

Northern River Basins Study

NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 61 FISH COLLECTIONS PEACE, ATHABASCA AND SLAVE RIVER BASINS SEPTEMBER TO DECEMBER, 1994

QL 626.5 .A42 J17 1996

QL/626.5/.A42/J17/1996 Fish collections Peace Jacobson, Toni-Lynne

168616

	168616
DA	TE DUE
BRODART	Cal. No. 23-221

88020223

Prepared for the Northern River Basins Study under Project 3144-D1

by

T.-L. Jacobson and T. D. Boag EnviResource Consulting Ltd.

Community Contributors

D. Creurer, Fort Chipewyan Daniel Marcel, Fort Chipewyan Darwin Unka, Fort Resolution Tommy Unka, Fort Resolution

NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 61 FISH COLLECTIONS PEACE, ATHABASCA AND SLAVE RIVER BASINS SEPTEMBER TO DECEMBER, 1994

> Published by the Northern River Basins Study Edmonton, Alberta September, 1995

ATH	IABAS	CA	U	VIVERSITY
	OCT	3	1	1996

LIBRARY

CANADIAN CATALOGUING IN PUBLICATION DATA

Jacobson, Toni-Lynne, 1962-

Fish collections, Peace, Athabasca and Slave River Basins, September to December, 1994

(Northern River Basins Study project report, ISSN 1192-3571; no. 61) Includes bibliographical references. ISBN 0-662-24483-4 Cat. no. R71-49/3-61E

- 1. Fishes -- Effect of water pollution on -- Alberta -- Athabasca River.
- 2. Fishes -- Effect of water pollution on -- Peace River (B.C. and Alta.)
- 3. Fishes -- Effect of water pollution -- Slave River (Alta. And N.W.T.)
- I. Boag, Thomas David, 1964-
- II. Northern River Basins Study (Canada)
- III. Title.
- IV. Series.

QL626.C3J32 1996 597.097123'1 C96-980165-3

Copyright © 1995 by the Northern River Basins Study.

All rights reserved. Permission is granted to reproduce all or any portion of this publication provided the reproduction includes a proper acknowledgement of the Study and a proper credit to the authors. The reproduction must be presented within its proper context and must not be used for profit. The views expressed in this publication are solely those of the authors.

PREFACE:

The Northern River Basins Study was initiated through the "Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies" which was signed September 27, 1991. The purpose of the Study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies.

This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release.

It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material.

NORTHERN RIVER BASINS STUDY PROJECT REPORT RELEASE FORM This publication may be cited as: Jacobson, T.-L. and Boag, T.D. 1995. Northern River Basins Study Project Report No. 61, Fish Collections, Peace, Athabasca and Slave River Basins. September to December. 1994. Northern River Basins Study, Edmonton, Alberta. Whereas the above publication is the result of a project conducted under the Northern River Basins Study and the terms of reference for that project are deemed to be fulfilled, IT IS THEREFORE REQUESTED BY THE STUDY OFFICE THAT; this publication be subjected to proper and responsible review and be considered for release to the public. (Date) Wrona, Ph.D., Science Director) (Dr. Fr Whereas it is an explicit term of reference of the Science Advisory Committee "to review, for scientific content, material for publication by the Board", IT IS HERE ADVISED BY THE SCIENCE ADVISORY COMMITTEE THAT: this publication has been reviewed for scientific content and that the scientific practices represented in the report are acceptable given the specific purposes of the project and subject to the field conditions encountered. SUPPLEMENTAL COMMENTARY HAS BEEN ADDED TO THIS PUBLICATION: [] Yes [] No 15 April 96 hantin (Dr. P. A. Larkin, Ph.D., Chair) Whereas the Study Board is satisfied that this publication has been reviewed for scientific content and for immediate health implications. IT IS HERE APPROVED BY THE BOARD OF DIRECTORS THAT; this publication be released to the public, and that this publication be designated for: [] STANDARD AVAILABILITY [] EXPANDED AVAILABILITY wille Partington 21 april 1996 (Date) (Date) (Date) (Lucille Partington, Co-chair obert McLeod, Co-chair)

FISH COLLECTIONS, PEACE, ATHABASCA AND SLAVE RIVER BASINS SEPTEMBER TO DECEMBER, 1994

STUDY PERSPECTIVE

The aquatic fauna of the Peace, Athabasca and Slave rivers are exposed to bleached kraft pulp mill effluent, and other types of industrial and municipal effluents. In 1992, collections of fish species for contaminant and biochemical analyses on tissues was conducted under the Northern River Basins Study (NRBS). Subsequently, bleached draft pulp mills within the northern river basins have undergone major process changes to reduce the levels of organochlorines in the aquatic environment by substituting chlorine dioxide for molecular chlorine in the bleaching process. Additional collections and analyses were required to determine the basin-wide variability on contaminant levels and effects on fish.

The purpose of this project was to collect and prepare fish from 23 sites on the Peace, Athabasca and Slave River drainages for conducting physical, physiological, contaminant and biophysical analyses. Sites were located on the Peace, Smoky, Little Smoky, Wapiti, Wabasca, Athabasca, McLeod, Pembina, Lesser Slave and Clearwater Rivers. The fish species targeted for collection and analyses were burbot (primary target species), northern pike, longnose sucker and flathead chub. The sampling and handling protocols for the collection of fish

Related Study Questions

- 1a) How has the aquatic ecosystem, including fish and/or other aquatic organisms been affected by exposure to organochlorines or other toxic compounds?
- 4a) Describe the contents and nature of the contaminants entering the system and describe their distribution and toxicity in the aquatic ecosystem with particular reference to water, sediments and biota?
- 4b) Are toxins such as dioxins, furans, mercury, etc. increasing or decreasing and what is their rate of change?
- 8) Recognizing that people drink water and eat fish from these river systems, what is the current concentration of contaminants in water and edible fish tissue and how are these levels changing through time and by location?

tissues were designed to allow for a wide range of contaminant and biochemical analyses on an individual fish. These analyses included gross pathology, contaminants, metals (e.g., mercury), liver mixed function oxygenase induction, sex steroids and gonad morphology, retinols (Vitamin A), metallothioneins (proteins produced by exposure to heavy metals) and basic life history information.

A total of 535 fish and 13 species were caught, including 222 burbot, 50 northern pike, 88 longnose sucker and 24 flathead chub. Fish tissues were extracted and prepared for subsequent analyses according to a rigorous set of NRBS protocols. Most fish examined externally and internally for gross pathological abnormalities and deformities appeared normal (84%). Of the abnormalities observed, tumours and lesions of longnose suckers were the most common.

Analytical data obtained as a result of these collections in this study will (1) provide a basin-wide comparison of contaminants in fish, (2) further determine if contaminant levels vary between fish species, and (3) determine if fish from near-field sites associated with major industrial development are affected significantly more than those from far-field sites. Data from these fish will also provide comparative information in relation to previous contaminant and biochemical analyses conducted for these species by NRBS and other agencies. Results from this study will be linked to contaminant fate and food chain modelling, ecosystem health, cumulative effects assessment and human health consumption advisory assessments.

The Science Advisory Committee has indicated readers should be cautioned that while the interpretations and comparisons provided by the authors is very general, it is not based on rigorous statistical analyses. It should also be noted that these additional analyses go beyond the requirements in the project terms of reference.

REPORT SUMMARY

Burbot, northern pike, longnose sucker, and flathead chub were collected from mid-September to late October 1994 and in mid-December for gross pathological examination and contaminant, biochemical, stomach content, and gonad morphology analyses. Other fish species caught were retained for contaminant and stomach content analyses (maximum 10 fish per species) or were released. Fish were sampled for the analyses according to Northern River Basins Study protocols, frozen on dry ice, and transported to Edmonton and Winnipeg.

Fish were collected from 23 sites using baited setlines, electrofishing, gill nets, and angling. Nine sites were sampled during fall in the Peace River drainage, including sites on the Peace River, Smoky River, Little Smoky River, Wapiti River, and Wabasca River. Two sites were sampled in mid-December, one on the Smoky River and one on the Little Smoky River. Nine sites were sampled in the Athabasca River drainage: five Athabasca River sites, the McLeod River, Pembina River, Lesser Slave River, and Clearwater River. The McLeod River also was sampled in December. Fish were also collected from the Peace-Athabasca Delta and the Slave River Delta.

A total of 535 fish was caught including 222 burbot, 50 northern pike, 88 longnose sucker, and 24 flathead chub. Most burbot were caught by set line (N=119). Burbot were caught at all sites sampled except the Smoky River near Grande Cache and the Peace-Athabasca Delta near Jackfish Village. Most burbot were caught on set lines in backwater habitats.

Northern pike were collected using set lines, electrofishing, gill nets, and angling. Northern pike were not collected at the Wabasca River, McLeod River, Lesser Slave River, and four of the five Athabasca River sites. They were relatively scarce at the other sites sampled.

Most longnose sucker were caught by electrofishing (N=85). They were caught in the Peace River, Smoky River, Little Smoky River, and Wapiti River. They were rare in the Athabasca River and were caught only at one site on the Athabasca River and in the McLeod River.

Flathead chub were found in the Peace River, Smoky River, Little Smoky River, and Wapiti River. They were caught by electrofishing and set lines.

Most fish examined (84%) externally and internally for gross pathological abnormalities and deformities appeared normal. Of the abnormalities observed, tumours and lesions of longnose suckers were the most common.

ACKNOWLEDGEMENTS

G. Wagner (formerly with Alberta Environmental Protection) and R. Chabaylo (Northern River Basins Study) are thanked for their support throughout the study. Dr. B. Barton (University of South Dakota) and D. Metner (Department of Fisheries and Oceans) are acknowledged for providing advice and demonstrating field techniques to sample fish. Dr. Scott Brown (Department of Fisheries and Oceans) is thanked for his timely provision of Histoprep capsules. Thanks are given to J. Green and T. Ethier (AXYS Environmental Consulting Ltd.) for coordinating fish sampling for the Peace-Athabasca and Slave River deltas.

Many people assisted with field sampling. Thanks to P. Hvenegaard, G. Todd, and M. Dahl (Alberta Environmental Protection, Fish and Wildlife Services, Peace River) for their volunteer work. J. Walker (Alberta Environmental Protection, Fish and Wildlife Services, Edson) and B. Lucko (Alberta Environmental Protection, Fish and Wildlife Services, Valleyview) provided insight on where deeper pools could be found on the McLeod and Little Smoky rivers during winter and early fall, respectively. The staff at Edson and Hinton Fish and Wildlife and the Eagle River campground are thanked for their ideas on good fishing sites on the Athabasca River.

T. Boag, C. Godwin-Sheppard, T.-L. Jacobson, and D. Lightle lead crews during the fall sampling. A. Basso, D. Knutscher, G. Latham, C. Oishi, and I. Schmeltzer assisted with fall field sampling on the Peace River and Athabasca River drainages. T. Ethier and R. Kashino (AXYS Environmental Consulting Ltd.) assisted with fall field sampling at the Peace-Athabasca Delta and Slave River Delta. B. Redmond built dipnets, live wells and aged fish.

Special thanks are given to several people who assisted sampling in the Peace-Athabasca Delta and Slave River Delta. Daniel Marcel (Fort Chipewyan) was guide for the Peace-Athabasca Delta field crew and provided field equipment, accommodation, and his knowledge of the area. His contribution is gratefully acknowledged. Reggie Mackay, Michael Cardinal, R. Matsuba (Fort Chipewyan Fish and Wildlife), and D. Creurer of Fort Chipewyan are thanked for their assistance and advice. Tommy Unka and Darwin Unka (Fort Resolution) were guides for the Slave River Delta and provided field equipment. Deninu Kue First Nation, Fort Resolution, provided storage for dry ice and photocopies. S. Flett (NRBS Traditional Knowledge Component Leader) is thanked for his assistance.

TABLE OF CONTENTS

<u>REPO</u>	RT SU	<u>MMARY</u> i
ACKN	OWLE	EDGEMENTS ii
TABL	<u>E OF C</u>	<u>CONTENTS</u> iii
LIST (OF TAI	BLESv
LIST (<u>OF FIG</u>	vi
1.0	<u>INTRO</u>	DDUCTION
	1.1	STUDY OBJECTIVES 1
2.0	<u>STUD</u>	<u>Y AREA</u>
3.0	METH	<u>IODS</u>
	3.1 3.2 3.3 3.4	FISH COLLECTION6FISH BLOOD AND TISSUE SAMPLING8WATER QUALITY AND HABITAT DESCRIPTIONS11DATA ANALYSIS12
4.0	<u>RESU</u>	LTS AND DISCUSSION
	4.1 4.2 4.3 4.4 4.5	CATCH PER UNIT EFFORT15POPULATION CHARACTERISTICS17GROSS PATHOLOGY31DIET32HABITAT34
5.0	<u>LITEF</u>	RATURE CITED
6.0	APPE	<u>NDICES</u>
APPE	NDIX A	
APPE	NDIX B	. LIFE HISTORY DATA SUMMARY OF TARGET FISH
APPE	NDIX C	LIFE HISTORY DATA SUMMARY OF NON-TARGET FISH 114

APPENDIX D.	CATCH PER UNIT EFFORT FOR SET LINES, ELECTROFISHING, AND GILL NETS
APPENDIX E.	GROSS PATHOLOGY SUMMARY AND RECORDS 132
APPENDIX F.	STOMACH CONTENTS OF FISH SAMPLED
APPENDIX G.	SAMPLING SITES

