature fish from the Slave River population were age groups 6 
and 7, and 8 and 9, for males and females, respectively. Females appear to be longer- 
lived than males. Comparing to McLeod et al’s (1985) data (see Table 12 above) there 
is a noticeable truncation of the age structure. Ages 11 and 12 are much less frequent 
than 10-11 years before.

5.2.1 Conclusions
For a freshwater Arctic species, inconnu have exceptionally high growth rates;
Tallman et al.’s (1996b) results show that the Slave River population has one of the 
highest growth rates among inconnu populations in North America. Slave River 
inconnu also mature early relative to other populations (Scott and Crossman 1973) . 
They are probably capable of doing so because of their high rate of growth which 
enables them to reach the required physiological size for sexual maturation earlier than 
other slower-growing populations.

Differences between the sexes in growth and age at maturity were observed for 
inconnu from the Slave River. Males are capable of becoming sexually mature at a 
smaller size and younger age (age 5 to 6) than females. This difference in age at 
maturity is probably responsible for the divergence in growth rates of males and 
females at around age six. Fish are indeterminate growers, so once sexual maturity is 
reached, energy is diverted towards reproduction and growth slows down. Because 
females mature later than males they continue to grow at the faster rate for a longer 
period of time than males.
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Fig. 15. Age specific fecundity of inconnu collected in the 
Slave River during 1994.

64



Inconnu, like other members of the coregonid family, are quite fecund, producing large 
numbers of small eggs. Nearly all of their reproductive effort is put into production of 
sexual products and the migration to spawning sites, unlike other species of fish that 
may produce fewer but larger eggs and invest more energy in care of their eggs and/or 
young. Fecundity of inconnu in the Slave River population is variable, but well within 
the range of fecundities reported for populations of inconnu in other locations such as 
Siberia (Nikol’skii 1954),Alaska (Alt 1977; Geiger 1969) and the Lower Mackenzie 
River (Howland and Tallman, unpublished). Egg sizes were also similar to those found 
for inconnu from Alaska (Geiger 1969) and the Lower Mackenzie (Howland and 
Tallman, unpublished).

Compared with other populations in the Canadian Arctic, inconnu from Slave River 
have a very narrow age structure (Scott and Crossman 1973). This is partly because 
we only sampled the spawning component of the population, but mainly a result of the 
short life span of individuals in this population - there are very few fish over the age of 
nine in the Slave River.

The most notable life history trait of the Slave River inconnu population is the 
extremely high growth rates and the consequently short life cycle (early 
maturation/short lifespan). Why does the Slave River population grow faster than other 
North American populations?
1) Latitude - the Slave River population is located further South than most other 
populations and may therefore have a longer growing season. This may have a 
particularly strong influence on juvenile growth which is highly temperature 
dependent.
2) Exploitation - Growth tends to increase with exploitation because remaining fish in 
the population are at lower densities and therefore have more resources available to 
them (Healey 1975). Inconnu in the Slave River have been subjected to both 
commercial and domestic fishing pressure for at least the last 50 years and as a result 
their life history characteristics may be changing
Inconnu in the Lower Slave River are characterized by a low age-at-maturity and rapid 
growth, with females maturing later and reaching a larger size at maturity than males. The 
inconnu population age structure is relatively narrow and young, while fecundity and egg size 
are comparable to other populations of inconnu for which these life history traits have been 
analyzed.

5.3 Burbot Vital Rates
Tripp et al. (1981) sampled 152 burbot from the Slave River delta for age and length.
McLeod et al. (1985) sampled 69 burbot. Tallman et al. (1996b) also sampled in 1994. A 
comparison between the three studies is shown in table 6. The data of Tallman et al. (1996b) 
show much less of a change in size with age compared to Tripp et al. (1981) or McLeod et al. 
(1985).
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Table 6. The mean length at age for burbot in the Slave River and Delta recorded by Tripp et.
al. (1981), McLeod et al. (1985) and Tallman et al. (1996b).

Age Mean Length (mm)/N Mean Length (mm)/N Mean Length (mm)/N
Tripp et al. (1981) McLeod et al. (1985) Tallman et al. (1996b)

1
2

3 223.7 1
4 311.1 7
5 358.9 22 327.0 5 560.0 2
6 406.1 27 411.0 1
7 458.6 5 469.0 10 515.2 3
8 475.3 3 532.0 17 548.6 10
9 506.7 6 589.0 19 550.3 14
10 541.4 5 647.0 9 581.5 10
11 529.2 4 686.0 2 598.9 8
12 568.0 1 726.0 3 619.2 14
13 597.7 1 740.0 2 652.2 10
14 600.0 2 760.0 1 644.0 3
15 653.0 2
16
17
18 758.0 1
19 733.5 3
20 608.0 6
21
22
23
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Burbot increase in length at age in a nearly linear manner(Table 13). For example, at age 8 
the fork length ranges between 350 and 620 mm; age 13 between 470 and 730mm and age 20 
between 650 to 870mm. The lower Slave River burbot appear to live longer and attain a 
larger individual size than in other burbot populations (Scott and Crossman 1973). This is 
perhaps not surprising since the second largest burbot recorded in North America has come 
from Great Slave Lake (937mm) (Scott and Crossman 1973 - Hopky and Ratynski 1983 
recorded the largest at 995 mm length from the Tuktoyaktuk Harbour).

In most burbot populations individuals reach sexual maturity at age 3 or 4 and thus the Slave 
River population appears to delay sexual maturity somewhat by maturing at age 5.

Fecundity of burbot from the Slave River ranged from 282,556 to 2,800,960 , eggs per 
female. Fecundity tended to increase with body size and with age. Mean and standard 
deviation for age-specific fecundities are listed in table 7 below. Both mean fecundity and 
the variation around the mean increased with age.

GSI by age showed a slight increase but the highest GSFs were recorded in the intermediate 
ages. It is uncertain whether this represents the real pattern of reproductive effort or simply 
the a seasonal pattern of maturation. According to Scott and Crossman (1973) egg number 
increases from about 45,600 in a 343mm female to 1,326,000 in a 643mm female. Given that 
a substantial portion of Slave River burbot are above 600mm we expect the mean fecundity to 
be quite high in this population.

In contrast to inconnu, age-frequency distributions of burbot from the Slave River (Fig. 16) 
show a broad age structure ranging from age 3 to 20. Moreover, the older ages are well 
represented in the age frequency distribution. The dominant age classes in our samples are 
ages 8, 9 and 12. Age 11 is curiously under-represented. Alternatively, age 12 may be over
represented.
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Table 7. Fecundity of burbot collected from the Slave River in 1994.

Age Sample Size Mean
Fecundity/Female Standard Deviation

5-7 3 432689 49923
8-9 12 592994 300414
10-11 12 611083 353887
12-13 12 1176914 799535
14-20 8 1252151 544656
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5.3.1 Conclusions
The Slave River burbot attain much older ages (up to age 21) than other populations. For 
example maximum ages from Manitoba and Ontario lakes typically range from 8 to 13 
(Lawler 1963, McCrimmon and Devitt 1954, Clemens 1951). The broad age structure with 
strong age classes in the older ages suggests a relatively unexploited, unstressed population 
exists in the Slave River.

Growth appears to be slower than in some other systems. For example, Lake Simcoe burbot 
had reached an average total length of 837mm by age 13 (McCrimmon and Devitt 1954) 
whereas the average length of 13 year old burbot in our samples was around 600mm. On the 
other hand Heming Lake burbot were smaller at age 8 (465mm) than the Slave River burbot 
(490mm).

Burbot appear to have a relatively high age at maturity and grow more slowly compared to 
other populations. Burbot have a broad age frequency with many older ages and larger 
individuals represented.

5.4 Lake Whitefish Vital Rates

Lake whitefish in the Slave River grow more slowly than those in Great Slave Lake (Tripp et 
al. 1981) . Other river spawning populations in the region such as the Athabasca River and 
the Mackenzie River also show higher growth rates than the Slave River population (Tripp et 
al. 1981, Jones et al. 1978, Tripp and McCart 1980, Table 8).
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Table 8. The mean length at age for lake whitefish in the Slave River and Delta recorded by
Tripp et. al. (1981).

Age Mean Length (mm)/N 
Tripp et al. (1981) McLeod et al. (1985)

0 116.0 3
1 106.0 1
2 153.0 2
3 182.4 10
4 223.0 4 264.0 3
5 272.6 8 286.0 3
6 290.2 8 347.8 4
7 312.3 4 362.0 4
8 355.6 7 383.3 10
9 367.8 24 380.2 9
10 388.8 18 383.7 10
11 396.8 17 400.8 12
12 423.0 5 423.3 8
13 426.8 6 431.3 10
14 399.0 1 432.4 5
22 503.0 1
23
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Tripp et al.’s (1981) data show that 50% of lake whitefish in the Slave River mature between 
the ages of 6 and 7.

Tripp et al. (1981) provides information on fecundity and egg size from 12 lake whitefish from 
the Slave River and Slave River delta. The mean age of the fish was 10.3 years. Mean 
fecundity was 23221 eggs per female with a range from 10643 to 36844. The average egg 
size ranged from 1.9 to 2.0 mm with a mean of 2.0 mm.

Lake whitefish in the Slave River range mainly from age 4 to 14 (Tripp et al. 1981, McLeod et 
al. 1985). It is possible that there are juveniles less than age 4, which were unavailable to 
the gear, rearing in the Salt River. The dominant age groups in the spawning population 
were ages 8-12. Although, growth rates were somewhat lower the number of age groups was 
similar to most lake whitefish populations in the region (Tripp et al. 1981)

5.4.1 Conclusions

The lake whitefish population in the Slave River has a slightly lower growth rate than other 
populations near Great Slave Lake. Otherwise, the population appears to be typical in many 
respects. The age range from 1-14 is similar to populations described by Scott and Crossman 
(1973) from more southern areas. Population fecundity is lower than most whitefish 
populations in the south which may have average fecundities ranging from 24000 to 80000 
eggs/female (Scott and Crossman 1973). Thus, the lake whitefish population is probably not 
stressed by over-fishing or other perturbations but it likely does not have as great a potential 
sustainable yield as populations 
to the south.

5.5 Lake Cisco Vital Rates
Tripp et al. (1981) found that there were two forms of “lake cisco” in the Slave River. The 
“white-finned form” ranged from 100 to 189 mm in length with most falling into the 130-149 
mm range while the “black-finned form” ranged from 130 to 279 mm length with most falling 
into the 220 to 239 mm range. However, the combined growth curve was a relatively smooth 
uninterrupted line (Tripp et al. 1981). McLeod et al. (1985) also note that two size groups of 
cisco occurred in the Slave River Delta . Table 9 shows the relationship between size and age 
for both forms.

All of the ciscos sampled by Tripp et al. (1981) were mature. The white-finned form ranged 
from 1 to 11 years with most between 3 and 6 years of age. The black-finned form ranged 
from 4 to 13 years of age with most between 6 to 8 years. Therefore the white-finned form 
appears to have an earlier age at maturity than the black-finned.

Tripp et al. (1981) determined fecundities for 26 black-finned and 17 white-finned ciscos. 
Average fecundity for the black-finned form was 3843 eggs ranging from 708-10753 eggs per
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female. The gonad weight accounted for 11 % of the total body weight.

The average fecundity of the white-finned form was 1357 eggs per female (range 506-2669). 
The total gonad weight accounted for 12.8% of the total body weight.

5.5.1 Conclusions

There appears to be two distinct forms of lake cisco utilizing the Slave River Delta. All 
aspects of the vital rates appear to be different with the white-finned form having lower 
fecundity, lower longevity, earlier age at maturity and slightly slower growth. It is uncertain 
whether these represent separate species or life history forms from the same species.
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Table 9. The mean length at age for “lake cisco” in the Slave River Delta recorded by Tripp
et. al. (1981).