LIST OF TABLES

Table 1.	Fish collection sites in the Northern River Basins Study area
Table 2.	Number of fish caught during the fall and winter 1994 burbot collection
Table 3.	Number of target fish captured by set line (SL), electrofishing (EF), and gill net (GN) at sites during fall and winter, 1994
Table 4.	Catch per unit effort (CPUE) for target fish species caught by set line (number/100 hook hours) and electrofishing (number/100 seconds) during fall and winter 1994 16
Table 5.	Total length (TL)-at-age (mm) of burbot collected from the Peace River, Athabasca River, and Slave River drainages
Table 6.	Fork length-at-age (mm) of northern pike collected from the Peace River and Athabasca River drainages
Table 7.	Fork length (FL)-at-age (mm) of longnose sucker collected from the Peace River and Athabasca River drainages
Table 8.	Fork length-at-age (mm) of flathead chub collected from the Peace River Drainage. 30
Table 9.	Number of fish with external and internal gross pathological abnormalities31
Table 10.	Stomach contents of target fish species caught in the Peace River, Athabasca River, and Slave River drainages
Table 11.	General habitat characteristics of set line sites
Table 12.	Burbot catch per unit effort (CPUE, number/100 hook hours), water quality, temperature and velocity measurements at sites sampled in the Peace River, Athabasca River and Slave River drainages during fall 1994

LIST OF FIGURES

Figure 1.	Fish collection sites within the Peace River, Athabasca River, and Slave River drainages
Figure 2.	Flow chart summarizing fish blood and tissue sampling protocol
Figure 3.	Total length-frequency distribution of burbot caught in the Peace River, Athabasca River, and Slave River drainages
Figure 4.	Total length-at-age relationships of burbot caught at sites within the Peace River Drainage
Figure 5.	Total length-at-age relationships of burbot caught at sites within the Athabasca River Drainage and the Slave
Figure 6.	Total length-weight relationships of burbot caught in the Peace River Drainage 22
Figure 7.	Total length-weight relationships of burbot caught in the Athabasca River Drainage and the Slave River Delta
Figure 8.	Fork length-frequency distributions of northern pike, longnose sucker, and flathead chub collected during fall 1994
Figure 9.	Fork length-at-age relationships of northern pike caught at sites in the Peace River and Athabasca River drainages
Figure 10.	Fork length-weight relationships of northern pike caught at sites in the Peace River and Athabasca River drainages
Figure 11.	Fork length-at-age relationships of longnose sucker caught at sites in the Peace River and Athabasca River drainages
Figure 12.	Fork length-weight relationships of longnose sucker caught at sites in the Peace River drainage and the Athabasca River
Figure 13.	Fork length-at-age relationship of flathead chub collected from the Peace River drainage
Figure 14.	Fork length-weight relationship of flathead chub collected from the Peace River drainage

1.0 <u>INTRODUCTION</u>

Burbot (*Lota lota*) has been used as a sentinel species for monitoring contaminants in northern rivers. They have been collected for biochemical and contaminant analyses from the Mackenzie River following complaints by local residents that the quality of fish had deteriorated and to assess the possible impacts of petroleum developments (Lockhart *et al.* 1987, Hrudey and Associates 1988, Muir *et al.* 1990). They also have been collected from the Peace River drainage (Swanson 1992, Brown *et al.* 1993, Hvenegaard and Boag 1993).

Burbot was selected as a sentinel species based on several characteristics (Environment Canada 1993). Burbot are widely distributed and are relatively easy to catch (Paetz 1984, Wallace and McCart 1984, Hvenegaard and Boag 1993, R.L. & L. 1994). Movements appear to consist of only relatively short spawning migrations in midwinter in the Slave drainage (R.L.&L./E.M.A 1985) and Athabasca drainage (Berry 1986); therefore, burbot can be collected in upstream reaches not affected by point-source contaminants in addition to reaches downstream of effluent sources. They are bottom feeders and are at the top of the aquatic food chain, and can indicate contaminant bioaccumulation through the food chain. In addition, burbot have large livers with a high percentage of lipids which tend to accumulate chlorinated organic compounds (Muir *et al.* 1990). Both the flesh and livers of burbot are consumed by people in northern communities (Balagus *et al.* 1993, Lockhart *et al.* 1987).

Contaminants in the aquatic environment and existing environmental quality are being assessed throughout the Peace River and Athabasca River basins as part of the research program of the Northern River Basins Study (NRBS). The last major collections of burbot and other fish species for contaminant and biochemical analyses by NRBS and other agencies were done in 1992, before significant process changes to pulp mills. These changes should lead to reduced organochlorine levels in the aquatic environment. The main purpose of the basin-wide fall burbot collection was to collect burbot and other fish species from the Peace River, Athabasca River, and Slave River to determine if contaminant levels are decreasing and what affects contaminants are having on burbot populations (Terms of Reference). Northern River Basins Study contracted EnviResource Consulting Ltd. to collect fish during fall 1994 from sites in the Peace, Athabasca, and Slave drainages.

1.1 STUDY OBJECTIVES

The primary objective of the project was to collect burbot for specialized fish contaminant and biochemical analyses, conduct gross pathological examinations on collected fish, and prepare blood and tissue samples for delivery. Other fish species were collected to provide complimentary information. Specific study objectives were to:

1. Collect adult burbot (> 400 g), longnose sucker (*Catostomus catostomus*), and northern pike (*Esox lucius*) from the Peace River, Athabasca River, and Slave River and major tributaries from September to mid-October for gross pathology, stomach content, contaminant, and biochemical analyses.

- 2. Collect flathead chub (*Platygobio gracilis*) from the Peace River and in major tributaries from September to mid-October for gross pathology, stomach content, contaminant, and biochemical analyses.
- 3. Collect other fish species opportunistically in conjunction with the collection of target species listed above in the Peace and Athabasca River drainages for possible contaminant analyses.
- 4. Collect other fish species opportunistically in conjunction with the collection of target species listed above on the Slave River for gross pathology, stomach content, biochemical, and possible contaminant analyses.
- 5. Record habitat information for each fish collection site.

2.0 <u>STUDY AREA</u>

Fish were collected from sites throughout the Peace River, Athabasca River, and Slave River basins (Figure 1). In total, 11 sites were sampled in the Peace River drainage, 11 sites were sampled in the Athabasca River drainage, and one site was sampled in the Slave River Delta (Table 1). The Wapiti River was sampled twice to collect additional burbot to replace a sample that might have exceeded temperature protocols during shipping. Three of the sites were sampled in winter, the Smoky River Site SR3, Little Smoky River Site LSR2, and McLeod River Site MR2. Sites were preselected by NRBS to coincided with locations sampled previously on behalf of NRBS and are described by Hvenegaard and Boag (1993), Barton *et al.* (1993a, b) and R.L. & L. (1994). Sites were located upstream, near, and downstream from effluent sources. Collection sites in tributaries were located a minimum of 10 river kilometres upstream from the confluence with the mainstem river to increase the probability of capturing resident fish.

Three sampling sites were sampled at two different locations in an attempt to collect the required sample size of burbot. Two locations were sampled at the Athabasca River Site A1 downstream from Hinton to collect burbot (Table 1). The second location was sampled because most burbot colleced at the first site were too small (< 400 g), and few burbot were caught. Two locations in the Peace-Athabasca Delta were recommended by the guide; both were locations where burbot had previously been caught. Two locations in the Slave River Delta (SRD1 and SRD2) were sampled to collect a sufficient sample of burbot.

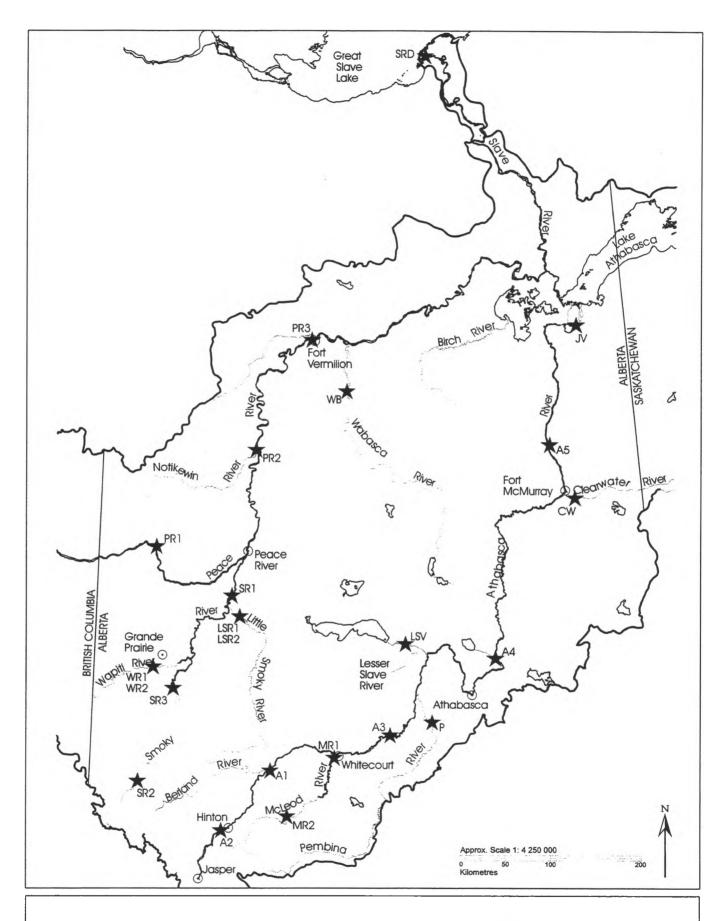


Figure 1. Fish collection sites within the Peace River, Athabasca River, and Slave River drainages.

River/Delta	Site	Description
Peace River	PR1	Upstream from Dunvegan (near Many Islands)
	PR2	Downstream from Diashowa (near Notikewin River)
	PR3	Near Fort Vermilion
Smoky River	SR1	Downstream from confluence of Wapiti R. (near Highway 49 crossing)
	SR2	Upstream from confluence of Wapiti R. (near Grande Cache)
	SR3ª	Upstream from confluence of Wapiti R. (near Canfor main haul bridge)
Wapiti River	WR1	Upstream from Grande Prairie (near Pipestone Creek Provincial Park)
	WR2	Upstream from Grande Prairie (near O'Brian Provincial Park)
Little Smoky River	LSR1	Near Highway 744 crossing
	LSR2 ^a	Downstream from Highway 744 crossing
Wabasca River	WB	Near Highway 67 crossing
Athabasca River	Ala	Downstream from Hinton (near Highway 947 crossing)
	A1 b	Downstream from Hinton (near Berland River)
	A2	Upstream from Hinton
	A3	Downstream from Whitecourt (near Fort Assiniboine)
	A4	Downstream from AlPac (near Calling River)
	A5	Near Fort MacKay
McLeod River	MR1	Near Eagle Campground
	MR2ª	At Big Eddy upstream from Edson
Pembina River	Р	Near Jarvie
Lesser Slave River	LSV	Downstream from Slave Lake Pulp
Clearwater River	CW	Upstream from Fort McMurray
Peace-Athabasca	JVa	Near Jackfish Village
Delta	JVb	Near Big Eddy
Slave River Delta	SRDa	Upstream from Nagle Channel
	SRDb	At mouth of Nagle Channel

Table 1.Fish collection sites in the Northern River Basins Study area.

^aCollections were made in mid-December 1994.

3.0 <u>METHODS</u>

Fish originally were to be collected from 22 sites: three sites on the Peace River and five sites on tributaries to the Peace River drainage, five sites on the Athabasca River and seven sites on its tributaries and in the Peace-Athabasca Delta, and two sites on the Slave River (Appendix A). Sampling was scheduled for August to mid-October. Burbot was the primary target species. A minimum of 10 male and 10 female adult burbot (> 400 g), longnose sucker, and flathead chub were to be collected from the sites. Up to 15 northern pike of each sex caught during collection of other species were to be retained from each site. However, it was evident shortly after collections were started that fish abundance was low, and the requested number of fish could not be collected within the time and budget allotted.

Changes were made to the Terms of Reference after discussion with NRBS in early September. The minimum number of fish to be sampled at each site was reduced to six of each sex for burbot. Sampling time at each site was limited to a maximum of five nights; at some sites the requested number of burbot, longnose sucker, flathead chub, and northern pike could not be collected. Only limited habitat information was collected, and temperature profiles were not done.

The Peace-Athabasca Delta site at Jackfish Village was sampled in mid-September when requested by NRBS. Because no burbot were caught, the other site in the Delta at the Birch River, the Lake Athabasca site, and the Slave River sites were scheduled to be sampled at a later date (G. Wagner, pers. comm.) Eventually, three sites in the original Terms of Reference were removed from the sampling schedule as requested by NRBS (Birch River, Lake Athabasca, Slave River at Fort Fitzgerald).

Winter sampling was not required in the original Terms of Reference but was done to provide additional burbot for contaminant and biochemical analyses. Collections of burbot were conducted in mid-December at the McLeod River Site MR2, Little Smoky River Site LSR2, and Smoky River Site SR3 (Table 1).

3.1 FISH COLLECTION

3.1.1 Set Lines

Setlines were used to catch burbot at all sampling sites. Setlines were similar to those used by Hvenegaard and Boag (1993). Twenty snelled fish hooks (Size 1/0 to 3/0) were attached at 0.5 m intervals along a 15.2 m length of heavy (22.7 kg), braided Dacron fishing line. Hooks usually were baited with commercial smelt (*Osmerus mordaxi*), but when smelt were not available other bait was used. At Athabasca River Site A4, northern pike and wieners were used. Bacon and northern pike were used for bait at the Jackfish Village sites. Northern pike was used for bait at the Slave River Delta sites. Fish collected during the winter sampling were caught on set lines baited with liver.

Lines were set in late afternoon and evening and fished through the night as requested by the Terms of Reference and following the methods of Hvenegaard and Boag (1993). Each day, 7 to 22 setlines were cast from shore and fished on the bottom in backwater, deeper run, or snye habitats as recommended by Hvenegaard and Boag (1993). Setlines were anchored with bricks or rocks and secured to shore. The number of setlines fished nightly varied from site to site. The intent was to maximize hours fished but not capture too many fish to sample the next day for biochemical and contaminant analyses. The maximum number of fish which could be sampled completely in day light was 20 to 23. Attempts were made to distribute sampling effort evenly between lines and across sites at the first sites sampled. However, catch rates were unpredictable. Consequently, efforts were made to maximize the number of lines fished the first night at a new site and when catch rates were low or to reduce the number of lines fished per night when more fish (> 10) were caught.