Age Mean Length (mm)/N Mean Length (mm)/N Mean Length (mm)/N
white-finned black-finned combined

1 104.0 1 104.0 1

2 112.0 3 112.0 3
3 124.8 43 124.8 43
4 139.9 52 151.5 13 142.2 65
5 149.5 18 159.6 11 153.3 29
6 151.4 20 184.7 32 171.9 52
7 162.0 7 200.0 51 195.4 58
8 211.7 56 211.7 56
9 166.0 1 227.3 13 222.9 14

10 173.0 1 257.8 6 245.7 7
11 170.0 1 254.2 5 240.2 6
12 254.5 2 254.5 2
13 273.0 1 273.0 1
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5.6 Goldeye Vital Rates
Tripp et al. (1981) created an age-length key for goldeye from the Slave River Delta.
Goldeye size age ranged from 64 mm at age 0 to 390 mm at age 18 (Ages ranged from 0 to 23 
years). The data from Tripp et al. (1981) are shown in table 17. Compared to other 
goldeye populations, goldeye in the Slave River Delta grow more slowly and attain greater 
ages (Tripp et al. 1981). For example goldeye in Lake Claire reached only 10 to 13 years in 
age but attained a size of close to 350 mm by that point (Kristensen et al. 1976). In the . 
Saskatchewan River Delta goldeye live to about age 12 and attain lengths over 350 mm 
(Kennedy and Sprules 1967). In contrast Tripp et al. (1981) recorded maximum ages of 23 
years but average length at age 12 was only 337 mm

Tripp et al.’s (1981) data indicate that by age 3 over 50% of the males were mature. Females 
matured at age 5. However, Tripp et al. (1981) concluded that only a small percentage of 
goldeye were mature at age 5 and all were mature by age 9.

Tripp et al. (1981) made egg counts on eight goldeye from the Slave River Delta. Average 
fecundity of goldeye in the Slave River Delta ranged from 1999 to 16345 with a mean of 9205 
eggs per female (Tripp et al. 1981). Average egg size was 1.6 mm and total gonad weight was 
7.3% of the total body weight. There was a positive correlation between body size and egg 
number (Tripp et al. 1981).

Ages 0 to 23 were represented in the catch. The presence of the juveniles to age 0 suggest that 
the Delta may be important in rearing of goldeye. As stated before, the age range exceeds 
many other North American populations (Scott and Crossman 1973). Possibly this is an 
adaptation to the environmental uncertainty in the system. If goldeye are not able to 
reproduce each year or juvenile survivorship is erratic then a wider age range would allow for 
more population stability (Stearns 1992).
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Table 10. The mean length at age for goldeye in the Slave River Delta recorded by Tripp et.
al. (1981).

Age Mean Length (mm)/N

0 67.0 3
1
2
3 191.0 5
4 228.6 8
5 247.8 26
6 268.6 37
7 278.5 36
8 292.1 38
9 322.4 8
10
11 337.0 3
12 330.3 4
13 373.0 1
14 335.5 2
15 335.0 1
16 369.5 2
17 361.0 3
18 380.6 5
19 367.0 1
20 381.0 1
21 373.3 3
22 368.0 1
23 350.0 1

I
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5.6.1 Conclusions
Goldeye in the Slave River are characterized as slow growing, late maturing and long lived. 
As such, they may be more able to maintain an abundant population in the system with less 
inter-annual fluctuation. However, living to an old age may result in greater bio
concentration of contaminants. The lower growth rate may mean that the goldeye population 
would be slower to recover from heavy fishing than other populations.

5.7 Northern Pike Vital Rates
Tripp et al. (1981) recorded ages and length for pike in the Slave River Delta. Pike ranged 
from 0 to 15 years of age and from 134 to 998 mm in fork length. Few fish exceeded 8 years 
of age or a fork length of 670 mm. Tripp et al. (1981) noted that generally the oldest and 
largest fish were females although because of sample sizes no significant differences could be 
demonstrated. Pike in the Athabasca River grow at a faster rate than those in the Slave River 
Delta but do not attain as great an age or size (Bond 1980). Athabasca River fish only lived 
to age 7 and maximum sizes around 700 mm whereas the Slave River pike attained sizes of 
close to meter in length and lived to 15 years of age. On the other hand pike from the Kakisa 
River a tributary of Great Slave Lake lived to 17 years and grew more slowly than Slave River 
pike (Falk and Dalkhe 1975). The age-length data for pike are shown in Table 11.
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Table 11. The mean length at age for northern pike in the Slave River Delta recorded by
Tripp et. al. (1981).

Age Mean Length (mm)/N

0 152.0 11
1 221.9 19
2 272.3 27
3 394.5 21
4 439.4 25
5 514.6 23
6 553.9 29
7 610.7 25
8 646.9 19
9 723.0 7
10 710.7 6
11 804.3 7
12 823.3 4
13 782.0 2
14 936.0 1
15 994.0 3
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Both males and females begin to mature at age 1 (Tripp et al. 1981). Most females are 
mature by age 3 and all are mature by age 8. Males are all mature by age 6.

Tripp et al. (1981) made egg counts on 18 pike ranging from 422-920 mm in fork length. 
Average fecundity was 41,589 eggs with a range from 7079 to 214600 eggs per female. Egg 
diameter averaged 1.4 mm. There was a positive correlation between body size and egg 
number (Tripp et al. 1981).

Ages 0 to 15 were represented in the catch. The presence of the juveniles to age 0 suggest that 
the Delta may be important in rearing of pike. Pike from the Slave River are somewhat older 
than the average in populations much further south (Scott and Crossman 1973). Their age 
structure appears to be in the middle range for the geographic area they are in.

5.7.1 Conclusions
Pike in the Slave River Delta appear to have a wide range of ages suggesting that they are not 
much affected by anthropogenic activities. However, because they are a long lived top 
predator they are vulnerable. The later age at maturity and generally larger size of the 
females make pike more vulnerable to depletion of the reproductive base through fishing.
The Slave River Delta is an important area for all stages of pike from young-of the-year to the 
largest adults.

5.8 Flathead Chub Vital Rates
Flathead chub are rather low in the trophic chain and are unlikely to be consumed by people of 
the area. However, they are an important part of the biota of many large turbid rivers such as 
the Slave River. In spite of, or perhaps because of, this their biology is poorly known (Scott 
and Crossman 1973). Tripp et al. (1981) provided valuable data on their vital rates which is 
presented here.

Tripp et al. (1981) found that the length-frequency distribution of flathead chub to be distinctly 
bi-modal. They attributed this to the sampling methodology - chub from 250 to 299 mm were 
vulnerable to gillnets while most chub taken in minnow seines were under 50 mm. Based on 
58 specimens Tripp et al. (1981) found that the age ranged from 4 to 14 and fork length from 
133 mm to 315 mm. Presumably the 50 mm chub were fish < 4 years in age (probably young- 
of-the-year). Flathead chub grew rapidly from age 4 to age 8 and then seemed to reach an 
asymptotic value (Table 12). Growth was similar to that reported for flathead chub in the 
Athabasca River but was consistently faster than reported for the Mackenzie River (McCart et 
al. 1977, Tripp et al. 1981, Hatfield et al. 1972, Stein et al. 1973). The age-length data for 
flathead chub are shown in Table 12.

Females start to mature by age 5 and according to Tripp et al. (1981) spawn every year. Tripp 
et al. (1981) rarely encountered males and therefore gave no information on their age at 
maturity.
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No information exists on the fecundity or egg size of flathead chub.

The age range of this species is quite broad for a cyprinid species and for a smaller species in 
the community. This does not appear to be unique to the Slave River population. It suggests 
that age specific mortality rates are low which is also unusual for a smaller species. Perhaps, 
predation pressure is low.
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Table 12. The mean length at age for flathead chub in the Slave River Delta recorded by
Tripp et. al. (1981).

Age Mean Length (mm)/N
gillnet catches

0
1
2
3
4 181.7 3
5 198.0 2
6 242.3 3
7 247.5 6
8 277.3 9
9 288.6 9
10 285.8 12
11 302.7 4
12 314.0 3
13 303.7 4
14 299.0 3
15
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5.8.1 Conclusions

Flathead chub are interesting because they are one of the smaller species in the fish 
community and yet one of the largest representatives of their taxonomic family, the cyprinidae. 
Most smaller species have rather r-selected life histories but flathead chub mature relatively 
late and maintain a large number of age groups in the population for a cyprinid species. The 
population of the Slave River appears to be similar in this respect to other populations in the 
area. Interesting, also is the apparently strongly biased sex-ratio (towards females) observed 
by Tripp et al. (1981), McCart et al. (1977) in the Athabasca River and Hatfield et al. (1972) 
in the Mackenzie River. I am uncertain what this means. It could be that the males are 
substantially smaller than the females and therefore may have not been recruited to the gear 
used. On the other hand, perhaps the males occupy different environments than the females 
and have a somewhat different life cycle.

5.9 Longnose Sucker Vital Rates

Longnose sucker ranged in length from 105 to 574 mm in length and age from age 2 to 28 
(Tripp et al. 1981). Few fish exceeded 16 years in age Table 13.

Females start to mature by age 8 and by age 12 all were mature (Tripp et al. 1981). Male 
mature earlier, the youngest reaching maturity at age 6 and all reaching maturity by age 10 
(Tripp et al. 1981).

Mean fecundity was 47269 eggs per female (N=8) with a range between 23558 and 68545. 
Total gonad weight was 9.7% of the body weight.

Longnose suckers are long-lived in the Slave River (up to 28 years).
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Table 13. The mean length at age for longnose sucker in the Slave River Delta recorded by
Tripp et. al. (1981).

Age Mean Length (mm)/N 
seine catches

0
1
2 107.5 2
3 137.7 4
4 184.8 5
5 229.9 9
6 263.3 16
7 273.9 21
8 350.3 17
9 396.7 16
10 411.1 13
11 423.9 15
12 433.5 11
13 439.3 10
14 463.8 6
15 485.8 6
16
17 512.7 3
18 500.5 2
19 478.7 3
20
21 519.7 4
23 482.0 1
26 502.0 1
28 502.0 1
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5.9.1 Conclusions

Longnose sucker have a wide range of ages in the Slave River Delta. They mature late and 
grow relatively slowly. They grow more slowly than longnose suckers in the Athabasca 
River (Bond 1974) up to age 8. They also grow more quickly than those in the upper 
Athabasca River (Tripp and McCart 1979).

5.10 Walleye Vital Rates

Walleye in the Slave River Delta ranged in fork length from 80 mm to 579 mm with most 
(80%) in the 280 to 479 mm fork length range. Three modal classes were present: 300 to 319 
mm, 380 to 399 mm and 420 to 439 mm. There were no major differences in the length- 
frequency distribution of males and females, unlike those usually reported for more southerly 
populations where females typically predominate in the larger size classes (Scott and 
Crossman, 1973). Walleye ranged from 0 to 18 years of age and between 80 to 537 mm in 
fork length (table 14). Slave River walleye grew at similar rates to those in the Hay River a 
tributary of Great Slave Lake (Falk and Dalkhe 1975). Walleye growth in the Athabasca River 
and Lake Athabasca was faster than the Slave River walleye (McCart et al. 1977*, Bond and 
Berry 1980*).

According to Tripp et al. (1981) walleye in the Slave River Delta are slow to mature. Females 
start to mature by age 9 and by age 13 all were mature (Tripp et al. 1981). Male mature 
earlier, the youngest reaching maturity at age 6 and all reaching maturity by age 9 (Tripp et al. 
1981). Tripp et al. (1981) proposed that once mature walleye spawn every year.
Tripp et al. (1981) counted eggs from only four walleye. Mean fecundity was 91615 eggs per 
female with a range between 69228 and 113414.

Walleye in the Slave River are long lived compared to other populations. For example, 
Athabasca Hay and Mackay River populations live to age 14 (McCart et al. 1977, Bond and 
Berry 1980, Falk and Dalkhe 1975) lived up to 12 to 14 years compared to the Slave River 
Delta population living to 18 years of age.

5.10.1 Conclusions

The wide range of ages in the Slave River suggest that little impact has occurred from 
anthropogenic sources. Walleye grow slowly and mature late compared to other populations 
and therefore could be slow to recover from disturbance in the system.
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Table 14. The mean length at age for walleye in the Slave River Delta recorded by Tripp et.
al. (1981).

Age Mean Length (mm)/N

0 95.4 7
1 145.5 4
2 201.2 6
3 260.6 15
4 263.9 37
5 279.1 21
6 339.7 14
7 358.7 30
8 385.4 23
9 413.1 13
10 436.1 15
11 445.3 9
12 450.9 14
13 446.7 9
14 463.1 7
15 467.0 6
16 483.0 7
17 519.0 1
18 454.5 2
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5.11 General Conclusions on Vital Rates

Most fishes in the Slave River demonstrate life history trajectories that are within the norm for 
their species. Many species have broad age structures associated with fish populations that 
have not been impacted much by human activities. Some species worth monitoring are: 
inconnu because it possesses a narrow age structure suggesting that the population is already 
under stress, probably from exploitation pressure; flathead chub because it is a species that is 
especially adapted to large turbid rivers and is also sensitive to changes in water quality; 
goldeye due to its abundance and apparently unusually broad age structure compared to other 
conspecific populations.