Data recorded at set line sites included number of lines set, number of hooks per line, time set, time pulled, general habitat characteristics, depth, and location. Set line locations were recorded in latitude and longitude using hand-held Garmin GPS 75 units. Fish abundance (catch per unit effort) was calculated using number of fish caught per 100 hook hours.

3.1.2 Electrofishing

Boat electrofishing was used to collect additional fish from the Peace River, Athabasca River, and their major tributaries. A 5 m aluminum jet boat equipped with a Smith-Root Type 5.0 GPP electrofisher was used in the Peace River drainage. A portable, Smith-Root Type 2.5 GPP boat electrofisher mounted in a 4.4 m Bombardier Explorer was used to sample the Athabasca River and its tributaries.

Data recorded for boat electrofishing included fish caught and observed, electrofishing seconds, and electrofisher settings. The upstream and downstream extent of the river sections electrofished were recorded using hand-held Garmin GPS 75 units. Fish abundance was calculated as number of fish caught per 100 seconds electrofishing.

3.1.3 Gill Nets

Monofilament gill nets were used to collect fish other than burbot at the Peace-Athabasca Delta and the Slave River Delta sites. The nets were 1.2 m deep and 45 m long with 8.9 cm (stretched) mesh. One gill net was set in Jackfish Creek near Jackfish Village and fished for a maximum of 22 minutes between pulls to ensure sampling live fish. At the Slave River Delta Site SRD2, the gill net was set at the mouth of Nagle Channel and fished for a maximum of 75 minutes per set. Set duration, water velocity, and location were recorded. Catch per unit effort data were generated for each set based on gill net surface area fished for the equivalent of a 24-hour period.

EnviResource Consulting Ltd.

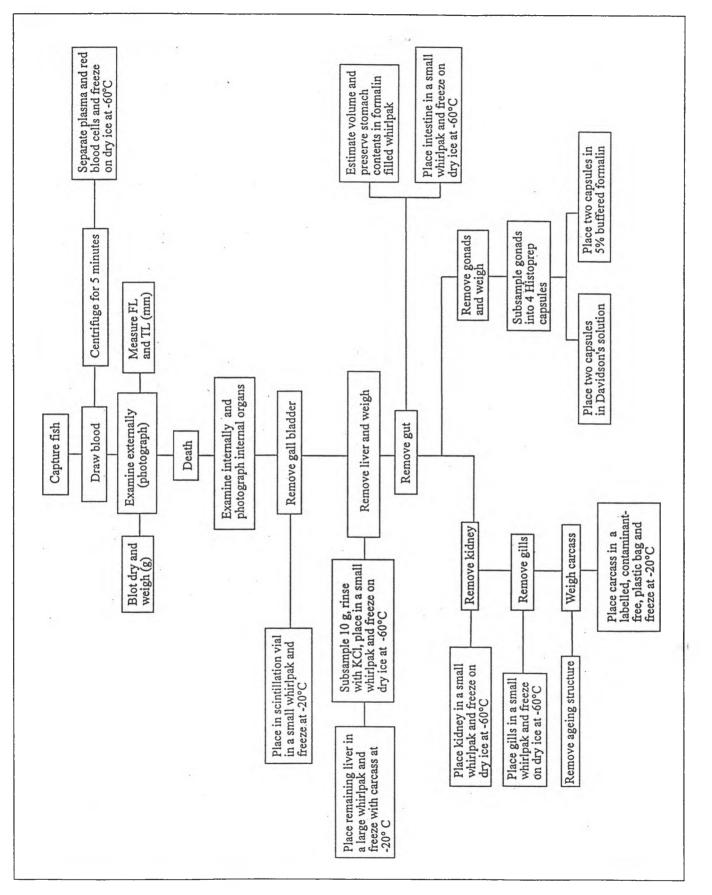
3.1.4 Angling

Angling was used at some sites to collect additional non-target fish and to collect northern pike. Northern pike caught angling also were used at bait for set lines. Angling was done at set line locations.

3.2 FISH BLOOD AND TISSUE SAMPLING

3.2.1 Workshop

Dr. B. Barton (University of South Dakota) conducted a two-day workshop to demonstrate and review fish blood and tissue sampling techniques. Sampling protocols and the handling of tissues and blood samples, as presented in the Terms of Reference (Appendix A), were discussed. Dr. Barton emphasized time constraints required to sample individual tissues, discussed tissue preparation and storage, and the need to maintain sampling homogeneity between field crews.


3.2.2 Target Species

Blood and tissues from burbot, northern pike, longnose sucker, and flathead chub were sampled, stored, and transported as described in detail in the Terms of Reference (Appendix A). The sampling protocol was developed to ensure the rapid removal and preservation of blood and tissues within the required time for sex steroid, contaminant, hepatic MFO induction, retinol, and metallothionein analyses. The sampling regime is summarized below and presented schematically in Figure 2.

Fish caught by setlines were sampled each morning. Fish were removed from each hook or the dropper (to which the hook was attached) was cut if the hook was swallowed deeply. As each fish was removed from a setline, its blood was sampled. Fish caught by electrofishing were held in a live well until sampled. Blood was sampled immediately from fish caught by gill net and angling.

To sample blood, a fish was placed ventral side up in a longitudinal slit in high density foam. A 5 mL, heparinized, disposable syringe was used to withdraw 1 to 2 mL of blood from the caudal vessel. The blood sample was placed in a cooler with ice but not frozen. After a blood sample was taken, the fish was marked with a unique fin clip and placed in a floating live well. Blood from each fish was placed in separate, labelled 1.5 mL microcentrifuge tubes and spun in a microcentrifuge for 5 minutes. A maximum of 30 minutes was allowed to elapse between blood collection and centrifuging. Plasma was aspirated from each tube with Pasteur pipettes into separate, labelled microcentrifuge tubes. The microcentrifuge tubes with the plasma and red blood cells then were inserted into labelled Ziploc bags and placed immediately on dry ice. When several fish were caught at a time (e.g., on a setline) blood was sampled from all fish before tissue sampling was begun.

EnviResource Consulting Ltd.

Flow chart summarizing fish blood and tissue sampling protocol. Figure 2. After blood sampling was completed, individual fish were removed from the live well for processing. First, a fish was examined for external pathological abnormalities (Appendix A). Any abnormalities were noted and photographed. Then the fish was measured, towel dried, and weighed before being sacrificed by concussion. The fish was opened ventrally, and an internal gross pathological examination was done. A colour photograph was taken of the internal organs with Fujicolor ASA 200 film with a KodakTM colour chart and a fish identification label in the background. The gall bladder then was removed and placed in a 7 mL scintillation vial in a whirlpak or, if too large, directly into a whirlpak. Next, the liver was removed and weighed. The longest posterior branch of the liver was cut (about 10 g), rinsed with 0.15 M KCl, placed in a labelled whirlpac, and frozen between slabs of dry ice. The remaining liver was placed in a labelled, contaminant-free bag and frozen between slabs of dry ice. Internal examinations, photograph, and removal of the gall bladder and liver were done within 2 minutes of death for each fish.

The next steps of the sampling protocol were to remove the gut, kidneys, gonads, and gills and place each tissue in separate labelled bags. Stomach volume was visually estimated, and stomach contents were preserved in 5% buffered formalin (to be examined later). Gonads were subsampled and put into Histoprep tissue capsules in Davidson's fixative and in 5% buffered formalin (Appendix A). The fish carcass was weighed and placed in a labelled, contaminant-free bag on dry ice.

Each fish and its tissue samples were numbered using sequential labelled codes containing the location, species and sample number. For example, LSR1 BURB 1 represents the first burbot (BURB) captured from the Little Smoky River Site 1 (LSR1). During tissue sampling, measurements were recorded including: sample number, date, location, species, capture method, fork length (mm), total length (mm), total weight, liver weight, gonad weight, carcass weight, sex, state of maturity, time blood was sampled, time blood was centrifuged, time of death, time each tissue sample was removed, and stomach fullness. All tissue samples were weighed to the nearest 0.1 g using an electronic balance. Total weight and carcass weight were measured to the nearest gram.

All internal and external abnormalities were recorded on special data sheets. The gross pathology examination sheet checklist was used as a guide for describing internal and external abnormalities on each fish (Appendix A). Colour photographs were taken of external and internal abnormalities.

Appropriate ageing structures were removed from each fish before the carcass was frozen. Otoliths from burbot, cleithra from northern pike, pectoral fin rays from longnose sucker, and scales from flathead chub were used to age fish as described by Mackay *et al.* (1990). Otoliths were rinsed with water and then stored in a glycerin/ethanol solution in small whirlpak bags. Cleithra and scales were cleaned and stored in labelled scale envelopes.

To ensure that tissue samples and dissecting equipment were not contaminated, fish were not sampled near generators, exhaust, oil, or smoke. Dissecting equipment was rinsed in hexane and acetone and air dried between fish samples. Cutting surfaces were cleaned with wet paper towels after each fish was processed. Disposable latex gloves were worn for processing fish and were changed between fish.

3.2.3 Non-target Species

A maximum of 10 fish of each non-target species was kept from each site (except the Peace-Athabasca Delta and Slave River Delta sites) for contaminant analyses. An external pathological examination was done, and any external abnormalities were noted and photographed. The date, time, site, capture method, sampler(s), total weight (g), fork length (mm), sex and state of maturity (if distinguishable externally) were recorded. An appropriate ageing structure was taken as recommended by Mackay *et al.* (1990). Each fish was placed in a labelled, contaminant-free plastic bag and stored on dry ice.

Other fish caught that were too small for tissue sampling (only adult fish and burbot > 400 g were sampled) or were extra fish (caught after 10 were kept for contaminant analyses) were measured and released. The date, time, site, capture method, sampler(s), total weight (g), fork length (mm), sex and state of maturity (if distinguishable externally) were recorded. Fish caught but which escaped were included in the total number of fish captured, although no length or weight data could be recorded. If a fish was in good physical condition and exhibiting normal behaviour, it was tagged with a NRBS Floy T-bar anchor tag. The tag number was recorded. Non-target fish species caught at the Peace-Athabasca Delta site were released or given to the guide. They were not sampled because dry ice supply was limited.

3.2.3 Sample Storage and Transport

All tissue samples, except gonads in Histoprep tissue capsules, were stored on dry ice and transported in coolers. Tissue and blood samples from fish caught at the same site were frozen together. Carcasses were transported in labelled coolers wrapped with duct tape. Contaminant tissue samples were transported in labelled coolers with slabs of dry ice around and between the tissue samples. An air courier was used to ship biochemical and histological tissue samples to the Freshwater Institute in Winnipeg. All samples from the Peace-Athabasca Delta and Slave River Delta were shipped by air courier.

3.3 WATER QUALITY AND HABITAT DESCRIPTIONS

Water samples were taken at each site in the Peace River and Athabasca River drainages. Surface water samples were collected in triple rinsed, 500 mL Nalgene water bottles and kept cool until shipped to Chemex Laboratories for analysis. Parameters analyzed included pH, conductivity, and alkalinity. At the Peace-Athabasca Delta and the Slave River Delta sites, surface pH and conductivity were measured in the field.

Channel velocity was measured with a Price AA current metre and wading rod at the Peace River, Athabasca River, and tributary sites. Velocity was measured at 60% of depth when depth was < 75 cm and at 80% and 20% of depth for depths >75 cm. Measurements were made from three backwater and

EnviResource Consulting Ltd.

three mainstem channel locations selected randomly at each site where set lines were set. Mean column velocities were calculated as described by Orth (1983).

Habitat descriptions were recorded in the field at set line sites. Descriptions included substrate type, channel type, and special habitat features (Appendix A). Setline depth was averaged and summarized as shallow (< 1 m), moderate (1 - 2 m), and deep (> 2 m). Only limited habitat information was recorded as requested by NRBS.

3.4 DATA ANALYSIS

All fish life history data were entered into computer files (dBase and QuattroPro). Length-frequency distributions, length-weight relationships, and length-at-age were determined. Length-weight relationships were plotted for each target fish species for each drainage.

Condition factor, gonadosomatic index, and liver somatic index were calculated for each target fish and reported in Appendix B. Condition factor (CF) was calculated as $CF = (total weight/length^3) \times 10^5$ (Appendix A). Gonadosomatic index (GSI) was calculated as $GSI = (gonad weight/gutted weight) \times 100$. Liver somatic index (LSI) was calculated as $LSI = (liver weight/gutted weight) \times 100$.

4.0 **RESULTS AND DISCUSSION**

The Peace River, Athabasca River, and Slave River drainages were sampled from 11 September to 20 October and 14 to 21 December, 1994 (Appendix B). In total, 535 fish were found, 384 (72%) target fish and 151 (28%) non-target fish (Table 2). The majority of the target fish caught were burbot (58%).

Fish Specie	s	Rive	Drainage	Delta		
Name	Code	Peace	Athabasca	Peace-Athabasca	Slave	Total
Burbot	BURB	78	123	0	21	222
Northern pike	NRPK	24	14	6	6	50
Longnose sucker	LNSC	81	7	0	0	88
Flathead chub	FLCH	24	0	0	0	24
Arctic grayling	ARGR	4	0	0	0	4
Bull trout	BLTR	29	11	0	0	40
Goldeye	GOLD	5ª	0	1	0	5
Lake whitefish	LKWH	0	0	4	0	4
Mountain whitefish	MNWH	6	6	0	0	12
Northern squawfish	NRSQ	1	0	0	0	1
Rainbow trout	RNTR	0	14	0	0	14
Walleye	WALL	24	28	3	0	55
White sucker	WHSC	14	2	0	0	16
Total		·				535

Table 2.Number of fish caught during the fall and winter 1994 burbot collection.