6.0 Piscine food web

6.1 Community and food web

A biological community can often bounce back from a disruption and come back to its 
starting configuration (Krebs 1988). But if the disturbance is sufficiently drastic the 
community may shift to a new configuration. The configuration of a community is most 
clearly seen in its food web. The organisms in a community can be classified into producers, 
consumers and decomposers. It is important to understand that the work here will mainly 
consider the secondary consumers of the piscine food web. A complete understanding of the 
food web must account for all of these groups. Regardless, a great deal of understanding can 
be achieved by determining who eats whom.

Two major processes organize food webs: predation and competition. Community structure is 
a summation of many species interacting through competition and predation. Descriptions of 
food webs can be complex even if only the major species are described.

The complexity of food web analysis is even greater with fishes because fish have relatively 
indeterminate growth and may over the course of their life pass through several different 
trophic levels. For example, a walleye may start out feeding on microscopic plankton, pass on 
to feeding on zooplankton such as D a p h n ia , move on to macro-benthic invertebrates, then 
small fish, and finally end up as mainly a piscivore - the top predator in the system. Where 
does one place walleye in a description of the food web? For much of its existence it is not a 
top predator but its greatest influence on the community may be from this position. In many 
cases top predators in the food chain are themselves subject to predation from their prey 
species during an earlier part of their life cycle. Thus, fish food webs are highly complex 
and the loss of one species can have a ripple effect at many levels.
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Another aspect of food web configurations is seasonality. Several critical factors are often 
overlooked in studies of northern fish food webs. Because northern fishes are often 
opportunistic and generalist in their food preferences and community composition can change 
dramatically over the course of the season fishes diet may dramatically change during the 
course of the year. Description of diet based on samples over only short time periods cannot 
account for the great changes in diet over the course of the season. Therefore trophic 
relationships can be obscured. Fish, also, have the capability to stop feeding for long periods 
of time. Often species will stop feeding during spawning migrations and/or during the 
spawning period. Thus, the influx into a river of large numbers of a predatory species, such 
as inconnu, during their spawning migration may have little or no impact on the trophic 
dynamics in the system. Another time when fish may cease or reduce feeding is during the 
winter period. On the other hand, some species such as burbot may become more active 
during the winter (Scott and Crossman 1973) .

Large river food webs have not been studied extensively in Arctic Canada. Synthesis of 
dietary information and analysis of the Slave River food web are generally absent from 
previous studies; particularly lacking are studies of seasonal variation in the diets among fish 
in the lower Slave River. Tripp et al. (1981) recorded gut contents on a number of species but 
provided no synthesis of this information, whereas McLeod e t  a l. (1985) and Boag and 
Westworth (1993) did not examine trophic relationships. Therefore, during 1994, we proposed 
to investigate the seasonal variation in the diets among fish in the lower Slave River at all 
levels of the food web. The following sections are extracted mainly from the results of Tripp 
et al (1981) for the Slave River Delta and our work (Tallman et al 1996c).

6.2 Slave River Food Web

There is no standard methodology for the analysis of stomach contents. Because of this it is 
important that I present the methodology used by the main studies discussed.

6.2.1 Diet Analysis - Slave River

To analyze stomach contents Tallman et al. (1996c) removed and froze the complete digestive 
tract, from the oesophagus to the anus,within 3 h after capture. In the laboratory, stomach 
contents were sorted into taxonomic categories, weighed and measured. Mass, total lengths 
and maximum body depths were measured for fish prey items. The frequency of occurrence, 
and the percentage composition of prey categories by number and by mass of all prey taxa 
found in fish stomachs were calculated for each fish species to estimate the relative 
importance of those food taxa in a species’ diet (Hyslop 1980). The Relative Importance 
Index (George & Hadley 1979) is essentially a mean of the three diet measures for each food 
category (Wallace 1981):
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AI = % frequency occurrence + % total numbers + % total weight,

RI= 100A I/S AI"
1

where n  =  the number of different food types,

% frequency of occurrence = the percentage of all stomach containing food in which each 
food category occurred.

% total numbers = the percentage that each food category contributed to the total number 
of food items in all stomachs.

% total weight = the percentage that each food category contributed to the total weight of 
food in the stomach.

For stomach contents containing only digested remains of fish prey, diagnostic hard bone 
structures such as otoliths and pharyngeal arches were used to identify ingested prey items 
where possible.
Food relationships between species were calculated using the dietary overlap index of 
Schoener (1974):

a = 1- 0.5 (S I Pxi _ pyi I)
where axy is the overlap between species y  and species x \ pyi is the proportion of food taxa i in 
the diet of species y ;  pxi is the proportion of food taxa i in the diet of species x. The 
index ranges from 0 (no overlap) to 1 (complete overlap); an index value of 0.3 or less 

indicates little overlap in the diets; an index value of 0.7 or more indicates a high degree of 
overlap (Keast, 1978).

6.2.2 Diets of Slave River Fish Species

6.2.2.1 Northern Pike

Stomach content analysis was determined for 290 northern pike stomachs in 1994 and 1995. 
Only 102 stomachs (42%) were found to contain prey items.

General Description of Northern Pike diet: Prey items found are listed in Table 15 (Table A2, 
Appendix 2). A total of 21 different prey items were documented, 14 of which were fish 
species (37.5% total), 4 invertebrate orders (3.3%) and 3 vertebrate species (1.2%). The most 
common fish found in the stomachs were ninespine stickleback (6.7%), northern pike (4.6%), 
flathead chub (3.0%), arctic lamprey (3.0%), burbot (3.0%) and lake whitefish (3.0%) based 
on percent by absolute numbers of all prey items found in the diet (Figure 17). Prey items
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were also ranked by percent by weight and percent by frequency of occurrence. The Relative 
Importance Index (George & Hadley, 1979) was calculated for each prey item to reduce the 
biases of ranking by absolute numbers, by weight or by frequency of occurrence. The most 
important prey types as ranked by the Relative Importance Index were flathead chub, burbot, 
lake whitefish and northern pike, respectively .

The stomach content data was divided between the three sampling locations, the Slave Delta, 
the lower Slave River at Fort Smith and the Salt River (Figure 18). These 3 sampling 
locations were originally chosen since they represent three different types of habitat, and fish 
species composition varied among these sampling locations. For 1995, the Salt River had 15 
different prey items found in northern pike stomachs, as compared to 10 prey items in the 
Slave River and 5 in the Slave Delta. The diets of northern pike caught in the Salt River had 9 
different fish species, accounting for 46%, 3 invertebrate orders (9%), and 3 vertebrate species 
(3%). Ninespine sticklebacks and small lake whitefish were the most common prey 
items found. Of the northern pike caught in the Slave River, 8 of the 10 prey items found 
were fish species (38%) and 2 were invertebrate orders (3.5%). Arctic lamprey and flathead 
chub were by far the most common prey types found in adult pike stomachs from the Slave 
River near Fort Smith, accounting for 11.8% and 9.4% respectively. Results from the Slave 
Delta showed a total of 5 different prey types, 4 of which were fish (22%) and 1 vertebrate 
species, a rodent (2%). Burbot were the most common prey item eaten (8%), followed by lake 
whitefish (2%), lake cisco (2%) and lake chub (2%), while 76% of the stomachs analyzed 
were empty.
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The stomach content data obtained for each of the 3 sampling locations, was divided into 2 
seasonal time periods, May/June and July/August (Figures 19 and 20). The significance of 
dividing the data in this manner, is that there are different species present in relatively higher 
abundance at different times of the year depending on their life histories and prey items found 
northern pike diets seem to be linked to the abundance and availability of prey in the 
environment (Christiansen, 1976; Scott and Crossman, 1973). Stomach contents of northern 
pike caught in the Salt River during May and June (Figure 19) showed 7 different prey items; 
3 fish species (17%), 2 invertebrate orders (15%) and 2 vertebrate species (5%). Damselfly 
larvae, amphipods and smaller northern pike were the most common prey items. Also note 
here that a YOY burbot was found in the stomach contents. For the Slave River, stomachs 
contained 7 different prey items, 5 of which were fish species (45%) and 2 were invertebrate 
orders (7%). Arctic lamprey and flathead chub were by far the dominant prey types, each 
comprising 17%. Twenty-eight stomach samples were analyzed from the Delta, 21 of which 
were empty. Prey items found were burbot, lake whitefish, lake cisco, lake chub and rodent 
remains.

For the July and August sampling period, 11 different prey items were found in the northern 
pike stomachs caught in the Salt River; 8 fish species (67%), 2 invertebrate orders (5%), and 1 
vertebrate (2%). Ninespine sticklebacks, lake whitefish and burbot were the most common 
prey types. Also found in the stomach contents was a YOY lake whitefish.
The stomach content data for the Slave River in Figure 20 showed a decrease in arctic 
lamprey, flathead chub and goldeye and an increase in smaller northern pike and walleye 
compared to the May/June period (Figure 19). The diversity in diet composition of fish caught 
in the Slave River during July and August increased compared to the May/June stomach 
contents. However, fish species found in the diet accounted for 35% in July/August and in 
May/June fish prey accounted for 45%. Finally, Figure 21 illustrates the differences found 
between 2 assigned size-classes. The criterion for determining the different size-classes was 
based on the average length of prey found in the diet. Two different size-classes were chosen 
based on prey length, less than 400mm fork length (<400mm) and greater than and equal to 
400mm fork length (>400mm). 22 samples were analyzed for the <400mm category.
Lengths of prey (excluding the invertebrates) ranged from 26mm to 100mm. For the 
>400mm size-class, prey lengths ranged from 30mm(EMSH) to 363mm (LKWT); a snake 
with a total length of 930mm was found in a 545 mm northern pike. Prey length varied from 
7% to 43% of total predator length. Both assigned size-classes had invertebrates present.

6.2.2.2 Walleye

Stomach contents were determined for 197 walleye in 1994 and 1995. Only 59 stomachs 
(38%) were found to contain prey items. Walleye were noted to occasionally regurgitate their 
stomach contents when caught in gillnets.
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Table 15. Prey items found in stomach contents of fish in the lower Slave River, NWT from 
Tallman et al. (1996c)

Prey Items NTPK WALL INCO BRBT LKWT G(

FHCB X X X
NTPK X X X
ARLP X X
BRBT X
LKWT X X X
GOLD X X
NSST X X X
WALL X X X
EMSH X X
SPSH X X
TRPH X X X
LKCB X
LKSC X
SUCKER X X X
Rodents X X
Snakes X
Birds X
Amphipoda X X X
Gastropoda X
Ostracoda X
Ephemeroptera X X

Odonata X X X X
Plecoptera X X X
Trichoptera X X X
Coleoptera X

Dytiscidae X X
Corixidae X X

Orthoptera
Hymenoptera

Diptera
Chironomidae

X X

X

X

X

X
X
X
X
X

X

X

X

Tabanidae
Ceratopogonidae

Vegetation
Oligochaeta
Nematoda

X

X
X

X

X

X
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General Description of Walleye diet: Prey items found are listed in Table 15. A total of 14 
different prey items were documented, 8 of which were fish species and 6 were invertebrate 
categories (12%). The most common fish prey types were northern pike (5%), walleye (3%) 
and longnose sucker (3%) based on percent by absolute numbers of prey items found in the 
diet (Figure 22); using absolute numbers may over-emphasize the importance of invertebrates 
since more invertebrates can be consumed at a given time.. Prey items were also ranked by 
percent by weight and percent by frequency of occurrence in Table B2 (Appendix 2). The 
Relative Importance Index (George & Hadley, 1979) was calculated for each prey item to 
reduce the biases of ranking by absolute numbers, by weight or by frequency of occurrence. 
The most important prey types as ranked by the Relative Importance Index were northern pike, 
arctic lamprey, plecopterans and ephemeropterans, respectively. Aquatic invertebrates were 
found in walleye of a wide range of lengths, the largest being a 372mm fish.

The stomach content data obtained for each of the 3 sampling locations was divided into 2 
seasonal time periods, May/June and July/August. The Salt River during May/June had 7 
different prey items present, 2 of which were fish (9%). Plecopterans were the most 
commonly eaten prey item, accounting for 13% of total stomach contents. Walleye caught in 
the Salt River during July and August ate mostly fish prey (69%). For the walleye caught in 
the Slave River, the diversity of prey items was much lower in May/June compared to the 
July/August sampling period. Northern pike were the most common prey type in the 
July/August sampling period, accounting for 8% of the stomachs dissected, (for discussion: 
spawning, little feeding in May/early June). During the June sampling in the Slave Delta, 
only 4 walleye were caught, all with empty stomachs.

6.2.2.3 Inconnu
Stomach content analysis was determined for 110 inconnu stomachs in 1994 and 1995. Only 
26 stomachs (24%) were found to contain prey items.

General Description of Inconnu diet: Prey items found are shown in Figure 23. A total of 6 
fish species were documented in the stomach contents; northern pike, trout-perch, longnose 
sucker, flathead chub, walleye and lake whitefish. The Relative Importance Index was 
calculated only for those prey items from which a suitable weight could be obtained. The 
results from the Relative Importance Index by George and Hadley, 1979 is shown below in 
Table C2 (Appendix 2). Trout-perch were ranked first, followed by northern pike, then 
longnose suckers. Although flathead chub, lake whitefish and walleye could not be included 
in this ranking, the resulting ranking shown in Figure 23 would be the most appropriate order 
of importance, regardless.

6.2.2.4 Burbot
Stomach content analysis was determined for 65 burbot stomachs in 1994 and 1995. I have 
divided the burbot stomach content data into 2 categories, those collected during the spawning 
season and those not collected during the spawning season.
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General Description of Burbot diet: Prey items found are listed in Table 15 and shown in 
Figure 24. Stomachs contents analyzed from the spawning period collection (beginning of 
December), showed 69.5% were empty. Only 19 stomachs of a total of 60 were found to 
contain prey items. Of the prey items documented, only 1 goldeye and 1 lake whitefish was 
found. The most common item in the stomachs was bait (25%). Tallman et al (1996c) 
suggested 2 possible explanations for these results: first, burbot were collected using set lines. 
This is apparently the best way for catching burbot, however it can also be assumed that 
burbot caught on a set line probably had an empty stomach before being caught. Therefore, 
collecting fish for diet analysis using the set line method, may have biased results. Secondly, 
diet analysis completed on spawning fish may not give a full representation of diet 
composition since most fish species do not feed during this period of their life history. 
However, some diet information was determined from burbot found in the stomachs of other 
piscivores. A total of 5 burbot stomachs were analyzed; 3 were found to be empty or have 
digestive matter present; one stomach had a ninespine stickleback present and one stomach 
contained a young longnose sucker.

During the non-spawning period Tallman et al. (1996) captured only the occasional burbot and 
therefore no analysis of diet was performed.

6.2.2.5 Lake Whitefish

Stomach contents was determined for 69 lake whitefish in 1994 and 1995. 33 stomachs, 
representing 98.6% of total stomach contents were found to contain prey items.

General Description of Lake whitefish diet: Prey items found are listed in Table 15 and Figure 
25. A total of 14 different prey items were documented, 12 of which were invertebrate orders 
(98% total); fish in the diet represented 0.12% and vegetation represented 0.3% of the total 
diet. The most common items found in the stomachs were ostracods (75%) followed by 
corixids (12%) and Trichopterans (6%) based on percent by absolute numbers of prey items 
found in the diet (Figure 25). Prey items were also ranked by percent by weight and percent 
by frequency of occurrence in Table D2 (Appendix 2). The Relative Importance Index 
accounted for the numbers of items found, the weight and the frequency of occurrence; based 
on those 3 measures ostracods were ranked first, followed by trichopteran larvae, and corixids.

Most of the lake whitefish stomach content data used above are from fish caught in the Salt 
River. Throughout the 1995 spring and summer sampling periods, most lake whitefish were 
caught in the Salt River. Figure 25 best represents the diet of lake whitefish in the Salt River. 
A total of 111 lake whitefish were caught in 1995, 85 of which were caught in the Salt River, 
22 were from the Slave River near mid-August and 4 were caught in the Slave Delta. For lake 
whitefish caught in the Slave River, a total of 25 stomachs were analyzed for 1994 and 1995; 
100% of those analyzed from mid-August onwards were empty or contained minimal digestive 
matter.
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6.2.2.6 Goldeye

Stomach contents was determined for 43 goldeye in 1995. 30 stomachs, representing 92.5% 
of total stomach contents were found to contain prey items.

General Description of Goldeye diet: Prey items found are listed in Table 15. A total of 14 
different prey items were documented; invertebrate orders represented 89.6% total contents, 
vegetation represented 1.7% and rodent remains represented 0.5% of total stomach contents 
analyzed (figure 38). Results from the Relative Importance Index (George & Hadley, 1979) are 
shown in Table E2 (Appendix 2). The top four ranked prey items were as follows: plecoptera 
(31%), rodent remains (20.8%), Corixidae (14.4%), and Dytiscidae (11%).

6.2.2.7 Flathead Chub

Stomach content analysis was determined for 26 flathead chub stomachs in 1995, of which 8 
contained prey items.

General Description of Flathead Chub diet: Prey items found are listed in Table 15. A total 
of 9 different prey items were documented; invertebrate orders represented 65% and 
vegetation represented 1.85% of total stomach contents analyzed (Figure 26). Gastropods and 
corixids were by far the most common prey item, representing 20.8% and 18.9% respectively. 
Chironomids represented 7.4% of the stomachs analyzed; also found were items belonging to 
the orders Hymenoptera, Coleoptera, Orthoptera, and the family Dytiscidae.

6.2.2.8 Longnose Sucker
Stomach content analysis was determined for 10 longnose sucker stomachs in 1995, of which 
9 contained prey items.

General Description of Longnose sucker diet: Prey items found are listed in Table 15. A total 
of 8 different prey items were documented; invertebrate orders represented 57% and 
vegetation represented 4% of total stomach contents analyzed (Figure 27). Ostracods, 
plecopteran and trichopteran larvae were the most common prey item, representing 21.74%, 
17.39% and 13.04% of the stomach contents, respectively. Amphipods represented 4.35% 
stomachs analyzed.

6.2.2.9 White sucker
Stomach content analysis was determined for 10 white sucker stomachs in 1995, of which all 
10 contained prey items.

General Description of white sucker diet: Prey items found are listed in Table 15. Their diet 
was much broader than the longnose sucker with a total of 15 different prey items were
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documented; invertebrate orders represented 98% of total stomach contents analyzed (Figure 
27). Chironomids and corixiidae were the primary prey items, representing 38% and 43% of 
the stomach contents, respectively.

6.2.3 Slave River Food Web Interactions

Northern pike consumed 21 distinct taxa. Of these 14 are fish species, 3 are terrestrial 
vertebrates and 4 are aquatic invertebrates. Pike , as generalist feeders, therefore, have a wide 
impact on the community and are a key component in the food web. Pike not only take 
aquatic animals but large terrestrial vertebrates such as snakes, rodents and birds. Their 
versatility as predators is further emphasized when one considers the range of prey size against 
predator size. Prey ranged from 7 to 60% of the length of the pike predator body length. To 
some extent the pike diet can be used as an indicator of what is available in the system. For 
example, the stomachs of pike from the Salt River contained damselfly larvae whereas the 
Slave River proper and the Slave River delta did not. There were few flathead chub 
available in the Salt River and no Arctic lamprey. No white sucker were captured by pike in 
the Slave River. In general, the diet was quite different from pike captured in the Salt River, 
Slave River or Slave River delta (Figure 20)

Northern pike diet varied seasonally. In May and June Slave River pike concentrated on 
flathead chub (17% of stomachs examined) and Arctic lamprey (17%). Pike in the Salt River 
ate mainly amphipods and a variety of fish species, while those from the delta consumed fish 
species associated with Great Slave Lake such as lake chub, lake cisco, lake whitefish and 
burbot. During July and August the Slave River pike diet shifted such that a wide variety of 
fish species made up the diet with northern pike (9% of stomachs sampled) being dominant. 
The change in species probably reflected greater availability of migratory species such as lake 
whitefish in the latter part of the summer. Salt River pike also shifted more to fish species. 
Fish were found in 67% of the stomachs examined. The dominant food item was the nine- 
spined stickleback (39%). The diet in the delta remained focussed on lake dwelling species 
especially lake whitefish and burbot.

The larger size of pike greater than 400mm allowed them to prey upon a much wider variety 
of organisms. Smaller pike appeared to be limited to invertebrates and the smaller fish 
species.

The large number of empty stomachs in the analysis of walleye is due to the tendency of 
walleye to regurgitate when caught in the net. Walleye consumed 14 different prey taxa and 
appear to be an opportunistic generalist feeder similar to pike. Walleye rely about equally on 
invertebrates and fish species the most important being plecoptera and pike. Eight fish and 6 
invertebrate species were noted.
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Inconnu and burbot were exclusively piscivorous. In the Slave river inconnu concentrated on 
walleye, flathead chub, northern pike and trout perch. In the delta they consumed pike, 
longnose sucker, lake whitefish and trout perch. Burbot did not overlap with inconnu in the 
Slave River where they consumed lake whitefish and goldeye. In the delta they consumed 
longnose sucker and nine spined stickleback.

Goldeye, lake whitefish, flathead chub, longnose sucker and white sucker were almost 
exclusively invertebrate feeders consuming a wide variety of prey items. Goldeye 
concentrated on plecopteran larvae, dytiscids and corixids (42%, 9% and 17% of stomachs 
examined, respectively). Lake whitefish ate mainly ostracods (75%). Flathead chub 
concentrated on chironomid larvae, gastropods and corixidae (8%, 21% and 19%, 
respectively). Longnose sucker focussed on trichopteran larvae, plecopteran larvae and 
ostracods (13%, 17% and 22%, respectively). White sucker focussed on corixidae and 
chironomid larvae (43% and 38%, respectively) Thus, there were no species that focussed on 
exactly the same species although there were several cases of overlap in preferred prey items 
among the invertebrate feeders.

A schematic of the Slave River food web shows that three fish species, northern pike, goldeye 
and lake whitefish have the greatest number of interactions with others (Figure 28). Northern 
pike sample from most of the fish species available while goldeye and lake whitefish prey 
upon a great range of invertebrate taxa. Certain species such as goldeye, trout-perch and 
flathead chub serve as energy conduits between the lower trophic levels and the harvested 
fishes.

In conclusion, the piscine food web is layered into three major types of predator: 1) 
specialized fish only feeders such as inconnu and burbot; 2) generalized opportunistic 
predators such as pike and walleye that will take fish and invertebrates; and 3) invertebrate 
feeders such as lake whitefish, goldeye, flathead chub, longnose sucker and white sucker 
consuming a wide variety of prey items.

6.3 Slave River Delta Food Web

6.3.1 Diet Analysis

Tripp et al. (1981) estimated the percent fullness of stomachs visually and identified contents 
to major taxa (e.g. order, family) or other suitable category (e.g., insect parts, fish remains, 
vegetable matter, digested material) . The frequency of occurrence of each food type was 
recorded for major species. Tripp et al. (1981) did not calculate occurrence in the same 
manner as most researchers. They only reported the percentage of stomachs with food that 
had specified items. I have used this information to calculate occurrence in the usual manner.
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6.3.2 Diets of Slave River Delta Fish Species

6.3.2.1 Lake Whitefish

Of 101 juvenile and adult lake whitefish stomachs examined, 72 were empty and only 29 
contained recognizable food items. Most of the lake whitefish were taken during the course of 
migrations to and from the spawning grounds upriver when they appear to eat very little. 
Corixids were the major food item encountered followed by mollusca, chironomids, and 
trichoptera larvae (Table 16). Stomachs were contracted, with hick walls, and contained a 
relatively small volume of food in relation to the total size of the stomachs.

Table 16. Frequency of occurrence (Relative importance of food items in juvenile and 
adult lake whitefish in the Slave River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Corixidae 47.63 (10)
Mollusca 42.86 (9)
Chironomidae 4.76 (1)
Trichoptera 4.76 (1)

100

Of 46 young-of-the-year lake whitefish stomachs, 23 contained recognizable food items. Of 
these chironomid larvae were the most frequently encountered followed by copepods, mayflies 
nymphs, cladocerans and lepidopteran larvae (Table 17).
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Table 17. Frequency of occurrence of food items in young-of-the-year lake whitefish in
the Slave River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Chironomidae 61.11 (22)
Copepodae 22.22 (8)
Ephemeroptera 8.33 (3)
Cladocera 5.56 (2)
Lepidoptera 2.78 (1)

100

6.3.2.2 Lake Cisco

Of 29 stomachs examined 13 contained food. Chironomid larvae and mysids were the most 
common items, followed by corixids, cladocerans and amphipods (Table 18).

Table 18. Frequency of occurrence of food items in lake cisco in the Slave River Delta, 
1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Chironomidae 46.15 (6)
Mysids 23.08 (3)
Corixidae 7.69 (!)
Cladocera 7.69 (1)
Amphipoda 7.69 (1)

100

6.3.2.3 Inconnu

Only 6 of 37 inconnu stomachs examined had food items. Fish remains were the only 
recognizable items including ciscos, northern pike and walleye.