^a Young-of-the-year goldeye were observed (>100).

Although 222 burbot were caught, the minimum requested number of burbot per site (n=12) was collected only at eight of the sampling sites (Table 3). Burbot were found at all river sites sampled except the Smoky River Site SR2.

Burbot were not caught at the Peace-Athabasca Delta sites (Jackfish Village) in mid-September. Surface water temperature was 14°C on 20 September in the Delta channel. Water depth at the two set line sites in the Peace-Athabasca Delta was greater than 13 m, and burbot, northern pike, suckers and lake whitefish have been caught there (D. Marcel, pers. comm.). Local fishermen were not catching burbot at this time in the Delta or Lake Athabasca. Several residents of Fort Chipewyan suggested it was too early to catch burbot.

River/Delta	Site	Bur	bot	No	rthern	pike	Longnos	e sucker	Flathea	d chub
Kiven/Dena	Site	SL	EF	SL	EF	GN	SL	EF	SL	EF
Peace River	PR1	10	0	0	4	_a	0	17	0	1
	PR2	9	1	1	2	-	0	8	4	0
	PR3	9	0	0	0	-	0	23	0	0
Smoky River	SR1	20	0	2	1	-	0	13	3	9
	SR2	0	-	0	-	-	1	-	0	-
	SR3	1	-	0	-	-	0	-	0	-
Wapiti River	WR1	4	0	2	10	-	0	13	0	5
	WR2	13	-	1	-	-	0	-	0	-
Little Smoky	LSR1	0	1	1	0	-	0	6	0	1
River	LSR2	1	-	0	-	-	0	-	0	-
Wabasca River	WB	9	0	0	0	-	0	0	1	0
Athabasca River	Ala	4	0	3	1 ^b	-	0	1		
	A1 b	11	0	0	0	-	0	0		
	A2	8	0	0	0	-	2	3		
	A3	23	0	0	0	-	0	0		
	A4	15	0	0	0	-	0	0		
	A5	21	0	0	0	-	0	0		
McLeod River	MR1	1	1	6	0	-	0	1		
	MR2	7	-	0	-	-	0	-		
Pembina River	Р	7	-	1	2°	-	0	-		
Lesser Slave	LSV	21	0	0	0	*	0	0		
Clearwater River	CW	5	-	1	-	-	0	-		
Peace-Athabasca	JV 1	0	-	1	-	-	0	-		
Delta	JV 2	0	-	0	-	5	0	-		
Slave River	SRD 1	5	-	2	-	-	0	-		
Delta	SRD 2	16	-	3	_	1	0	-	·····	
Total capture method not use		219	3	24	20	6	3	85	8	16

Table 3. Number of target fish captured by set line (SL), electrofishing (EF), and gill net (GN) at sites during fall and winter, 1994.

a capture method not used

^b caught angling ^c caught angling; one escaped

Of the total number of fish caught, only 30% consisted of the three other target species. Northern pike were caught in both mainstem rivers and some tributaries and at both delta sites but in low numbers (Table 3). Most longnose suckers were caught in the Peace River drainage; they were caught at all sites electrofished except at the Wabasca River (Table 3). In the Athabasca River drainage, longnose suckers were caught only in the mainstem river and the McLeod River. Flathead chub were collected from all rivers sampled within the Peace River Drainage although they were not caught at all sites (Table 3).

Nine non-target fish species were found during the fall collections (Appendix C). Rainbow trout (*Oncorhynchus mykiss*) were caught only in the Athabasca River drainage, and Arctic grayling (*Thymallus arcticus*) were caught only in the Peace River (Appendix C). Bull trout (*Salvelinus confluentus*) were caught in the Smoky River, Wapiti River, and the Athabasca River upstream from Hinton. Goldeye (*Hiodon alosoides*) > 300 mm fork length (FL) were caught in the Peace River, Smoky River, and Peace-Athabasca Delta (Appendix C). Young-of-the-year goldeye were caught in the Wapiti River (average 72 mm FL) and at the Peace River Site PR3. One northern squawfish (*Ptychocheilus oregonensis*) was caught in the Little Smoky River. Walleye (*Stizostedion vitreum*) were caught at several sites in the Peace and Athabasca drainages. Only three non-target fish species were caught in the Slave River Delta.

Some non-target fish species were tagged and released. Two bull trout *(Salvelinus confluentus)* were tagged with yellow NRBS tags and released in the Wapiti River. One burbot (241 g) was tagged and released (tag number 7903) in the Athabasca River. Twenty five bull trout were caught on set lines at Site SR2 on the Smoky River near Grande Cache (Appendix D). All fish appeared in poor condition and were tagged (yellow NRBS tags 013003 to 013027) and released immediately. They were not measured.

4.1 CATCH PER UNIT EFFORT

Most burbot were caught in the Athabasca River drainage (Table 2). The overall catch per unit effort was higher in the Athabasca River drainage (0.10 burbot/100 hook hours) than the Peace River drainage (0.08 burbot/100 hook hours). The highest catch per unit effort (0.29 burbot/100 hook hours) found was in the Slave River drainage.

Catch per unit effort varied with sampling method and sites for each fish species (Table 4, Appendix D). Most burbot (99%) were caught on set lines (Table 3). Only three burbot were caught electrofishing, and none were caught by gill net or angling. The highest catch rate for burbot was 0.61 burbot/ 100 hook hours at the Athabasca River Site A3. Catch rates were also high at Smoky River Site SR1, Athabasca River Site A4, Athabasca River Site A5, and at the Slave River Delta. Catch per unit effort was also high at the McLeod River Site MR2 which was sampled in December. Catch rates did not appear to be related to substrate type, habitat type (Appendix D), water temperature or velocity during this study. In general, catch rates were lower than those found by Hvenegaard and Boag (1993) in the Peace River, Smoky River, and Wapiti River in late October to mid-November.

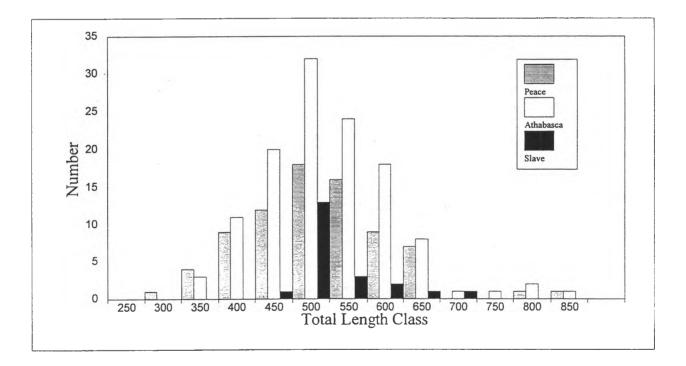
	nours) a				conus) au	ring fall and		
		Set Lin	e CPUE			Electrofisl	ning CPUE	
Site	BURB [*]	NRPK	LNSC	FLCH	BURB	NRPK	LNSC	FLCH
PR1	0.07			0.04		0.12	0.52	0.03
PR2	0.09	0.01			0.01	0.05	0.09	
PR3	0.06						0.50	
SR1	0.44	0.04		0.07		0.01	0.15	0.10
SR2			0.01					
SR3	0.09							
WR	0.11	0.02				0.13	0.17	0.07
LSR1	0.14	0.01			0.05	0.05	0.30	0.05
LSR2								
WB	0.06			0.01				
A1	0.08	0.02					0.06	
A2	0.02		0.01				0.07	
A3	0.61							
A4	0.36					i		
A5	0.13	0.01						
MR1	0.01	0.04			0.05		0.05	
MR2	0.49							
Р	0.14	0.02	0.02					
LSV	0.17							
CW	0.04	0.01						
JV		0.03						
SRD	0.29	0.08						

Table 4.Catch per unit effort (CPUE) for target fish species caught by set line (number/100 hook
hours) and electrofishing (number/100 seconds) during fall and winter 1994.

^a BURB - burbot; NRPK - northern pike; LNSC - longnose sucker; FLCH - flathead chub

Northern pike were present but scarce at some of the sites sampled in the fall (Appendix B). Pike were not caught at four of the five sites in the Athabasca River, the McLeod River, the Lesser Slave River, and the Wabasca River. Electrofishing and set lines caught approximately equal numbers of pike (Table 2). Catch rates for northern pike using set lines was highest at the Slave River Delta (Table 4). Electrofishing was most successful at the Peace River near Many Islands and at the Wapiti River site.

Gill nets were used successfully at the Peace-Athabasca Delta and Slave River Delta sites to catch northern pike. Catch rates for northern pike were higher in the shallow, warmer, slower velocity water in Jackfish Creek (1.7 fish/100m²/hour) than at the mouth of the Nagle Channel (0.7 fish/100m²/hour) (Appendix D).


Most longnose sucker were caught by electrofishing (Table 3). Catch per unit effort was higher at all Peace River sites than the Athabasca River drainage (Table 4). More suckers were caught in the Athabasca River during sampling in fall 1992 at sites upstream from Whitecourt (Barton *et al.* 1993b).

Flathead chub were scarce or absent from sites sampled in the Peace River Drainage in the fall (Appendix D). Both electrofishing and setlines caught flathead chub, although only half as many were caught with set lines.

.

4.2 POPULATION CHARACTERISTICS

The length-frequency distributions of burbot from the three river drainages were similar, all peaking at 500 mm (Figure 3). Burbot caught in the Peace River Drainage ranged from 279 to 804 mm total length (TL). Those in the Athabasca River drainage ranged from 310 to 843 mm TL. Length-at-age of burbot is shown in Table 5. Length-age relationships were similar for the sites sampled within each drainage (Figure 4 and 5). Length-weight relationships of burbot were also similar for all sites sampled within each drainage (Figure 6 and 7). However, burbot caught at the Slave River Delta were heavier at any given length than burbot from the Peace River and Athabasca River drainages (Figure 7). Condition factor (CF) was also higher for burbot from the Slave River Delta (CF = 0.60, N = 20, SD = 0.09) than burbot from the Peace River drainage (CF = 0.50, N = 78, SD = 0.05) and the Athabasca River drainage (CF = 0.50, N = 116, SD = 0.09).

Figure 3. Total length-frequency distribution of burbot caught in the Peace River, Athabasca River, and Slave River drainages.

EnviResource Consulting Ltd.

			Peace	Peace River				A	Athabasca River	ica Riv	er				Slave	Slave River		
		Female	e		Male	5 (1,201)		Female	e		Male			Female	e		Male	
Age	TL	ż	SDb	TL	Z	SD	an.	Z	SD	II	z	SD	TIC	N	SD	IL	Z	SD
ę							343	2	31	420	2	43						
4	350	4	24	369	2	17	433	5	19	448	7	56						
5	350	2	30	395			426	8	35	453	6	39						
9	443	2	59	453	4	37	462	5	35	464	5	51						
7	492	8	69	488	6	51	513	16	57	513	10	47	482			473	4	27
∞	532	∞	09	483	4	61	550	5	57	506	9	37	558	2	18	476	9	30
6	566	4	68	473	3	24	589	S	28	484	5	40	490	2	0			
10	599	7	62	497	2	22	554	S	38	52]	3	9	495	2	30			
11	613	2	13	514	4	40	625	4	80	582	З	35	598	-				
12	540	4	31	570	-		564	2	∞	787	-							
13				659	2	46	806	7	38				642					
14													605	-				

Total length (TL)-at-age (mm) of burbot collected from the Peace River, Athabasca River, and Slave River drainages. Table 5.