6.3.2.4 Goldeye

Of 209 stomachs examined, 176 were found to contain food. Corixids were by far the most 
frequently consumed item followed by chironomid and caddisfly larvae, and allochthonous 
vegetable matter consisting of poplar seeds, twigs, spruce needles(Table 19). A wide variety 
of other items were consumed including other insects, amphipods, snails, fish and rodents.
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Table 19. Frequency of occurrence of food items in adult and juvenile goldeye in the Slave
River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Amphipoda 0.47 (1)
Ephemeroptera 1.40 (3)
Coleoptera 4.67 (10)
Corixidae 60.75 (130)
Trichoptera 10.28 (22)
Tipulidae 0.93 (2)
Chironomidae 10.75 (23)
Mollusca 1.40 (3)
LNSK 0.47 (1)
Rodent . 0.47 (1)
Vegetable Matter 8.41 (18)

100

The diet of young-of-the-year goldeye was dominated by chironomid larvae and corixids 
(Table 20). Other items included mayfly larvae, stonefly nymphs, midge adults and butterfly 
larvae.0
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Table 20. Frequency of occurrence of food items in young-of-the-year goldeye in the
Slave River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Chironomidae 45.99 (86)
Plecoptera 2.67 (5)
Ephemeroptera 5,35 (10)
Corixidae 40.64 (76)
Diptera 5.35 (5)
Lepidoptera 5.35 (5)

100

6.3.2.5 Northern Pike

Of 189 juvenile and adult pike stomachs examined, 104 were found to contain food. Pike 
were exclusively piscivorous the diet including all of the major fish species in the Delta except 
inconnu (Tripp et al. 1981). Ciscos were the most common item eaten, followed by smaller 
pike, burbot, longnose sucker, and walleye (Table 21).

Table 21. Frequency of occurrence of food items in juvenile and adult pike in the Slave 
River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
LKCS 33.65 (35)
NTPK 10.58 (11)
BRBT 8.65 (9)
LNSK 6.73 (7)
WALL 5.77 (6)
Other Fish Spp 34.62 (36)
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Young-of-the-year pike (N=66) contained fish remains and invertebrates such as amphipods, 
midge larvae, mayflies, corixids and beetles (Table 22).

Table 22. Frequency of occurrence of food items in young-of-the-year pike in the Slave River 
Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Amphipoda 27.66 (26)
Chironomidae 12.77 (12)
Ephemeroptera 11.70 (11
Corixidae 5.32 (5)
Coleoptera 2.13 (2)
Fish Remains 40.43 (38)

6.3.2.6 Flathead chub

Of 88 flathead chub stomachs examined, 53 were found to contain food. Corixids were the 
most frequently consumed food item, followed by chironomids, stonefly nymphs, caddisfly 
larvae, ceratopogonid larvae, snails and ostracods, mayfly nymphs, water beetles, clams, and 
oligochaetes (Table 23).

Table 23. Frequency of occurrence of food items in flathead chub in the Slave River Delta, 
1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Corixidae 42.42 (14)
Chironomidae 21.21 (7)
Ephemeroptera 6.06 (2)
Plecoptera 6.06 (2)
Ceratopogonids 6.06 (2)
Snails 6.06 (2)
Ostracods 3.03 0 )
Ephemeroptera 3.03 0 )
Clams 3.03 0 )
Oligochaetes 3.03 0 )
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6 3 .2.1 Longnose Sucker

Of 80 stomachs examined 51 were empty. Others contained unidentifiable digested matter. Of 
the identifiable remains chironomid larvae, copepods and corixids were important (Table 24).

Table 24. Frequency of occurrence of food items in juvenile and adult longnose sucker in the 
Slave River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Chironomidae 50.00 (6)
Copepoda 41.67 (5)
Corixids 8.33 (1)

Young-of-the-year and yearling longnose sucker consumed chironomids, fingernail clams, 
snails, oligochaetes, amphipods, copepods, and fish eggs (Table 25).

Table 25. Frequency of occurrence of food items in young-of-the-year and yearling longnose 
sucker in the Slave River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Chironomidae 56.62 (13)
Clams 13.04 (3)
Snails 13.04 (3)
Oligochaetes 4.35 0 )
Amphipods 4.35 (1)
Copepods 4.35 0 )
Fish eggs 4.35 0 )

6.3.2.8 Burbot^/

Of 77 stomachs of adult and juvenile burbot, 50 were found with food. Unfortunately, Tripp 
et al. (1981) does not give any numerical data which I could convert, perhaps because most 
items were partly digested by the time the fish were recovered. Fish remains, including 
ciscos, longnose suckers, other burbot, and stickleback was a major food item, followed by 
occasional occurrences of caddisfly larvae, corixids, cranefly larvae, midge larvae and 
amphipods.

Young-of-the-year burbot were dominated by midge larvae, copepods, mayfly larvae,stonefly 
larvae, amphipods and cladocerans (Table 26)
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Table 26. Frequency of occurrence of food items in young-of-the-year burbot in the Slave
River Delta, 1978-80 (Data from Tripp et al. 1981).

Prey Items % Frequency of Occurrence
Chironomidae 55.06 (87)
Cladocera 3.16 (5)
Amphipoda 3.16 (5)
Copepoda 18.35 (29)
Ephemeroptera 16.46 (26
Plecoptera 3.80 (6)

6.3.2.9 Walleye

A total of 208 juvenile and adult walleye were sampled of which 97 had stomachs containing 
food. Tripp et al. (1981) did not provide data but stated that fish, including ciscos, pike, lake 
chub, longnose suckers, burbot and other walleye were the most common foods of walleye 
larger than 200 mm, while insects (mayflies, water beetles, midge larvae) were the most 
common foods consumed by walleye smaller than 200 mm.

6.3.2.10 Other Species

Tripp et al. (1981) provides data on the stomach contents of lake chub, emerald shiner, spottail 
shiner, pearl dace, trout-perch and spoonhead sculpin. Lake chub fed on a variety of 
invertebrates but especially corixids and chironomids, followed by plecoptera, gastropods, 
copepods, oligochaetes, pelecypods, trichoptera, ephemeroptera, and coleoptera (Table 27). 
Emerald Shiner consumed a wide variety of invertebrates - in order of importance: corixids, 
chironomids, ceratopogonidae, hymenopterans, cladocera, copepoda, plecoptera, and diptera. 
Spottail Shiner consumed mainly copepods and corixids plus small amounts of chironomid 
larvae and homeoptera. Pearl Dace had a rather restricted diet consisting mainly of copepods 
and corixidae. They also ate gastropods. Trout-perch preyed primarily on chironomids but 
also took mayflies, copepods, pelecypods, gastropods, trichopterans and corixids. Spoonhead 
sculpin preyed upon chironomids mainly but also took fish eggs, oligochaetes, mayflies, 
corixids and gastropods.
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Table 27. Frequency of occurrence of food items of smaller species in the Slave River Delta,
1978-80 (converted to % occurrence using data from Tripp et al. 1981).

Prey Items Lake Chub Emerald
Shiner

Spottail
Shiner

Pearl
Dace

Trout-
Perch

Spoonhead
Sculpin

Oligochaeta 3.16(3)
Pelecypoda 3.16 (3) 5.05 (5) 13.64 (21)
Gastropoda 6.32 (6) 10.00 (10) 3.03 (3) 2.60 (4)
Cladocera 5.26 (5) 4.00 (4)
Amphipoda
Copepoda 4.00 (4) 49.59 (61) 52.00 (52) 5.05 (5)
Chironomidae 22.11 (21) 16.00(16) 4.88 (6) 70.70 (70) 62.34 (96)
Ceratopogonids 16.00 (16)
Trichoptera 2.11 (2) 3.03 (3)
Ephemeroptera 2.11 (2) 10.10 (10) 5.19 (8)
Plecoptera 8.42 (8) 4.00 (4)
Corixidae 45.26 (43) 40.00 (40) 40.65 (50) 38.00 (38) 3.03 (3) 5.19(8)
Diptera 4.00 (4)
Hymenoptera 8.00 (8)
Lepidoptera
Homeoptera 4.88 (6)
Coleoptera 2.11 (2) 4.00 (4)
Fish Eggs 11.04 (17)

6.3.3 Slave River Delta Food Web Interactions

Juvenile and adult northern pike consumed 10 distinct taxa and fed exclusively on fish in the 
Slave River delta. Thus, pike in the Delta, though not as generalistic in their food habits as in 
the river, still affected most of the fish species present. The most important fish species were 
cisco, followed by smaller northern pike, burbot, longnose sucker and walleye.

In contrast to the piscivorous diet of burbot in the river, burbot in the Delta consumed both 
fish and invertebrates. However, fish were the dominant food item.

Goldeye, lake whitefish, and flathead chub were almost exclusively invertebrate feeders 
consuming a wide variety of prey items. Goldeye ate a wide variety of invertebrates 
focussing on corixids, chironomids and trichoptera (61%, 11% and 10%, respectively). Lake 
whitefish ate mainly corixids and molluscs (48% and 43%). Flathead chub concentrated on
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chironomid larvae and corixidae (21% and 42%, respectively). In the Delta there was much 
overlap in food types with chironomids and corixids being preferred by the invertebrate 
feeding fishes.

A schematic of the Slave River Delta food web shows that the trophic separation is clear 
between the top predators, walleye, pike and burbot and the invertebrate foragers such as the 
cyprinids, goldeye, cisco, whitefish and suckers (Figure 29). Goldeye and lake whitefish are 
have the widest diet among the invertebrate feeders. Pike consumes the widest diversity of 
fish species.

Finally, a simple food web showing the young-of-the-year (Figure 30) emphasizes the 
importance of the invertebrate community to all species whether they are top predators or 
invertebrate foragers as adults.

In the delta food web pike appears to specialize on fish while burbot forages on both fish and 
invertebrates. This reversal of the pattern in the river may be related to depth. In the river, 
pike dwelling nearer to the surface have more opportunities to capture invertebrates than in the 
Delta. Contrastingly, burbot may encounter more invertebrates in the deep waters of the Delta. 
Overall the pattern remains quite similar to the river except that cisco are present and heavily 
utilized by pike.
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7.0 SUMMARY CONCLUSIONS AND RECOMMENDATIONS

The lower Slave River is a distinct habitat in the Northern Rivers Basin in that it is connected 
hydrologically and chemically to the upper part of the watershed but isolated at the level of the 
fish community. There is virtually no interaction between the fish communities upstream of 
Rapids of the Drowned and those in the lower Slave River. Habitat requirements for fishes are 
unique in the lower Slave River because of the life cycles of the species and the surrounding 
abiotic and biotic environment. Three guiding questions were posed by NRBS that are 
relevant to fish ecology: # la “ How has the aquatic ecosystem including fish and\or other 
aquatic organisms been affected by exposure to organo-chlorines or other compounds?”; #6 
“What are the distribution and movements of fish species in the Peace, Athabasca and Slave 
Rivers? Where and when are they most likely to be exposed to changes in water quality and 
where are their important habitats?”; #8 “Recognizing that people drink water and eat fish 
from these river systems, what is the current concentration of contaminants in water and edible 
fish and how are these levels changing by time and location?” To respond and/or provide 
supporting information to answer these questions I provided the following: 1) a review of
the existing models for large rivers that could make predictions regarding the pathways 
contaminants and other anthropogenic effects might take to reach the fish food chain through 
hydrological regime and movements of the biota; 2) a general description of the major abiotic 
and biotic features of the environment surrounding the fish community in the lower Slave 
River; 3) a summary the available knowledge (including NRBS studies) on the community 
composition, distribution and abundance of the fishes in time and space in the lower Slave 
River; 4) a synthesis of the available knowledge of geographic migratory patterns of fishes 
of the lower Slave River; ; 5) a summary of vital rates of major species; 6) a description of 
the pathways in the fish food web.

7.0.1 Theoretical Models and the lower Slave River

Further research on the lower Slave River should be undertaken with a unifying theoretical 
model in mind. Such an approach will do more to preserve all ecosystem components than 
studies specializing in one or two species or aspects of fish biology in the river. On the other 
hand the present theoretical models which have been developed based on river sytems in the 
southern temperate and tropical regions may not be sufficient to describe the sub-Arctic Slave 
River. As stated before, the river continuum concept is most appropriate for headwater 
streams and small rivers, whereas the flood pulse concept is limited to large floodplain rivers 
and the RPM is relevant to large rivers with constricted channels and firm substrates in the 
photic zone. Where does the lower Slave River fit in? The original concern from NRBS 
was probably partly based on a river continuum model - that what happens upstream 
profoundly affects function downstream. This is undoubtably true. However, the lower Slave 
River seems to fit better between the flood pulse and riverine productivity models because 
there is certainly a flood pulse and yet much of the river is a restricted channel with productive 
tributaries. The recommendations that follow, therefore, keep in mind that much of the focus
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in the NRBS has been dealing with the linear nature of riverine systems and that research into 
lateral inputs and local productivity must be undertaken.

7.1 Effects on the fish community

Flow regulation from the Bennett Dam has produced a change to the seasonal hydrograph of 
the Slave River (Prowse and Conly 1996). By the lower Slave River the effects are 
diminished due to tributary flow becoming an increasing part of the total discharge. 
Contaminants have been found in some indicator fish (burbot) in the lower Slave River 
although at generally low levels (Brown 1996). The fish community could be affected by 
these changes in the environment in terms of vital rates, species composition and diversity.

7.1.1 Vital Rates

Vital rates respond to changes in the environment by re-partitioning energy between 
maintenance, growth and reproduction (Roff 1992). Growth and reproduction are the basis 
for productivity in fish populations. Unfortunately, there is no general model predicting 
precisely how vital rates will respond to changes in the abiotic environment. Presumably, the 
first level that the above changes might affect fish is to increase their maintenance costs with a 
trade-off in reduced growth, delayed age at maturity and/or reduced fecundity.

7.1.1.1 Growth

Ideally, one would like pre and post-impact information with which to judge, but this is not the 
case, in general. Inconnu, burbot and lake whitefish have data of this type for growth but the 
other species do not. Therefore, the information presented in the report on the other species 
serves only as a bench mark of productivity indices to judge further changes.

Inconnu in the lower Slave River has one of the highest growth rates in North America. The 
high growth rate is likely attributable to the normal response of the life history to fishing 
pressure and the fact that inconnu are at the southern end of their range. There appears to 
have been little change in growth patterns from 1983 to 1994. Burbot in the lower Slave 
grow more slowly than other populations but not substantially so. From the late 1970’s to 
1994 there may have been an increase in growth of the younger ages and a decrease in the 
growth rate of older ages. Based on data from the late 1970’s and the early 1980’s Slave 
River lake whitefish grow more slowly than surrounding populations. Between 1978 and 
1984 there was little change in growth rate. Slave River goldeye also grow more slowly than 
other populations in the area whereas northern pike growth seems to be about average. Other 
than the changes observed in burbot there appears to be no unusual patterns in the growth of 
Slave River fishes that would suggest an impact. However, the conclusion is based on data 
on limited data.
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7.1.1.2 Age at maturity

There is no information to check for changes in age at maturity among Slave River fishes. 
Therefore, the limited age at maturity data will be considered as a bench mark for future 
assessment of impacts. Some populations were distinct compared to conspecifics.

Inconnu had a low age at maturity compared to other North American populations. This is 
probably due to the rapid growth rate. Burbot in the lower Slave River matured about one 
year later than other burbot populations but this is not noticeably outside the inter-population 
variation one might expect. Lake whitefish and pike, age at maturities are similar to most 
other conspecific populations. Walleye, goldeye, and longnose sucker matured later than 
conspecific populations. Age at maturity does not appear to be outside the expected range for 
any of the major species in the Slave River.

7.1.1.3 Fecundity

There was no information available to determine if fecundity has changed in fishes in the 
Slave River.

Fecundity of inconnu, burbot and pike were comparable to other conspecific populations.
Lake whitefish had a lower fecundity than most other lake whitefish populations. Fecundity 
levels were in the normal range and showed no evidence of impact.

7.1.1.4 Age Structure

Inconnu had a narrow age structure compared to other populations. Burbot, goldeye longnose 
sucker, lake whitefish, walleye, and pike had broad age structures suggesting little impact from 
anthropogenic activities. The narrow age structure of the inconnu would make it less able to 
adjust to environmental changes than the other species.

The major species are mainly in the two categories of large and medium sized fishes 
described which Zaret (1980) described as being most vulnerable to anthropogenic activities 
and therefore the first to show any effects. The vital rates of these species given no indication 
that contaminants or flow changes have affected the Slave River fish community to any 
appreciable degree. However, the data is not sufficient too make conclusive judgements.

RECOMMENDATION 1): Evaluating changes to the vital rates is limited by the lack of data 
prior to the construction of the Bennett Dam and other developments. Except for inconnu 
and burbot, most of the vital rates available are from 1978-79 collections by Tripp et al.
(1981). Analysis of the current vital rates of other species should be undertaken - especially 
goldeye, northern pike, walleye and lake whitefish.

RECOMMENDATION 2): Future evaluations of the impact on fish productivity will require
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good data on vital rates. Key species, such as inconnu, northern pike, burbot, walleye and 
goldeye should be assessed on a regular basis. The Department of Fisheries and Oceans 
should continue collection and analysis of inconnu from the lower Slave River. Collections 
and analysis of the other key species should be made at least once every five years to assess 
changes in productivity.

RECOMMENDATION 3): There is little information on the growth patterns of juveniles of 
the major species in the lower Slave River. Impacts from environmental degradation will 
probably affect juvenile stages first. Projects that focus on factors important to juvenile life 
history should be encouraged.

RECOMMENDATION 4): There is almost no information on the vital rates of forage species 
such as emerald shiner, flathead chub, trout-perch . These species may be good indicators of 
changes that will ultimately affect the production of their predators, the harvested fish species. 
Studies that quantify the life history trajectory (growth, age at maturity, fecundity, longevity, 
mortality) of forage species in the lower Slave River should be undertaken.

RECOMMENDATION 5): There are no models that can be used to predict the response of 
the life history trajectory (hence how fishes are affected) to environmental degradation in the 
lower Slave River. Existing life history trajectory models relate to mortality factors such as 
fishing. Quantitative models of the potential consequences to vital rates of flow changes 
and/or contamination should be developed for the lower Slave River. Such models would 
allow more precise hypothesis testing and prediction of the effects of habitat change. This 
recommendation is key because it may help to priorize Recommendations 1-4 and others.

7.1.2 Fish Species Diversity

A major problem with environmental degradation is the permanent loss of species. Lowering 
the diversity of ecosystems makes them less stable and able to withstand further environmental 
impacts. A total of 30 species have been reported in the Slave River and its delta. Twenty- 
seven of these species are confirmed from collection records. The other three are only 
reported in McCart (1986) but the references he provided do not confirm actual collections of 
these species. Within the confirmed group the most important family is the Salmonidae with 
10 members. The Cyprinidae (5 species) is next followed by Percidae (2), Catostomidae (2), 
Cottidae (2), Percopsidae (1), Petromyzontidae (1), Esocidae (1), Hiodontidae (1), Gadidae 
(1), and Gasterosteidae (1). In the late 1970’s 23 species were captured in the system 
compared to 18 in the mid-1980’s and 19 in 1994/95. Different fish species are more or less 
vulnerable to capture depending on the gear used. When considering only one gear type 
common to all studies (gillnet) then there was no change in the number of species recorded 
(14) from the 1978-80 period to 1994-95. The NRBS funded study added two species not 
collected before to the lower Slave River list - O n c o r h y n c h u s  n e r k a  and O . ts h a w y ts h a .
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Overall, community composition differences were minor and are likely a result of chance in 
sampling. Therefore, there does not appear to be any affect of flow changes or contaminants 
on the fish species diversity in the lower Slave River.

RECOMMENDATION 6): Fish species diversity is a fundamental indicator of ecosystem 
health. Collections by gillnet and other means should be made at least once every 5 years 
over the entire season to determine if fish species diversity has changed.

RECOMMENDATION 7): A more formal analysis of the existing data using indexes of 
diversity should be undertaken.

7.1.3 Fish Species Abundance

While some species have been a relatively stable percentage of the community others have 
shown fluctuations in their relative abundance between 1978 and 1995. Lake whitefish, white 
sucker, northern pike, flathead chub and walleye have remained relatively constant. Inconnu 
appears to have increased, probably due to reductions in fishing pressure. Burbot and 
longnose sucker appear to have decreased somewhat. Some of the differences may be due to 
sampling location - the late 1970’s samples were taken more heavily from the Slave River 
Delta than the recent samples.

RECOMMENDATION 8): To validate the catch per unit effort method of estimating 
abundance and to get a benchmark estimate of the numerical abundance of each species it is 
recommended that mark-recapture studies be undertaken for each species.

7.1.4 Invertebrate Diversity

In the flood-pulse and river continuum models all fish species in the Slave River would be 
considered predators. The basic medium of energy transfer is invertebrates. It is clear that 
maintenance of invertebrate populations is critical to the productivity of the fish populations. 
Effects of contaminants or flow changes may first affect the productivity of invertebrate 
populations.

RECOMMENDATION 9): Studies to determine the species diversity, habitat requirements 
and productivity of invertebrates in the lower Slave River should be undertaken.

7.2 Fish Distribution and Movement

The lower Slave River fish community is seasonally dynamic , constantly changing throughout 
the year. Fish movements vary according to species from extensive to limited. The lower
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Slave River is an important habitat used for spawning, feeding, rearing of juveniles and for 
over-wintering of fishes and serves as a migratory corridor for all of these activities. All 
major species appeared to show seasonal aggregations and all seasons were important for 
spawning or feeding of at least one of the major species.

7.2.1 Distribution

7.2.1.1 Large Scale Patterns

Goldeye were abundant in the Slave River, Slave River Delta and Salt River. Inconnu could 
be found near the outer Slave River Delta in the spring but generally used the Slave River 
,only, as a migration corridor and spawning area in the fall. Lake whitefish utilized the Slave 
River for feeding and spawning. The Salt River was an important nursery area for lake 
whitefish and juvenile pike. Northern pike adults were distributed throughout the system but 
were most abundant in the Slave River delta. Burbot were also widely distributed but had 
apparently much lower abundance. Longnose sucker inhabited the Delta and Slave River 
channel, while white sucker inhabited mainly the Salt River. Walleye had resident populations 
in the Salt and Slave rivers but also had spawning and over-wintering runs from and to Great 
Slave Lake in the spring and fall, respectively. Some species like flathead chub, preferred the 
Slave River channel. A large number of others (Arctic lamprey, pearl dace, lake chub, trout- 
perch, round whitefish, ciscos, Arctic grayling, emerald shiner, yellow perch, spoonhead 
sculpin and slimy sculpin) inhabit the Delta the extreme lower reaches of the Slave River 
channel.

7.2.1.2 Micro-habitat

Shallow, well vegetated areas were preferred by a greater diversity of species in greater 
numbers than other habitat types. However, the number of habitat types were limited to four 
defined by Tripp et al. (1981).

RECOMMENDATION 10): Field and simulation studies to characterize the differences in
fish habitat among the major areas of the lower Slave River drainage should be undertaken to 
determine what are the habitat characteristics that separate species in these areas. Particular 
attention should be made to develop a detailed scale of micro-habitat types and the preferences 
of fish to each.

7.2.1.3 Seasonal Variation in Community Structure

The Slave River community changed greatly over the season. In the spring goldeye, flathead 
chub, walleye were numerically dominant. The high abundance was probably due to spawning
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aggregations. Longnose sucker, pike and lake whitefish were also present. Burbot and 
inconnu were absent. During the summer the community composition included most major 
species except inconnu. Goldeye was the most abundant but less so than in the spring. In the 
latter part of the summer the fall spawning species, inconnu and lake whitefish begin to 
dominate the biota. During the fall inconnu, lake whitefish and goldeye dominate but all 
species are present. Late in the fall ciscos enter the Delta in great numbers. In the winter 
there is a run of burbot downstream to spawn in the Delta.

RECOMMENDATION 11): Little is known regarding the seasonal distribution under ice. 
Field studies over the entire ice on period should be undertaken to determine the fish 
community composition in different parts of the lower Slave River drainage and over
wintering habitat of each species. Sampling would necessarily be limited to the gillnetting 
techniques used by local fishermen unless new methodologies could be developed.

RECOMMENDATION 12): Recognizing the seasonally dynamic nature of the Slave River 
fish community, geographic information system (GIS) analysis of relationship between 
probable point sources, fish distribution and contaminant concentrations in the fish over the 
seasonal cycle should be undertaken

7.2.1.4 Distribution in side channels, tributaries and on floodplain

Studies to date (including the NRBS) have focussed on the main channel or the Delta of the 
Slave River. Much of the productivity, including fish production, must take place in still side 
channels, tributaries such as the Salt River, quiet backwaters and seasonally on the floodplain 
of the river. There is no information available on the fish distribution in these areas. 
Therefore, the importance of these areas to fish as habitat and the probability that fish might 
be exposed to contaminants while in these areas cannot be determined. The effects of 
hydrological changes on these areas must be considered, especially in the Delta, where the 
Bennett Dam effects may be or are ongoing.