ŝ

^a N - sample size ^b SD - standard deviation

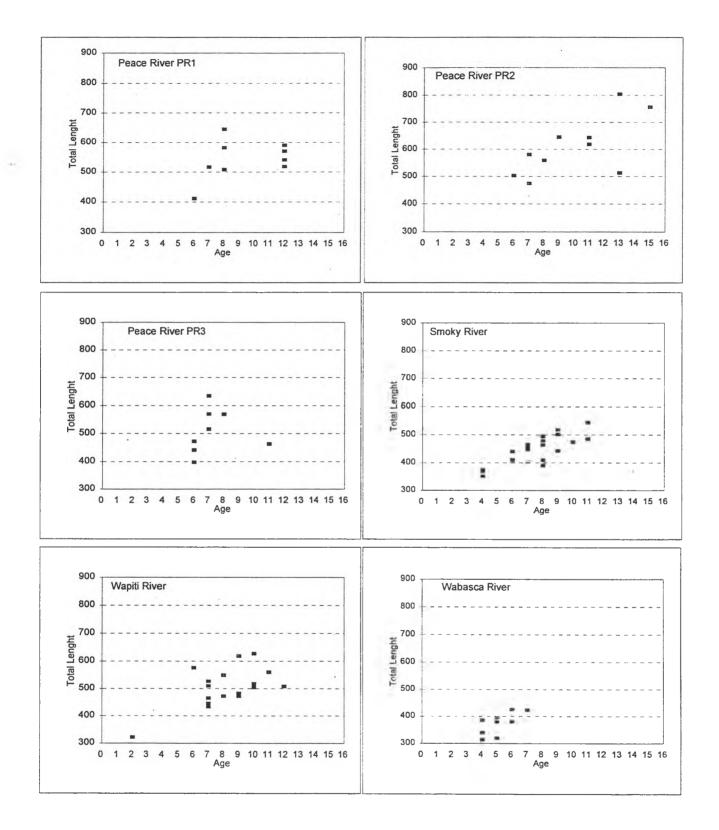
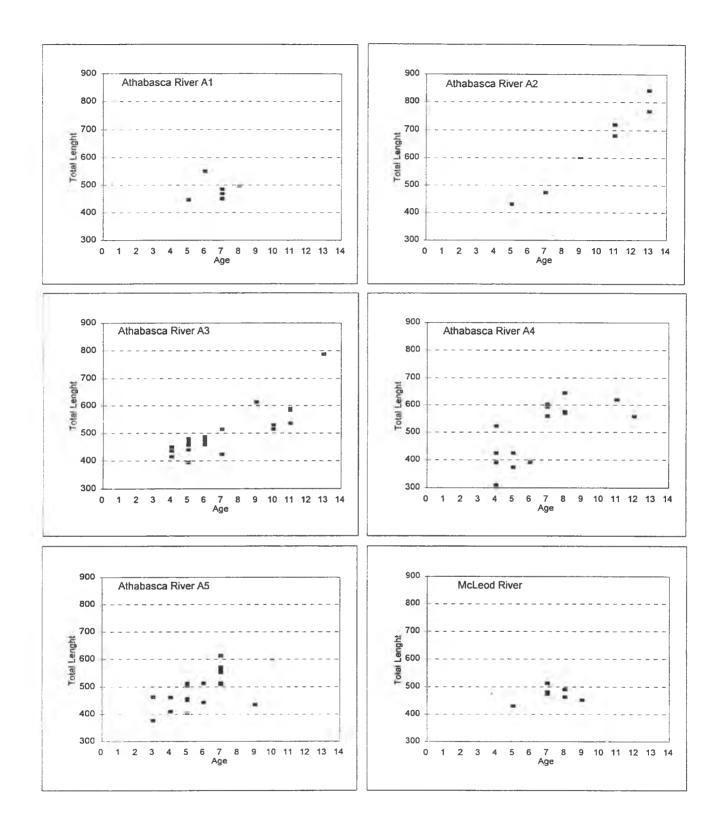
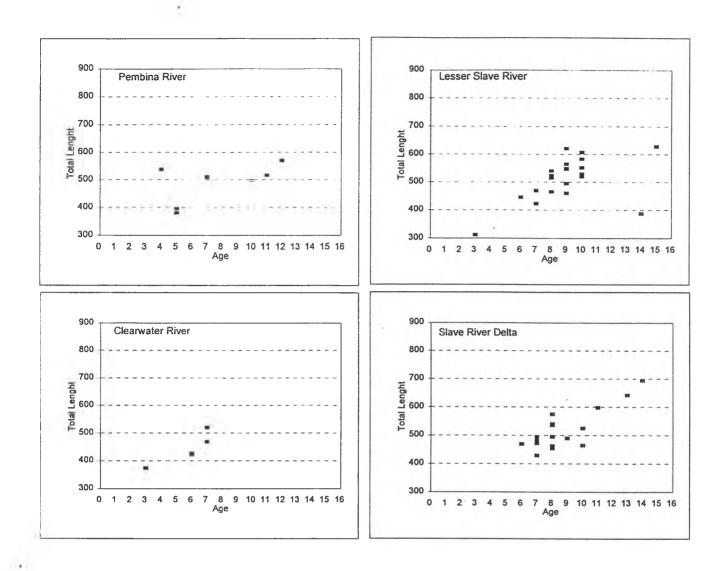




Figure 4. Total length-at-age relationships of burbot caught at sites within the Peace River Drainage.

EnviResource Consulting Ltd.

Figure 5. Total length-at-age relationships of burbot caught at sites within the Athabasca River Drainage and the Slave River Delta.

Figure 5. Concluded.

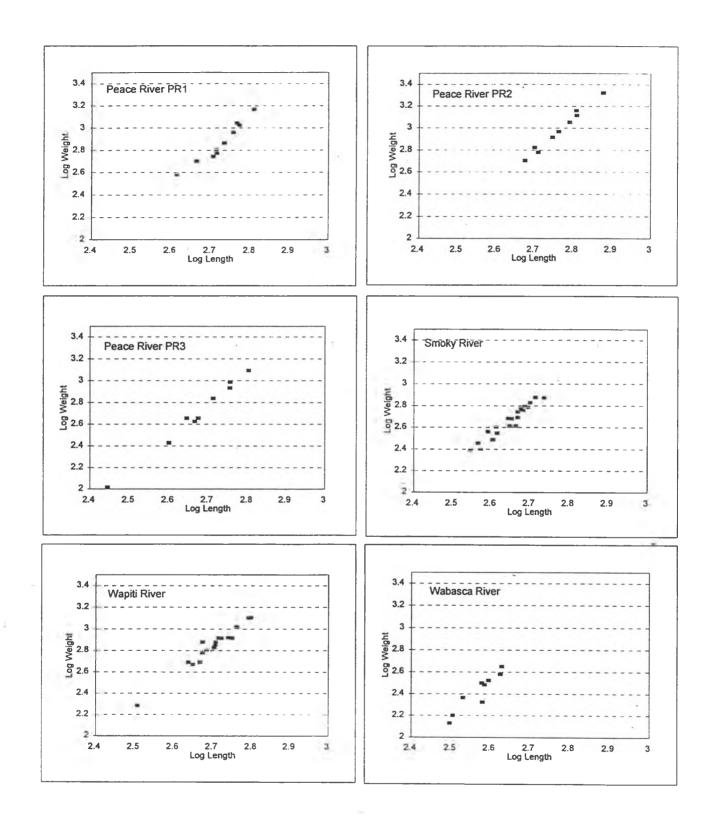
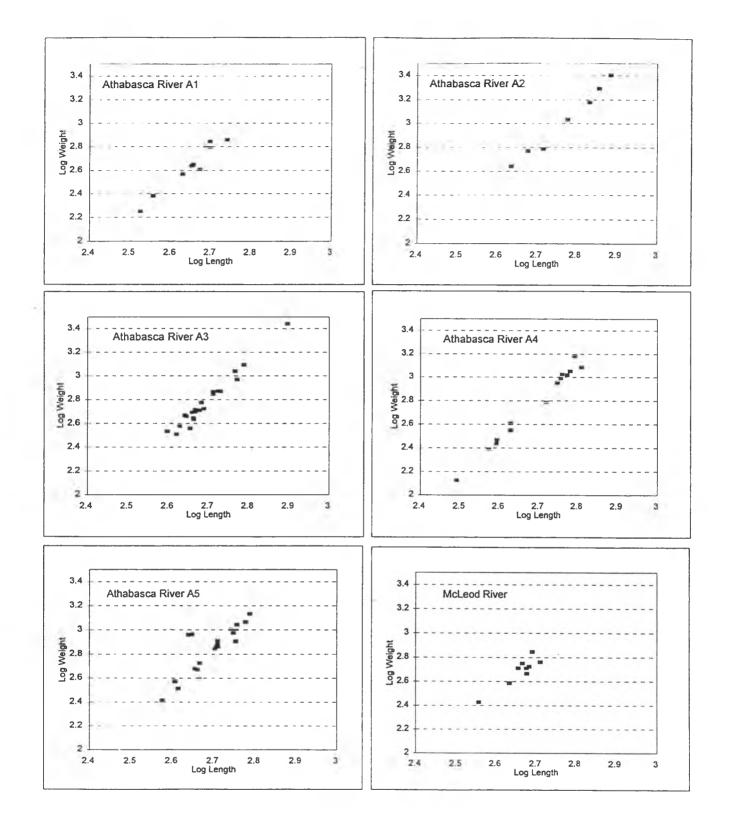



Figure 6. Total length-weight relationships of burbot caught in the Peace River Drainage.

Figure 7. Total length-weight relationships of burbot caught in the Athabasca River Drainage and the Slave River Delta.

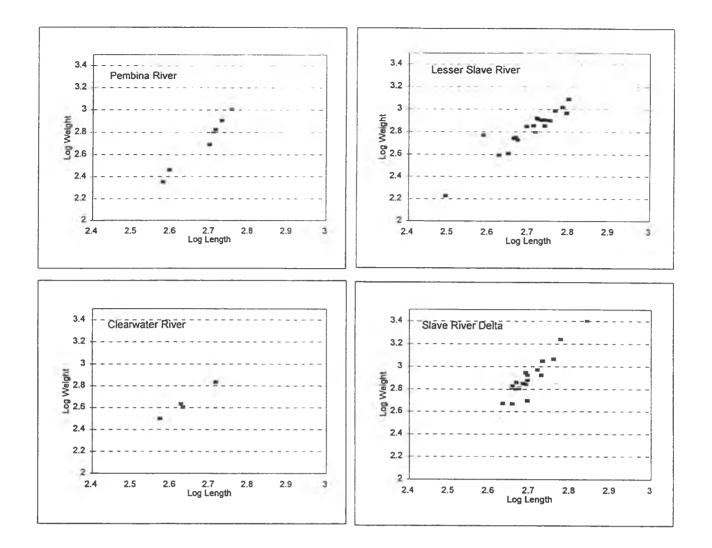
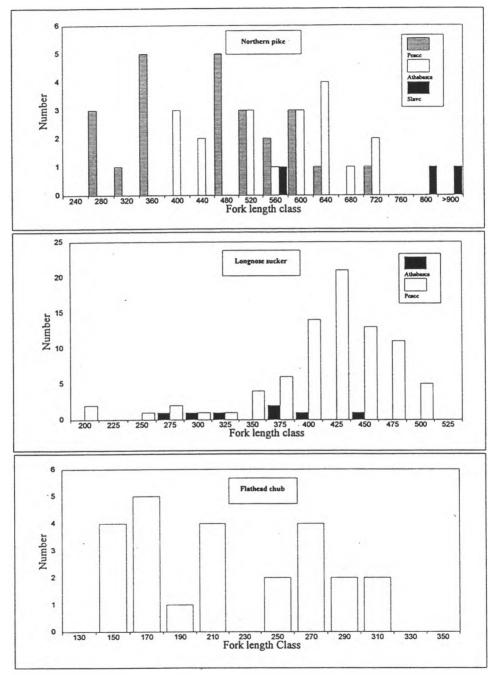
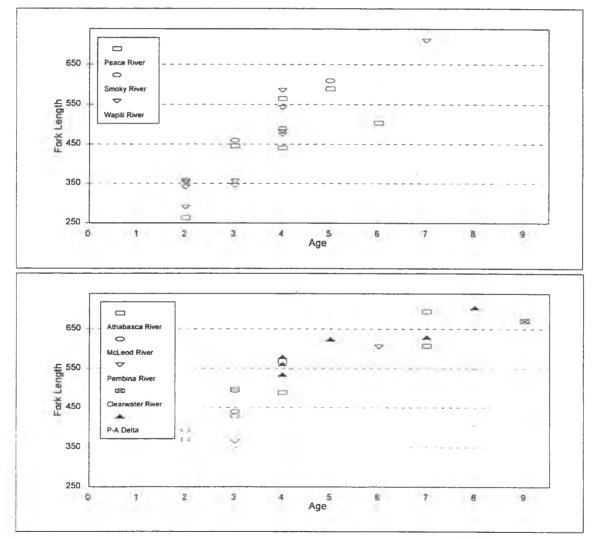
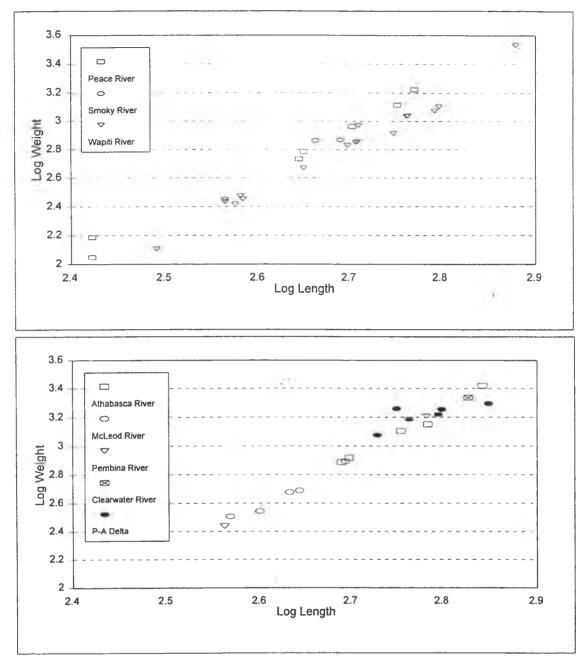



Figure 7. Concluded.


Northern pike sampled from the Peace and Athabasca River drainages ranged from 255 to 710 mm FL (Figure 8). Northern pike collected from the Peace River Drainage were smaller at ages 2 to 5 than those collected at sites in the Athabasca River Drainage (Table 6). Growth of pike caught in the Peace River and Athabasca River drainages appeared similar (Figure 9). Length-weight relationships were similar (Figure 10). Condition factor was similar for all pike caught (mean CF = 0.68, N=39) (Appendix B).


Figure 8. Fork length-frequency distributions of northern pike, longnose sucker, and flathead chub collected during fall 1994.

4 50	1	Peace Rive	r	At	habasca Ri	ver
Age	FL	N	SD	FL	N	SD
2	382	2	12	321	5	37
3	470	5	29	414	5	52
4	570	5	23	519	8	46
5	625	1		600	2	10
6						
7	663	2	33			
8	705	1				

Table 6.Fork length-at-age (mm) of northern pike collected from the Peace River and Athabasca
River drainages.

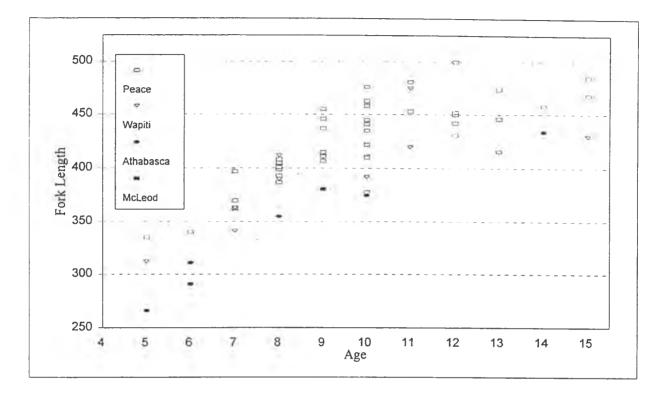


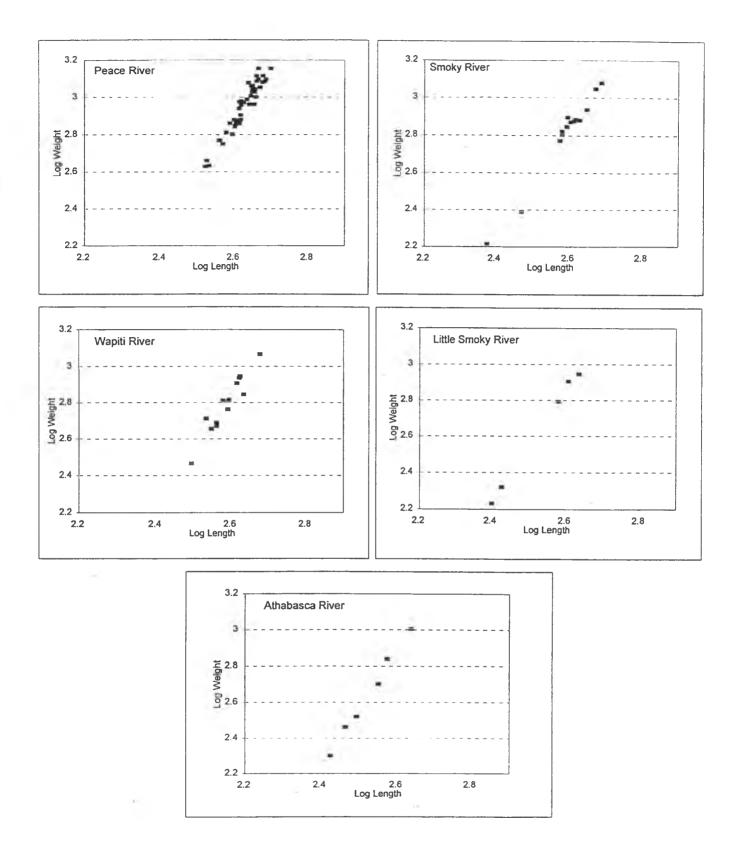
Figure 9. Fork length-at-age relationships of northern pike caught at sites in the Peace River and Athabasca River drainages.

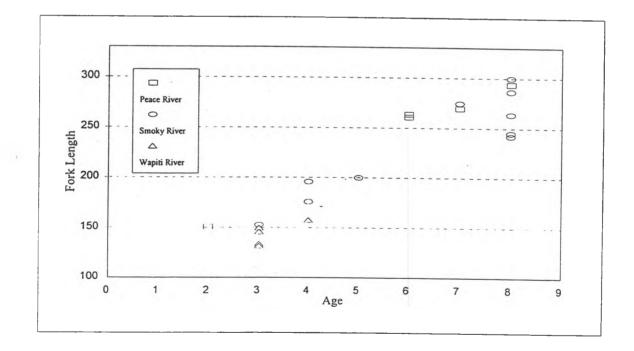
Figure 10. Fork length-weight relationships of northern pike caught at sites in the Peace River and Athabasca River drainages.

Longnose sucker sampled from the Peace River drainage ranged from 196 to 500 mm FL (Figure 11). Although only a few longnose suckers were caught in the Athabasca River, those sampled were smaller at all ages than those from the Peace River Drainage (Figure 11, Table 7). Growth of longnose sucker from the Wapiti River and the Peace River was similar (Figure 11). Condition factor and length-weight relationships of longnose sucker were similar for the Peace River and its tributaries and the Athabasca River (Figure 12, Appendix B).

- Figure 11. Fork length-at-age relationships of longnose sucker caught at sites in the Peace River and Athabasca River drainages.
- Table 7.Fork length-at-age (mm) of longnose sucker collected from the Peace River and
Athabasca River drainages.

			Peace	River			Athabase:	a River
A		Females			Males		Sexes con	abined
Age	FL	N	SD	FL	N	SD	FL	N
5				335	1		266	1
6							301	2
7	377	3	15	363	2	1		
8	398	6	9	389	5	24	355	1
9	430	6	17	424	3	16	381	1
10	441	7	28	410	3	26		
11	451	3	25	446	2	30		
12	455	5	24					1.0
13	460	2	14					
14							434	1
15	461	3	23					




Figure 12. Fork length-weight relationships of longnose sucker caught at sites in the Peace River drainage and the Athabasca River.

Flathead chub caught ranged from 132 to 300 mm FL (Figure 7) and from age 3 to age 8 (Table 8, Figure 13). Condition (CF = 0.97, N=19) and length-weight relationships were similar for flathead chub caught at the Peace River, Smoky River, and Wapiti River sites (Figure 14).

Age	Fork Length	Number	SD
3	147	6	11
4	186	3	16
5	200	2	0
6	263	2	2
7	273	2	3
8	272	5	23

21

Table 8.	Fork length-at-age (mm) of flathead chub collected from the Peace River Drainage.
----------	---

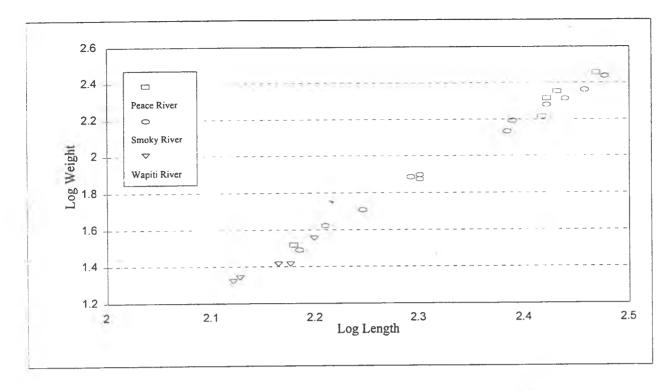


Figure 14. Fork length-weight relationship of flathead chub collected from the Peace River drainage.

4.3 GROSS PATHOLOGY

Most of the fish examined externally and internally appeared normal. Only 16% (n=84/535) exhibited external and internal abnormalities or physical deformities (Table 9, Appendix E). The most commonly observed external abnormalities were tumours and lesions associated with the skin or fins. Internal abnormalities were most commonly associated with the liver (abnormal colour).

				Abnormaliti	es		
Species	Total Number	NI		External			0.1
	Tumber	Number	Wounds	Lesion/tumour	Eye	Internal	Other'
Burbot	222	23	3	3	3	7	7
Northern pike	50	12	4	5	0	2	1
Longnose sucker	88	40	2	26		11 ^b	1
Flathead chub	24	2	0	1	0	lc	
Bull trout	40	4	1	1			2
Mountain whitefish	12	1			1		1
Walleye	55	1		· · · · · · · · · · · ·		1°	
White sucker	16	1		1	1		

 Table 9.
 Number of fish with external and internal gross pathological abnormalities.

^a includes colour, deformities, haemorrhages

^b excessive fat, parasites

° parasite

Both open and closed wounds were observed on fish captured. Some open wounds and haemorrhages were caused by set lines injuries (Appendix E). Closed wounds and some physical deformities may have resulted from predators. Photographs of the external pathological aberrations were included in a separate volume.

Twenty-three burbot had notable external and internal abnormalities (Table 9). Only three had tumours. The most common internal abnormality observed was mottled colour liver. Other abnormalities included wounds, deformities (missing eye and deformed fins), and pale gills caused by blood loss.

Longnose sucker had more pathological disorders than did other fish species (Table 9). Approximately half of the suckers examined had some type of abnormality. Most commonly, the fish had tumours or lesions. Some had necrotic gills. Internal abnormalities were not observed other than parasites and excessive fat (in seven females) (Appendix E). The "sickest" fish was a longnose sucker caught in the Wapiti River which had a cranial infection, tumours, a blind eye, and an inflamed lower lip.

Fish with pathological abnormalities other than wounds were found at 11 sites. Most fish with abnormalities were caught in the Peace River and its tributaries where most longnose suckers were caught (Table 3). The Wapiti River upstream from Grand Prairie, the Smoky River downstream from the confluence of the Wapiti River, and the Peace River near Fort Vermilion had the most fish, primarily suckers, with the highest frequency of tumours and lesions. The seven longnose sucker caught in the Athabasca River and McLeod River had no abnormalities. No pathological aberrations were recorded from burbot sampled in the Lesser Slave River, McLeod River, Pembina River, Clearwater River and the Athabasca River Site A3. Northern pike caught in the McLeod River, Pembina River, Clearwater River, River, and Peace-Athabasca Delta had no abnormalities.

4.4 **DIET**

Approximately half of the burbot stomachs examined contained contents (Table 10, Appendix F). Burbot had eaten invertebrates and white sucker (*Catostomus catostomus*), trout perch (*Percopsis omiscomaycus*), walleye (*Stizostedion vitreum*), brook stickleback (*Culaea inconstans*), goldeye, and yearling burbot. Burbot sampled during the fall from the Clearwater, Lesser Slave and Wabasca rivers had fed predominantly on stonefly nymphs. Burbot collected from the McLeod River in mid-December contained perlodid stonefly and hydropsychid caddisfly nymphs. Some stomachs also contained sand and pebbles suggesting that burbot at this site fed under ice and inhaled dislodged invertebrates and small particles of substrate. This phenomenon was not reported from the other sites in the fall.

In total 38% of the northern pike stomachs sampled contained contents. Their diet was predominantly fish. White sucker, burbot, goldeye, and flathead chub were found in stomachs. Invertebrates were not identified as part of the stomach contents of any northern pike examined. One small rodent was found in a pike caught in the Wapiti River.

		Number	I	Number	of Stomac	hs Contain	ing:	Empty
Species	River/Delta	of fish	Fish	Bait	Insects	Chyme	Other ⁴	Stomachs
Burbot	Peace	20	10			2	1	7
	Smoky	21		4	1	1		15
	Wapiti	17	6					11
	Little Smoky	2	1		1			0
	Wabasca	9	1		7			1
	Athabasca	75	15	10	6	1	2	41
	McLeod	8	2	3	2			1
	Pembina	6	1	1	2			2
	Lesser Slave	21	2	3	4			12
	Clearwater	5	1		5			0
	Slave	21	2				2	17
	Total	205	40	21	28	4	5	107
Northern	Peace	7	3					4
pike	Smoky	3	1					2
	Wapiti	13	6					7
	Athabasca	5				1		4
	McLeod	4		1				3
	Pembina	2					1	1
	Clearwater	1	1					0
	Peace-Athabasca	4						4
	Slave	3	1				1	1
	Total	42	12	1	0		2	26
Longnose	Peace	45			20	20	1	4
sucker	Smoky	11	1		3			7
	Wapiti	13			5		2	6
	Little Smoky	6				i	2	4
	Athabasca	6	2				2	2
	McLeod	1					1	0
	Total	82	3	0	28	20	8	23
Flathead	Peace	3			1			2
chub	Smoky	11		1		1		9
	Wapiti	5			1			4
	Little Smoky	1						1
	Wabasca	1					1	0
	Total	12	0	1	2	1	1	16

Table 10.Stomach contents of target fish species caught in the Peace River, Athabasca River, and
Slave River drainages.

^a Includes unidentified items, leaves, sand, and small rodents.

Corixid beetles dominated the identifiable diet of longnose suckers sampled in the Peace River and Athabasca River drainages in the fall (Appendix F). Of the 82 stomachs examined, 72% contained contents dominated by mayfly and caddisfly larvae. Sand particles and pieces of detritus were also relatively common. Exoskeletons of corixid beetles were common in stomachs by October. Corixids were abundant in shallow backwater and snye habitat.

Most flathead chub examined had empty stomachs (Table 10). Invertebrates identified in stomachs were mayfly, stonefly and caddisfly nymphs.

4.5 HABITAT

Backwater and snye habitats were sampled extensively for target species as recommended by Hvenegaard and Boag (1993). Although set lines also were set in other habitats, most burbot were caught on those set in backwater areas (Table 11, Appendix D). Burbot were also caught on lines set in snyes and along eddy lines. Most of these were shallow areas with cobble, gravel, and sand substrate (Table 11). Aerial photographs of sites fished are presented in Appendix G. Catch rates of burbot did not appear to be related to water temperature, velocity or other water quality parameters (Table 12).

Longnose sucker tended to be most common along the downstream edge of point bars and the backwater areas created immediately downstream of islands and point bars in the Peace River near Fort Vermilion and near Notikewin Provincial Park.

4

 Table 11.
 General habitat characteristics of set line sites.

					Habitat of Set Lines	
River/Delta	Site	Bottom Type	Channel Type	Banks	with Burbot	Comments
Peace	PRI	silt/sand and grave!	multiple islands	stable	backwater < 2 m deep	
	PR2	cobble/silt and gravel	unobstructed	depositional sand	backwater, snye	some depositional
	PR3	gravel/cobble/sand	single islands	armoured stable	backwater < 2 m deep	deep pool under bridge
Smoky	SRI	silt/cobble		unstable, slumping	backwater, pool, mud flat	
	SR2					
0.0	SR3				shallow run	
Wapiti	WRI	silt and cobble, some	run, some islands		backwater < 2 m deep	cobble/silt near island
		boulders	backwater no flow			
	WR2	cobble/silt/boulder	some islands		backwater, run < 2 m deep cobble/silt near island	cobble/silt near island
Little Smoky	LSRI	cobble/silt	some pools			
Wabasca	WBI				backwater, run < 2 m deep	
Athabasca	Ala	cobble/sand/silt	cobble sand bars/ islands u/s bridge	armoured/stable	backwater, run < 2 m deep	mostly run/riffle
	6	2	unobstructed d/s bridge			
	A1 b	cobble/sand	unobstructed	armoured/stable	$r_{11} < 1.5 m$ deep	
	A2	sand/some cobble	unobstructed/ few single islands	stable/erosional	backwater < 2m, some pools some deep backwaters	some deep backwaters
	A3	cobble/gravel	unobstructed/ few single islands	cobble/stable	backwater < 1.5 m deep	
	A4	cobble/sand and mud	unobstructed	stable	backwater < 2 m deep	
2	A5	gravel/sand	unobstructed	stable	backwater < 1,5 m deep	some cobble sand bars
McLeod	MRI	cobble/sand	multiple islands, straight flow	stable/some erosional	run < 1.5 m deep	some deep holes
Pembina	Ρ	sand/mud	unobstructed	mud/erosional	run < 1 m deep	turbid
Lesser Slave	LSV	sand/mud, some cobble	sand/mud, some cobble unobstructed/ few single islands	erosional	eddy line, run < 1.5 m deep	brown water
Clearwater	CW	sand/some cobble	unobstructed/ few single islands	erosional	backwater 1 to 2 m deep	some deep holes
Peace-Athabasca	JV	sand/silt	Delta channel, flat, > 10 m deep	depositional		burbot have been caught
Slave	SRD1	sand/silt	unobstructed channel	depositional/erosional > 2 m deep	> 2 m deep	high velocity, turbid
	SRD2	sand/silt	mouth of Nagle Channel	depositional/erosional > 5 m deep	> 5 m deep	turbid

Burbot catch per unit effort (CPUE, number/100 hook hours), water quality, temperature and velocity measurements at sites samuled in the Peace River Athabasca River and Slave River drainages during fall 1994 Table 12.