RECOMMENDATION 13): A study to determine the fish species composition in tributaries , 
backwaters and side channels throughout the season should be undertaken in the lower Slave 
River.

RECOMMENDATION 14): A study of the distribution and activities of both juvenile and 
adult fish during the flood-pulse on the lower Slave River should be undertaken.

7.2.2 Movements

The seasonally dynamic community composition in the Slave River is a result of fish 
migrations to feeding, spawning, rearing or over-wintering habitat. Movements can be 
extensive or limited depending on the season and species.
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The annual movement patterns of the adults of one of the most important harvested fishes, 
inconnu can now be described in detail. Inconnu spawn in the Slave River at sites near Fort 
Smith and near Cunningham Landing. The offspring apparently migrate directly to Great 
Slave Lake where they spend five or more years in the case of the males and seen or more 
years in the case of the females until they are mature. Once mature inconnu return to the 
Slave River to spawn, entering the river in the late summer and proceeding up-river to their 
spawning site. They aggregate at the spawning grounds for several days to weeks until 
spawning occurs, usually around the third week of October. After spawning the return to 
Great Slave Lake is rapid occurring over less than a week. Within the lake migrations are 
geographically extensive. The inconnu migrate in a large counter-clockwise gyre in the 
western basin of the lake bounded by the south and north shores, the Simpson Islands and the 
Mackenzie River outlet. In the spring the inconnu are located in the open water near the 
outlets and deltas of rivers on the south shore. After this they proceed along the shore to the 
Slave River. Therefore, inconnu have great potential to transport contaminants from the 
northern river basins area into Great Slave Lake. Similarly, they could also import 
contaminants into the lower Slave River from sources around Great Slave Lake. On the other 
hand, as adults they are the top predator among fishes and thus contaminant transfer would not 
be to the fish food chain but mainly to the next level of dogs and humans.

In contrast, burbot migrate little, apparently holding small feeding territories in the river or 
delta. In the winter they migrate downstream in the Slave to spawn in the Delta probably in 
January or February and return back up river prior to the spring.

Lake whitefish appear to follow a similar migratory pattern both seasonally and geographically 
to inconnu except that at least some of their juveniles may rear in the river and not migrate to 
the lake until they mature. As well, some lake whitefish may over-winter in the lower river.

Goldeye, flathead chub and walleye migrate to the river near the Fort Smith area during the 
spring to spawn then disperse into the river for the rest of the year. Adult walleye may leave 
the river after spawning. Juveniles and some adult walleye remain in the river during the open 
water season. Lake ciscos migrate into the Slave River delta in late fall to spawn and spend 
the rest of the year in Great Slave Lake. Given the reliance of ciscos on the Delta for 
reproduction changes there may effect them the most. Northern pike, probably move into the 
Slave and Salt rivers from the Slave River delta to spawn in the early spring prior to the 
completion of ice-out. Pike then re-distribute themselves along the Slave River and the delta 
for the rest of the year. The seasonal movement patterns of longnose and white sucker are 
uncertain as there has only been limited data collected.

Most importantly, no fish have been observed to migrate above the Rapids of the Drowned . 
Thus, the lower Slave River populations are isolated from the conspecific populations 
upstream except when a fish slips downriver through the rapids.
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7.2.3 Probability of exposure to water quality changes due to distribution and movements

If the flow and water quality changes are transported from upstream then fishes undergoing 
critical phases of their life cycle near Rapids of the Drowned would be at greatest risk. Thus, 
lake whitefish and inconnu during spawning in the fall; pike, goldeye, flathead chub and 
walleye spawning in the spring near Fort Smith would most likely be exposed. However, if 
the change in water quality is strong enough to be transmitted from a great distance it is 
unlikely to attenuate at Rapids of the Drowned. Thus, species that rear or are resident in the 
Slave River Slave River Delta, or even Great Slave Lake since 85% of the water entering it 
comes from the Slave River, such as northern pike, lake whitefish, walleye, flathead chub, 
goldeye, burbot and longnose sucker would be most vulnerable.

RECOMMENDATION 15): There is nearly no data on winter movements of fishes ( inconnu 
movements in Great Slave Lake during winter are known) in the Slave River and delta.
While it is assumed that most species are relatively inactive at this time it is not confirmed and 
remains a gap in the knowledge base. A study of winter ecology, including 
floy tagging and radio-tracking experiments on the major species excepting inconnu and ciscos 
should be undertaken.

RECOMMENDATION 16): Other than inconnu and burbot there is only limited knowledge 
of the details of movement patterns of major species, such as northern pike, goldeye, lake 
whitefish, and walleye, in the lower Slave River. Radio-telemetry studies of these species’ 
movement patterns throughout the year should be undertaken in order to determine their 
probability of exposure to contaminants and other effects of environmental degradation.

RECOMMENDATION 17): There is almost no knowledge of the movements of forage 
species such as trout-perch, emerald shiner, lake chub, and flathead chub. The movement 
patterns of these species may determine whether or not contaminants enter the fish food chain. 
Studies of movement patterns using floy tags and dye markers should be encouraged.

RECOMMENDATION 18): Juvenile movements in the river have not been investigated to 
date. Studies of the movements of juvenile fish should be undertaken.

RECOMMENDATION 19): If, when and how fishes migrate onto the floodplain of the lower 
Slave River has not been studied. Studies to determine the degree of flooding during the 
spring pulse and the movement patterns of fishes should be undertaken. This is a key 
recommendation given the present Bennett Dam and future hydrological impacts.

RECOMMENDATION 20): A simulation model of the probable movement patterns of all 
species of fishes to feed, spawn, rear and over-winter should be constructed as a reference for 
habitat managers. The model could be checked against available data and modified as new 
data becomes available in the future. This is also key relative to assessing impacts from 
obstructions, such as dams.
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7.3 Food Web

All fishes in the lower Slave River are carnivorous and would be classified as predators by 
general models of large rivers. Those lower in the food web, such as suckers, goldeye, lake 
whitefish, flathead chub and shiners concentrated on invertebrate prey. The top predators, 
such as inconnu, northern pike, walleye and burbot ate exclusively fish. Three species 
played key roles in the food web. Pike consumed all other major species of fish present 
except inconnu. Of the fish species occupying the lower part of the food web, goldeye and 
lake whitefish consumed the widest variety of invertebrates. Of the invertebrate fauna the 
most important by far were the chironomids, followed by the corixids.

In the Slave River delta the food web again revolved around pike, goldeye and lake whitefish. 
Corixids and chironomids were about equal in importance to invertebrate feeders and often 
composed 60 to 80% of the diet.

Because all fish in the lower Slave River and Slave River delta are predatory they are all at 
risk of bio-accumulation of toxicants through the food chain. Clearly, the fish predator group, 
including inconnu, northern pike, walleye, and burbot are the most likely to concentrate 
contaminants to a high level.

RECOMMENDATION 21): The importance of invertebrates to the productivity of the fish 
community and as potential conduits of contaminants is obvious. Detailed studies of the 
ecology and habitat requirements of the invertebrate community, especially the chironomids 
and corixids, should be undertaken in the lower Slave River.

RECOMMENDATION 22): To determine the organisms most at risk a bio-energetic model of 
the food web should be constructed.

7.4 Priorization of Recommendations

While all recommendations, above, should be carried out I believe it reasonable to emphasize 
some of the key ones in order to help researchers and habitat managers on the question of 
‘Where to proceed next?’. The key recommendations fall into three categories: critical gaps 
in the database, quantitative model development and long-term monitoring. There are serious 
knowledge gaps in the understanding of invertebrate ecology, winter ecology of the aquatic 
biota and the biological importance of side channels and the annual flood-pulse which are 
addressed in recommendations 13, 15, 19 and 21. Models to make predictions and 
quantitatively understand processes are completely lacking and therefore additional key 
recommendations are 5, 20 and 22. Finally, for the fish community there should be a 
monitoring effort that is ongoing, consistent and long-term in order to detect future changes, 
such as suggested in recommendation 6.
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Table A. The mean catch per unit effort of inconnu (CPUE - number of fish per hour per 25m
length, 2 m deep net) by time period. N = number of sets, STE = standard error (From
Tallman et al. 1996c).

Time Year 
Period

DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0 5 0
2 1994 July 1 - July 15 0 4 0
3 1994 July 16 - July 31 0.5906 42 0.4747
4 1994 Aug. 1 - Aug. 15 3.3676 37 2.0796
5 1994 Aug. 16 - Aug. 31 6.0273 63 2.4133
6 1994 Sept. 1 - Sept. 15 10.1719 49 4.2684
7 1994 Sept. 16 - Sept. 30 7.4523 26 5.8756
8 1994 Oct. 1 - Oct. 15 13.5683 32 6.4670
9 1994 ' Oct. 16 - Oct. 31 0 2 0
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 ‘ Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 0 6 0
15 1995 June 1 - June 15 0 28 0
16 1995 June 16 - June 30 0.1863 20 0.1863
17 1995 July 1 - July 15 0 26 0
18 1995 July 16 - July 31 0.1547 39 0.1547
19 1995 Aug. 1 - Aug. 15 1.8027 36 0.8586
20 1995 Aug. 16 - Aug. 31 0.9932 5 0.4555
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Table B. The mean catch per unit effort of burbot (CPUE - number of fish per hour per 25m
length, 2 m deep net) by time period. N = number of sets, STE = standard error. (From
Tallman et al. 1996c)

Time
Period

Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0.083 5 0.083
2 1994 July 1 - July 15 0 4 0
3 1994 July 16 - July 31 0.014 42 0.014
4 1994 Aug. 1 - Aug. 15 0 37 0
5 1994 Aug. 16 - Aug. 31 0.0029 63 0.002
6 1994 Sept. 1 - Sept. 15 0 49 0
7 1994 Sept. 16 - Sept. 30 0 26 0
8 1994 Oct. 1 - Oct. 15 0.024 32 0.011
9 1994 Oct. 16 - Oct. 31 0 2 0
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15, 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 0 6 0
15 1995 June 1 - June 15 0 28 0
16 1995 June 16 - June 30 0 20 0
17 1995 July 1 - July 15 0 26 0
18 1995 July 16 - July 31 0 39 0
19 1995 Aug. 1 - Aug. 15 0 36 0
20 1995 Aug. 16 - Aug. 31 0 5 0
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Table C. The mean catch per unit effort of goldeye (CPUE - number of fish per hour per 25m
length, 2 m deep net) by time period. N = number of sets, STE = standard error (From
Tallman et al. 1996c).

Time
Period

Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 1.1333 5 0.7599
2 1994 July 1 - July 15 0 4 0
3 1994 July 16 - July 31 6.7262 42 1.4310
4 1994 Aug. 1 - Aug. 15 24.9315 37 11.8838
5 1994 Aug. 16 - Aug. 31 7.7156 64 3.9302
6 1994 Sept. 1 - Sept. 15 0.9629 48 0.3831
7 1994 Sept. 16 - Sept. 30 1.7405 26 0.8851
8 1994 Oct. 1 - Oct. 15 5.9697 32 2.0492
9 1994 Oct. 16 - Oct. 31 10.5982 2 1.7094
10 1994 Nov. 1 - Nov. 15 0 4 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 2 0
14 1995 May 16 - May 31 89.6136 6 47.6936
15 1995 June 1 - June 15 56.9072 28 17.1527
16 1995 June 16 - June 30 5.2228 20 1.7876
17 1995 July 1 - July 15 3.0925 26 1.2278
18 .1995 July 16 - July 31 4.5068 39 1.2827
19 1995 Aug. 1 - Aug. 15 4.9309 36 1.5801
20 1995 Aug. 16 - Aug. 31 3.4179 5 2.3099
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Table D. The mean catch per unit effort of lake whitefish (CPUE - number of fish per hour 
per 25m length, 2 m deep net) by time period. N = number of sets, STE = standard error.