Site	CPUE	Tempe ('6	perature (°C)	Hq	Total Alkalinity	Conductivity	Mean Vel (Mean d	Mean Velocity (m/s) (Mean depth ^a m)
		Start	Finish		(CaCO ₃) (mg/L)	(µohms/cm)	Backwater ^b	Mainstem
Peace River PR1	0.07	11.5	11.0	6.7	91	200	0.11 (0.42)	0.25 (1.00)
Peace River PR2	0.09	11.0	11.0	7.0	136	361	0.00 (0.69)	0.38 (0.39)
Peace River PR3	0.06	11.5	11.0	6.8	102	229	0.14 (0.63)	0.59 (0.63)
Smoky River SR1	0.44	17.0	17.0	7.1	146	349	0.18 (0.66)	0.62 (0.51)
Smoky River SR2	0	5.0	5.0	7.0	66	352	0.08 (0.57)	0.77 (0.31)
Wapiti River WR1	0.06	4.0	4.0	7.4	147	321	0.01 (0.53)	0.37 (0.63)
Little Smoky River ^c	0	16.5	17.5	N/A	N/A	N/A	0.28 (0.26)	0.28 (0.41)
Wabasca River	0.08	8.0	8.0	7.0	127	321	0.18 (0.41)	0.78 (0.52)
Athabasca River A1	0.08	13	13	8.0	191	381	0.35 (1.00)	0.95 (0.68)
Athabasca River A2	0.02	12.5	12.5	6.6	91	254	0.00 (1.00)	0.51 (0.60)
Athabasca River A3	0.61	11.5	11.5	7.0	118	297	0.35 (0.42)	0.64 (0.60)
Athabasca River A4	0.36	7.0	7.0	7.1	115	279	N/A	0.60 (0.70)
Athabasca River A5	0.13	6.0	6.0	7.0	119	301	N/A	0.66 (0.70)
McLeod River	0.01	12.	12	7.2	166	326	N/A	0.21 (0.60)
Pembina River	0.14	8.5	8.5	7.6	192	405	N/A	0.40 (0.66)
Lesser Slave River	0.17	8.5	8.5	6.7	96	200	N/A	0.72 (0.48)
Clearwater River	0.04		4.5	6.6	71	287	0.29 (0.62)	N/A
Peace-Athabasca Delta	0	12	14	6.9	N/A	118	0.	0.89
Slave River Delta	0.29	5.8	5.8	7.1	N/A	130		

^a Mean of measured depths ^b Represent the average of three random measurements of velocity at each site. ^c Water sample bottle broken in transit.

5.0 LITERATURE CITED

- Balagus, P., A. de Vries, and J.E. Green. 1993. Collection of fish from the traditional winter fishery on the Peace-Athabasca Delta, February, 1993. Northern River Basins Study Project Report No. 20. Prep. by Delta Environmental Management Group Ltd. 24 pp. + append.
- Barton, B.A., C.P. Bjornson, and K.L. Egan. 1993a. Special fish collections, Upper Athabasca River, May, 1992. Northern River Basins Study Project Report No. 9. Prep. by Environmental Management Associates Ltd., Calgary, Alberta. 37 pp. + append.
- Barton, B.A., D.J. Patan, and L. Seely. 1993b. Special fish collections, Upper Athabasca River, September and October, 1992. Northern River Basins Study Project Report No. 10. Prep. by Environmental Management Associates Ltd., Calgary, Alberta. 50 pp. + append.
- Berry, D.K. 1986. Migration patterns of fish in the lower Athabasca River and Peace-Athabasca Delta regions of Alberta. Alberta Forestry, Lands Wildlife., Fish Wildlife. Div. 42 pp.
- Brown, S.B., R.E. Evans, L. Vandenbyllaardt, and A. Bordeleau. 1993. Analyses and interpretation of steroid hormones and gonad morphology in fish, upper Athabasca River, 1992. Northern River Basins Study Project Report No. 13. Prep. by Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba. 82 pp.
- Environment Canada. 1993. Technical guidance document for aquatic environmental effentionitoring related to Federal Fisheries Act requirements. Environment Canada, Fisheries and Oceans.
- Hrudey and Associates Ltd. 1988. An assessment of freshwater impacts from petroleum hydrocarbons on the Mackenzie River at Norman Wells, N.W.T. Prep. for Environment Canada. Prep. by S.E. Hrudey & Associates Ltd., Edmonton, Alberta. (draft report).
- Hvenegaard, P.J. and T.D. Boag. 1993. Burbot collections, Smoky, Wapiti and Peace rivers, October and November, 1992. Northern River Basins Study Project Report No. 12. Prep. by D.A. Westworth & Associates Ltd. Edmonton, Alberta. 34 pp. + append.
- Lockhart, W.L., D.A. Metner, D.A.J. Murray, R.W. Danell, B.N. Billeck, C.L. Baron, D.C.G. Muir and K. Chang-Kue. 1987. Studies to determine whether the condition of fish from the lower Mackenzie River is related to hydrocarbon exposure. Second Cumulative Data Report. Department of Fisheries and Oceans. Freshwater Institute, Winnipeg.
- Mackay, W.C., G.R. Ash, and H.J. Norris (eds.). 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in assoc. with Alberta Fish and Wildlife Division and Univ. of Alberta. 113 pp.

- Muir, D.C., C.A. Ford, N.P. Griff, D.A. Metner, and W.L. Lockhart. 1990. Geographic variation in chlorinated hydrocarbons in burbot (*Lota lota*) from remote lakes and rivers in Canada. Arch. Environ. Contaminant. and Toxicol. 19:530-542.
- Orth, D.J. 1983. Aquatic habitat measurements. pp. 61 81 In: Neilsen, L.A. and D. J. Johnson (eds.) Fisheries Techniques. American Fisheries Society Spec. Pub.
- Paetz, M. 1984. Fish and fisheries of the Peace River Basin: their status and environmental requirements. Prep. for Planning Division, Alberta Environment. 240 pp.
- R.L. & L./E.M.A. 1985. Burbot movements and domestic utilization in the Slave River, N.W.T. Prep. for Slave River Hydro Study Group.
- R.L. & L. 1994. A general fish and habitat inventory, Athabasca River, April to May, 1992. Northern River Basins Study Project Report No. 32. 74 pp. + append.
- Swanson, S. (ed.). 1992. Wapiti/Smoky River Ecosystem study. Prep. for Weyerhaeuser Canada and Proctor and Gamble by Sentar Consultants Ltd., Calgary, Alberta.
- Wallace, R.R. and P.J. McCart. 1984. The fish and fisheries of the Athabasca River basin: their status and environmental requirements. Prep. for Planning Division, Alberta Environment. 269 pp. + append.

6.0 <u>APPENDICES</u>

.

APPENDIX A. TERMS OF REFERENCE

NORTHERN RIVER BASINS STUDY

TERMS OF REFERENCE

Project 3144-D1: Basin-Wide Fall Burbot Collection

I. Introduction

Burbot have been selected as a sentinel species (Environment Canada and Department of Fisheries and Oceans 1993) by the Northern River Basins Study (NRBS) for monitoring the effects of contaminants from developments within the northern river basins. Burbot have been selected as a sentinel species for the following reasons:

- 1. they have large livers containing a high percentage of lipids, which tend to accumulate chlorinated organic compounds (Muir *et al.* 1990);
- 2. they are distributed throughout the northern river basins, including upstream reaches not affected by point-source contaminants, and are relatively easy to catch (Paetz 1984, Wallace & McCart 1984, Swanson 1992, Hvenegaard & Boag 1993, Boag 1993; R. L. & L 1994a);
- they tend to be more sedentary than other fish species and within the northern river basins appear to only make relatively short spawning migrations in mid-winter (R. L. & L./EMA 1985, Berry 1986, McLeod and Clayton 1993, Clayton and McLeod 1994, T. Boag unpublished data);
- 4. burbot livers are frequently consumed by native populations (Lockhart & Metner 1992);
- burbot have previously been collected from the Peace and Athabasca rivers for contaminant and biochemical analyses (Swanson 1992, Hvenegaard & Boag 1993, Alberta Fish and Wildlife Division unpublished data, L. Lockhart pers. comm.);
- 6. burbot have also been collected for biochemical and contaminant analyses from the MacKenzie River in response to fish tainting concerns raised by local residents

(Morgan et al. 1987, Hrudey & Associates Ltd. 1988, Muir et al. 1990, Lockhart & Metner 1992) and from the Slave River (Slave River Monitoring Programme unpublished data);

- 7. burbot are at the top of the food chain and can provide an indication of biomagnification of contaminants through the food chain; and,
- 8. recent ecological studies have been carried out on burbot in Alberta (Boag and MacKay in prep. a & b).

Since the last major collections of burbot and other fish species, for contaminant and biochemical analyses, were carried out by the NRBS and other government agencies, pulp mills within the northern river basins have undergone major process changes. These changes should lead to reduced organochlorine levels in the aquatic environment. The purpose of this project is therefore to collect additional numbers of burbot from the Peace, Athabasca and Slave river systems to determine if contaminant levels are dropping in this species and what effects contaminants are having on burbot populations. The sampling and handling protocols for the burbot collection have been designed to allow for a wide-range of contaminant and biochemical analyses including: gross pathology, contaminants, hepatic MFO induction, retinols, metallothionein, sex steroids and gonad morphology, life history information and population (catch per unit effort) data. The information provided from these studies will help to answer questions regarding the fate and effect of contaminants in the aquatic environment (NRBS Study Board Questions 1a, 4a, 4b, 8, 13b & 14) and will assist in the development of a long-term ecosystem monitoring program for the northern river basins.

The study design for this project calls for the collection of fish at sites distributed throughout the Peace, Athabasca and Slave river basins. Collections will be made in reference areas located upstream of effluent sources and along major tributaries, and at near-field and far-field sites downstream of effluents sources (Environment Canada and Department of Fisheries and Oceans 1993).

Other fish species will also be collected under this project for biochemical and contaminant analyses to provide complimentary information to that collected for burbot. Data from these fish will also provide comparative information in relation to previous contaminant and biochemical analyses carried out on these species by the NRBS and other agencies (Swanson 1992, Brown *et al.* 1993, Lockhart *et al.* 1993).

Flathead chub are known to be widely distributed in the Peace-Wapiti-Smoky and Slave river systems (Paetz 1984, Boag 1993, S. Swanson unpublished data, R. Tallman pers. comm.) and are thought to be relatively sedentary. They also occupy a lower trophic level than burbot and may therefore provide an earlier indication of stress related impacts in the aquatic ecosystem (Environment Canada and Department of Fisheries and Oceans 1993). This study will determine

if flathead chub can also be used as a sentinel species for ongoing monitoring in the Peace and Slave river systems.

Northern pike and longnose suckers will also be collected from designated sampling locations throughout the Study Area. However, the use of these species in the design of long-term monitoring program is somewhat problematic because of their distribution or movement patterns. Northern pike tend to be relatively sedentary (Berry 1986, T. Clayton pers. comm.), but while they are widely distributed in the northern rivers they tend to occur infrequently in upper reaches (Paetz 1984, Wallace & McCart 1984, Hvenegaard & Boag 1993, R. L. & L. 1994a, S. Swanson pers. comm.). Large numbers of fish may not be available in upstream locations, although it may be possible to collect reference fish from tributaries. Longnose suckers are widely distributed in large numbers throughout the Peace, Athabasca and Slave river systems (Paetz 1984, Wallace & McCart 1984, Swanson 1992, Boag 1993, R. L. & L. 1994a&b). They are, however, known to make long-distance migrations often moving between areas exposed to effluents and unimpacted sites (Berry 1986, McLeod and Clayton 1993, Swanson 1992, Clayton and McLeod 1994, R. L. & L. 1994b).

Fish collections at sites on the Slave River have also been designed to provide information for fish ecology and populations studies being carried out under NRBS project 3143-D1 by Dr. Ross Tallman of the Freshwater Institute, Winnipeg.