Time
Period

Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0.0667 5 0.0667
2 1994 July 1 - July 15 0 4 0
3 1994 July 1 6 -July 31 0.6741 42 0.2318
4 1994 Aug. 1 - Aug. 15 1.9191 37 1.2318
5 1994 Aug. 16 - Aug. 31 1.4480 63 0.4311
6 1994 Sept. 1 - Sept. 15 2.0678 49 1.1239
7 1994 Sept. 16 - Sept. 30 1.9883 26 0.7369
8 1994 Oct. 1 - Oct. 15 5.5053 32 1.4251
9 1994 Oct. 16 - Oct. 31 1.5384 2 1.5384
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 1.2053 6 0.4272
15 1995 June 1 - June 15 4.7148 28 1.1577
16 1995 June 16 - June 30 0.7904 20 0.4716
17 1995 July 1 - July 15 0.7226 26 0.3664
18 1995 July 16 - July 31 0.5206 39 1.2036
19 1995 Aug. 1 - Aug. 15 0.6956 36 0.2552
20 1995 Aug. 16 - Aug. 31 2.6310 5 1.2855
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Table E. The mean catch per unit effort of northern pike (CPUE - number of fish per hour per
25m length, 2 m deep net) by time period. N = number of sets, STE = standard error.
(From Tallman et al. 1996c).

Time Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0.1333 5 0.1333
2 1994 July 1 - July 15 0 4 0
3 1994 July 16 - July 31 0.9807 42 0.2582
4 1994 Aug. 1 - Aug. 15 3.3301 37 0.9698
5 1994 Aug. 16 - Aug. 31 1.3821 63 0.6205
6 1994 Sept. 1 - Sept. 15 0.3534 49 0.5888
7 1994 Sept. 16 - Sept. 30 0.8323 26 0.3516
8 1994 Oct. 1 - Oct. 15 0.7692 32 0.7692
9 1994 Oct. 16 - Oct. 31 0 2 0
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 5.9855 6 2.2829
15 1995 June 1 - June 15 13.0979 28 4.0086
16 1995 June 16 - June 30 4.8163 20 1.2979
17 1995 July 1 - July 15 5.0989 26 0.9140
18 1995 July 16 - July 31 5.5693 39 2.2850
19 1995 Aug. 1 - Aug. 15 5.0060 36 0.9140
20 1995 Aug. 16 - Aug. 31 39.0742 5 37.7009
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Table F. The mean catch per unit effort of flathead chub (CPUE - number of fish per hour per
25m length, 2 m deep net) by time period. N = number of sets, STE = standard error
(From Tallman et al. . 1996c).

Time
Period

Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0.1667 5 0.1667
2 1994 July 1 - July 15 0 4 0
3 1994 July 1 6 -July 31 0.1303 42 0.0719
4 1994 Aug. 1 - Aug. 15 0.5985 37 0.2823
5 1994 Aug. 16 - Aug. 31 0.1433 63 0.0888
6 1994 Sept. 1 - Sept. 15 0.5775 49 0.3782
7 1994 Sept. 16 - Sept. 30 0.1282 26 0.1282
8 1994 Oct. 1 - Oct. 15 0.0343 32 0.0343
9 1994 Oct. 16 - Oct. 31 0 2 0
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 13.3333 6 10.4439
15 1995 June 1 - June 15 4.7499 28 2.2423
16 1995 June 16 - June 30 0 20 0
17 1995 July 1 - July 15 0.1357 26 0.0791
18 1995 July 16 - July 31 0.3718 39 0.2441
19 1995 Aug. 1 - Aug. 15 0.0579 36 0.0412
20 1995 Aug. 16 - Aug. 31 0.9932 5 0.4555
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Table G. The mean catch per unit effort of walleye (CPUE - number of fish per hour
per 25m length, 2 m deep net) by time period. N = number of sets, STE = standard error
(From Tallman et al. 1996c).

Time Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0.4667 5 0.3266
2 1994 July 1 - July 15 0 4 0
3 1994 July 16 - July 31 5.9717 42 3.4347
4 1994 Aug. 1 - Aug. 15 10.2595 37 5.6682
5 1994 Aug. 16 - Aug. 31 3.3641 64 1.9340
6 1994 Sept. 1 - Sept. 15 1.8372 48 1.1033
7 1994 Sept. 16 - Sept. 30 4.4416 26 2.6962
8 1994 Oct. 1 - Oct. 15 9.5987 32 3.2089
9 1994 Oct. 16 - Oct. 31 0.7906 2 0.2350
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 15.5617 6 2.5468
15 1995 June 1 - June 15 9.6955 28 2.4229
16 1995 June 16 - June 30 0.8153 20 0.4264
17 1995 July 1 - July 15 2.1602 26 0.3933
18 1995 July 1 6 -July 31 1.7502 39 0.4298
19 1995 Aug. 1 - Aug. 15 0.3139 36 0.1605
20 1995 Aug. 16 - Aug. 31 3.2351 5 2.6086
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Table H. The mean catch per unit effort of longnose sucker (CPUE - number of fish per hour
per 25m length, 2 m deep net) by time period. N = number of sets, STE = standard error
(From Tallman et al. 1996c).

Time
Period

Year DATES Mean
CPUE

N STE

1 1994 June 16 -June 30 0 5 0
2 1994 July 1 - July 15 0 4 0
3 1994 July 16 - July 31 0.0423 42 0.0367
4 1994 Aug. 1 - Aug. 15 0.3378 37 0.2490
5 1994 Aug. 16 - Aug. 31 0.1589 63 0.1410
6 1994 Sept. 1 - Sept. 15 0.0105 49 0.0051
7 1994 Sept. 16 - Sept. 30 0.5292 26 0.3446
8 1994 Oct. 1 - Oct. 15 0.2066 32 0.1118
9 1994 Oct. 16 - Oct. 31 0 2 0
10 1994 Nov. 1 - Nov. 15 0 2 0
11 1994 Nov. 16 - Nov. 30 0 4 0
12 1994 Dec. 1 - Dec. 15 0 4 0
13 1994 Dec. 16 - Dec. 30 0 4 0
14 1995 May 16 - May 31 3.1111 6 1.2779
15 1995 June 1 - June 15 0.4609 28 0.2162
16 1995 June 16 - June 30 0.0400 20 0.0400
17 1995 July 1 - July 15 0.0540 26 0.0374
18 1995 July 16 - July 31 0.0250 39 0.0250
19 1995 Aug. 1 - Aug. 15 0.0884 36 0.0884
20 1995 Aug. 16 - Aug. 31 0 5 0
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Appendix 2: Importance Index of Diets (From Tallman et al. 1996c)
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Table A2. Relative Importance Index (George & Hadley, 1979) for Northern Pike.

Prey Items % Number 

n=105

% Weight %  Frequency 
of Occurrence

Weighted
%
Frequency
n=65

Relative
Importance
(RI)
of
Occurrence

FHCB 8.6 24.3 13.9 12.2 15.0
BRBT 8.6 16.8 13.9 12.2 12.5
LKWT 5.7 21.3 9.2 8.1 11.7
NTPK 8.6 10.0 12.3 10.8 9.8
NSST 21.0 0.2 1.5 1.3 7.5
ARLP 8.6 3.8 9.2 8.1 6.8
Sucker 2.9 11.5 4.6 4.0 6.1
GOLD 4.8 2.9 7.7 6.8 4.8
Amphipod 5.7 .0075 6.2 5.5 3.7
EMSH 4.8 0.02 6.2 5.5 3.5
SPSH 5.7 0.3 4.6 4.0 3.3
WALL 1.9 3.8 3.1 2.7 2.8
Plecoptera 2.9 .0033 4.6 4.0 2.3
Snake 1.0 3.1 1.5 1.3 1.8
Rodent 1.9 0.6 3.1 2.7 1.7
Damselfly L. 1.9 .0014 3.1 2.7 1.5
LKCS .95 0.5 1.5 1.3 0.9
Bird .95 0.4 1.5 1.3 0.9
TRPH .95 0.04 1.5 1.3 0.8
LKWT YOY .95 0.04 1.5 1.3 0.8
BRBT YOY .95 0.02 1.5 1.3 0.8
Flying Insect .95 .0036 1.5 1.3 0.8

Note: ( ) = order in ranking scale.

148



Table B2. Relative Importance Index (George & Hadley, 1979) for Walleye.

Prey Items % Number %  Weight % Freq. of Weighted Relative
Occurrence % Importance

Frequency (RI)omIIa n=30 of
Occurrence

NTPK 20.0 33.4 20.0 17.6 23.7
ARLP 4.0 38.1 6.7 5.9 16.0
Plecopteran 18.0 0.2 20.0 17.6 11.9
Ephemeroptera 22.0 0.2 10.0 8.8 10.3
EMSH 4.0 6.1 6.7 5.9 5.3
LNSK. 6.0 5.2 10.0 8.8 6.7
FHCB 4.0 4.2 6.7 5.9 4.7
WALL 4.0 3.4 6.7 5.9 4.4
SPSH 2.0 7.4 3.3 2.9 4.1
Zygoptera 4.0 0.08 6.7 5.9 3.3
Trichoptera 4.0 0.05 6.7 5.9 3.3
Corxiidae 4.0 .0092 3.3 2.9 2.3
TRPH 2.0 1.5 3.3 2.9 2.1
NSST 2.0 0.1 3.3 2.9 1.7

Note: ( ) = order in ranking scale.
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Table C2. Relative Importance Index (George & Hadley, 1979) for Inconnu.

Prey Items %  Number %  Weight % Freq. Wt % RI

TRPH 50 48.4 50 50 49.47

NTPK 33.3 48.0 33.3 33.3 38.2
LNSK 16.7 3.6 16.7 16.7 12.33

Note: ( ) = order in ranking scale.
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Table D2. Relative Importance Index (George & Hadley, 1979) for Lake Whitefish.

Prey Items % Number %  Weight % Freq. of Wt %  

Occurrence Occurrence
Relative
Importance
(RI)

Ostracoda 75.7 4.6 60.0 18.0 32.8
Trichoptera 5.8 39.3 68.0 20.5 21.9
Hemiptera

Corixidae 11.7 22.5 76.0 22.9 19.0
Gastropoda 11.7 17.2 24.0 7.2 8.5
Amphipoda 1.8 5.7 28.0 8.4 5.3
Coleoptera

Dytiscidae 0.9 3.6 24.0 7.2 3.9
Diptera

Chironomidae 2.2 0.9 16.0 4.8 2.7
Ceratopogonidae 0.04 0.02 4.0 1.2 0.4
Tabanidae 0.4 3.7 12.0 3.6 2.6

NSST 0.08 1.2 8.0 2.4 1.2
Damselfly L 0.04 1.1 4.0 1.2 0.8
Ephemeroptera 0.04 0.04 4.0 1.2 0.5
Oligochaeta 0.04 0.04 4.0 1.2 0.4

Note: ( ) = order in ranking scale.
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Table E2. Relative Importance Index (George & Hadley, 1979) for Goldeye.

Prey Items % Number % Weight % Frequency Wt % Relative
of Occurrence Occurrence Importance

(RI)

Plecoptera 46.5 10.1 56.7 34.7 31.19
Rodent 0.6 71.6 3.33 2.0 20.80
Corixidae 23.3 2.4 26.67 16.3 14.39
Dytiscidae 11.3 12.2 16.67 10.2 11.07
Trichoptera 4.4 0.8 13.33 8.2 5.10
Plant Material 3.1 0.7 13.33 8.2 4.73
Amphipoda 5.7 1.5 6.67 4.1 3.81
Hymenoptera 1.9 0.1 10.00 6.1 3.31
Flying Insects 0.6 0.2 3.33 2.0 1.13
Damselfly L. 0.6 0.1 3.33 2.0 1.12
Driftwood 0.6 0.1 3.33 2.0 1.12
Ephemeroptera 0.6 0.05 3.33 2.0 1.10
Chironomidae 0.6 0.03 3.33 2.0 1.10
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The Northern River Basins Study was
established to examine the relationship 
between industrial, municipal, agricultural 
and other development and the Peace, 
Athabasca and Slave river basins.

Over four and one half years, about 150 
projects, or “mini studies” were contracted 
by the Study under eight component 
categories including contaminants, 
drinking water, nutrients, traditional 
knowledge, hydrology/hydraulics, 
synthesis and modelling, food chain and 
other river uses. The results of these 
projects, and other work and analyses 
conducted by the Study are provided in a 
series of synthesis reports.

This Synthesis Report documents the
scientific findings and scientific 
recommendations of one of these 
components groups. This Synthesis Report 
is one of a series of documents which make 
up the North River Basins Study’s final 
report. A separate document, the Final 
Report, provides further discussion on a 
number of scientific and river management 
issues, and outlines the Study Board’s 
recommendations to the Ministers.
Project reports, synthesis reports, the Final 
Report and other NRBS documents are 
available to the public and to other 
interested parties.

Synthesis
Report