II. Requirements

General Objectives

- 1. To collect burbot from sites upstream and downstream of effluent sources and in major tributaries of the Peace, Athabasca and Slave river systems from August to mid-October 1994 (before water levels recede because of freeze-up in headwater areas) for gross pathology, contaminant, hepatic MFO induction, retinol, metallothionein, sex steroid, bile and gonad morphology analyses.
- 2. To collect longnose sucker and northern pike from sites upstream and downstream of effluent sources and in major tributaries of the Peace, Athabasca and Slave river systems from August to mid-October 1994 for gross pathology, contaminant, hepatic MFO induction, retinol, metallothionein, sex steroid, bile and gonad morphology analyses.
- 3. To collect flathead chub from sites upstream and downstream of effluent sources and in major tributaries of the Peace and Slave rivers from August to mid-October 1994 for gross pathology, contaminant, hepatic MFO induction, retinol, metallothionein, sex steroid, bile and gonad morphology analyses.
- 4. To collect other fish species opportunistically in conjunction with the collection of burbot, longnose sucker, northern pike and flathead chub on the Peace and Athabasca river systems from August to mid-October 1994 for possible contaminant analyses.
- 5. To collect other fish species opportunistically in conjunction with the collection of burbot, longnose sucker, northern pike and flathead chub on the Slave River from August to mid-October 1994 for histological, stomach content, stable isotope and possible contaminant analyses.
- 6. To prepare collected fish tissue samples in accordance with prescribed protocols, and to deliver them to the Freshwater Institute, Winnipeg and Alberta Environmental Protection, Edmonton for storage, processing and analysis.
- 7. To collect sediments from the lower Birch River, in accordance with prescribed protocols, during September or October 1994 for grain size analysis, organic carbon determination and possible contaminant analyses.
- 8. To transport and deliver sediment samples, in accordance with prescribed protocols, to Environment Canda, Calgary.

Specific Objectives

The contractor will complete the following tasks:

- 1. Obtain the necessary collection permits from appropriate regulatory authorities. While obtaining the permit the contractor should seek written instructions from the appropriate regulatory authority regarding the disposal of fish killed incidently under this contract. The sampling location, date, collector, species, weight, fork length, total length, sex and maturity should be recorded for each fish incidentally killed under this contract. An appropriate ageing structure should be retained (McKay *et al.* 1990) for analyses. Gut contents should be examined in the field and the contents recorded.
- 2. Using Geographic Positioning System Technology, record the geographic location (latitude and longitude) of all fish and sediment sampling locations.
- 3. At the beginning and end of each fish collection period at each sampling location record water temperature (depth profile), surface pH, alkalinity and conductivity. This information is to be presented as an appendix in the final report.
- 4. Collect fish samples of the species, in the quantities and at the locations described in Schedule A.
- 5. Collect adult burbot (>400 g) using capture methods and equipment described in Schedule B.
- 6. Handle, sub-sample, preserve, label and transport burbot tissue samples in accordance with the protocols outlined in Schedule B. Before commencing field collections the contractor should review the following papers to become familiar with sampling and analytical protocols related to tissue sampling for this contract:

Hepatic MFO Induction	Hodson et al. (1991)
Circulating Gonadal Sex Steroid Levels	McMaster et al. (1992)
Retinols	Palace and Brown (1994), Guillou et al.
	(1993)
Metallothionein	Dutton <i>et al.</i> (1993)
Bile	Swanson (1993)

7. Transport and deliver, in a timely and competent manner, burbot tissue samples in accordance with the procedures outlined in Schedule B. During the transport and delivery of burbot tissue samples ensure that the integrity and continuity (i.e., document possession and transfer) of the samples are safeguarded. Designated tissue samples <u>must</u> remain

frozen in liquid nitrogen or on dry ice during transport to the Freshwater Institute or Alberta Environmental Protection.

- 8. Collect adult northern pike, longnose sucker and flathead chub using capture methods and equipment described in Schedule C.
- 9. Handle, sub-sample, preserve, label and transport northern pike, longnose sucker and flathead chub in accordance with the protocols outlined in Schedule C.
- 10. Transport and deliver, in a timely and competent manner, northern pike, longnose sucker and flathead chub tissue samples in accordance with the procedures outlined in Schedule C. During the transport and delivery of fish tissue samples ensure that the integrity and continuity (i.e., document possession and transfer) of the samples are safeguarded.
- 11. With the exception of sampling sites on the Slave River, handle, preserve, label and transport non-target fish species (species other than burbot, northern pike, longnose sucker and flathead chub) caught incidentally under this contract in accordance with the procedures outlined in schedule D.
- 12. With the exception of sampling sites on the Slave River, transport and deliver, in a timely and competent manner non-target fish species in accordance with the procedures outlined in Schedule D. During the transport and delivery of fish samples ensure that the integrity and continuity (i.e., document possession and transfer) of the samples are safeguarded.
- 13. For sampling locations on the Slave River, handle, preserve and transport non-target fish species (species other than burbot, northern pike, longnose sucker and flathead chub) caught incidentally under this contract in accordance with the procedures outlined in Schedule E.
- 14. For sampling locations on the Slave River, transport and deliver, in a timely and competent manner non-target fish species in accordance with the procedures outlined in Schedule E. During the transport and delivery of fish samples ensure that the integrity and continuity (i.e., document possession and transfer) of the samples are safeguarded.
- 15. Record the location of all fish and sediment sampling reaches on 1:50,000 aerial photo enlargements. Indicate the location of all gill nets, set lines, etc. deployed in the sampling reach on the aerial photo enlargements. Also indicate on the aerial photographs areas that were electrofished. These aerial photographs are to be included as an appendix in the final report along with detailed habitat information for each site.
- 16. Record habitat information for each collection site as outlined in Schedule G. The Other Uses Group of the NRBS is currently developing meso-scale habitat categories for use on the Study. Slight modifications may therefore be made to the habitat categories presented

in Schedule G. The contractor should consult with Dr. Gordon Walder (Alberta Environmental Protection, Edmonton - (403) 427-2375) before commencing field collections to determine if other habitat information is required. Any modifications that may be made to the habitat categories outlined in Schedule E are expected to be modest.

The intent of this clause is that the contractor will spend only a minimum amount of time (no more than an hour) at each sampling location recording habitat information.

- 17. Document any internal and external abnormalities/deformities on any fish captured under this contract as outlined in Schedule H.
- 18. Age all fish samples in accordance with the methods outlined in MacKay et al. (1990).
- 19. All fish caught under this contract that are of a sufficient size and that are not required for the purpose outlined in these Terms of Reference are to be tagged, measured and released alive. Information to be recorded must include: date, time, sampling site, sampling method, sampler(s), species, weight, fork length, total length, sex (where known), breeding condition (where known) and tag number. This information is to be included as an appendix to the final report. Tagging of fish is to be considered a low priority and should only be undertaken after other fish collected for MFO, sex steroid, contaminant analyses, etc. have been processed. Any external abnormalities/deformities observed on tagged fish should be recorded as outlined in Schedule H.
- 20. Record the tag number, species, weight, total length, fork length and breeding conditions (where known) of any previously tagged fish collected during this project.
- 21. Provide an estimate of Catch Per Unit Effort for each species, for each collection method used at each collection site. This information is to be included in a table(s) in the main report. Record the time all nets, traps, setlines, etc. were placed in and removed from the water. Record the time all electrofishing was started and ended and indicate the area fished. For all nets and seines used record the length of the net and the mesh size. For set lines record the number of hooks on each line, hook size and the bait used. For each net, seine or setline set record the number (including sample or tag number of each fish) of each species in the catch.
- 22. The sexual maturity of fish is to be determined using a qualitative description of the degree of gonadal development. The scale used by Bond & Erickson (1985) is recommended for use.
- 23. All garbage, etc. generated by the contractor during the processing of fish and camping at collection sites is to be removed from the site and disposed of in an appropriate manner.

Particular care must be taken during the disposals of chemical compounds used under this project.

- 24. Sediment samples are to be collected from the lower reaches of the Birch River in September or October 1994 in accordance with the protocols outlined in Schedule I. These samples are also to be handled, stored, transported and delivered in accordance with the protocols outlined in Schedule I.
- 25. Provide the Component Coordinator with written documentation indicating the chain of custody of all samples collected under this project. Staff at the Freshwater Institute, Winnipeg should be advised over the phone and by fax when samples are to be shipped. Copies of all faxes and weigh bills are to be submitted to the Component Coordinator. Chain of custody forms should be developed for samples being shipped to Alberta Environmental Protection. Signed-off forms are to be delivered to the Component Coordinator.
- 26. The contractor is expected to be in regular contact with the Component Coordinator throughout the duration of this contract. At the very least, the contractor must contact the Component Coordinator every other day or the same day if difficulties are encountered in collecting the desired numbers of target species at a particular collection site. Approval for additional sampling effort at any collection site must be granted in advance and in writing by the Component Coordinator.

III. Reporting Requirements

1. The contractor is to prepare a comprehensive report on the fish collections outlined in this Terms of Reference. To facilitate inter-basin and inter-year comparisons of catch data, site collections and population data, and to allow for an assessment of ecosystem health, the format of the report should be consistent with Hvenegaard and Boag (1993). Specifically, the report should include a detailed listing of all sampling locations (including latitude and longitude), a map showing sampling locations, a discussion of sampling, handling and transportation methods, tables and or/figures reporting Catch per Unit Effort data and fish capture techniques, length-frequency distributions, length-weight relationships, length-age relationships and a listing of any individuals from local communities contacted or who participated on this contract.

The report should also include, but not necessarily be limited to, the following:

- a) a summary table noting any internal or external deformities/abnormalities encountered on fish collected under this contract. The presence of any trends in internal or external deformities/abnormalities should be presented as a figure or on a map. Detailed gross pathology sheets prepared for fish with external or internal deformities/abnormalities, along with colour photographs of the deformities/abnormalities, are to be included as an appendix to the report.
- b) a table or appendix documenting the date, sampling location, sample number, collector(s), time of collection, time of processing, age, sex, maturity, total weight, fork length, total length, gutted weight, liver weight, gonad weight, stomach fullness, condition factor, gonadosomatic index and liver somatic index of all fish collected for MFO, sex steroid and contaminant analyses.
- c) a table or appendix documenting relevant information recorded for fish that were tagged and released.
- d) a table or appendix documenting relevant information, including gut contents, in relation to fish killed incidentally under this contract.
- e) a table summarizing habitat characteristics at each collection site. Detailed habitat information is to be presented as an appendix to the report and is to include 1:50,000 aerial photographs of each collection site.
- f) a table or appendix outlining water quality parameters recorded at the beginning and end of each collection period at each collection site.
- g) an appendix containing colour photographs showing the general colour and condition of all internal organs of fish collected. Only one copy of the appendix is to be submitted along with the final report. All print negatives are to be submitted along with the appendix
- h) a summary table and appendix outling the gut contents of fish collected for biochemical and contaminant analyses.

- 2. Ten copies of the draft report are to be submitted to the Component Coordinator by February 15th, 1995.
- 3. Three weeks after the receipt of review comments the contractor is to submit ten cerlox bound copies and two unbound, camera-ready originals of the final report to the Component Coordinator.
- 4. The contractor is to prepare a brief report outlining sediment collections made under this contract. The report is to include information on sampling locations
- 5. Ten copies of the draft sediment report are to be submitted to the Component Coordinator by February 15th, 1995.
- 6. Three weeks after the receipt of review comments the contractor is to submit ten cerlox bound copies and two unbound, camera-ready originals of the final sediment report to the Component Coordinator.
- 7. The Contractor is to provide draft and final reports in the style and format outlined in the NRBS document, "A Guide for the Preparation of Reports," which will be supplied upon execution of the contract.

The final report is to include the following: an acknowledgement section that indicates any local involvement in the project, Report Summary, Table of Contents, List of Tables, List of Figures and an Appendix with the Terms of Reference for this project.

Text for the report should be set up in the following format:

- a) Times Roman 12 point (Pro) or Times New Roman (WPWIN60) font.
- b) Margins; are 1" at top and bottom, 7/8" on left and right.
- c) Headings; in the report body are labelled with hierarchical decimal Arabic numbers.
- d) Text; is presented with full justification; that is, the text aligns on both left and right margins.
- e) Page numbers; are Arabic numerals for the body of the report, centred at the bottom of each page and bold.
- If photographs are to be included in the report text they should be high contrast black and white.
- All tables and figures in the report should be clearly reproducible by a black and white photocopier.
- Along with copies of the final report, the Contractor is to supply an electronic version of the report in Word Perfect 5.1 or Word Perfect for Windows Version 6.0 format.

- Electronic copies of tables, figures and data appendices in the report are also to be submitted to the Component Coordinator along with the final report. These should be submitted in a spreadsheet (Quattro Pro preferred, but also Excel or Lotus) or database (dBase IV) format. Where appropriate, data in tables, figures and appendices should be geo-referenced.
- 8. All figures and maps are to be delivered in both hard copy (paper) and digital formats. Acceptable formats include: DXF, uncompressed Eøø, VEC/VEH, Atlas and ISIF. All digital maps must be properly geo-referenced.
- 9. All sampling locations presented in report and electronic format should be geo-referenced. This is to include decimal latitudes and longitudes (to six decimal places) and UTM coordinates. The first field for decimal latitudes/longitudes should be latitudes (10 spaces wide). The second field should be longitude (11 spaces wide).
- 10. The contractor is also to prepare a presentation package of 10-25, 35 mm colour slides that can be used at public meetings to summarize the project, methods and key findings. One original and four duplicates of each slide are to be given to the Component Coordinator by December 1, 1994.

IV. Contract Administration

This project is being conducted under the Contaminants Component of the Northern River Basins Project (Dr. John Carey, National Water Research Institute, Burlington - Contaminants Component Leader).

The component coordinator for this project is:

Greg Wagner Alberta Environmental Protection 9th Floor, Oxbridge Place 9820 - 106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-2375 fax: (403) 422-4190 home phone: (403) 425-2060

Questions of an administrative nature should be directed to him. In his absence, the following person is to be notified:

> Richard Chabaylo Office of the Science Director Northern River Basins Study 690, Standard Life Centre 10405 - Jasper Avenue Edmonton, Alberta T5J 3N4 work phone: (403) 427-1742 fax: (403) 422-3055 home phone: (403) 469-8446

The Scientific Authorities for this project are:

Dr. Lyle Lockhart Research Scientist Fisheries and Oceans Canada Fresh Water Institute 501 University Crescent Winnipeg, Manitoba R3T 2N6 work phone: (204) 983-7113 fax: (204) 984-2401 home phone: (204) 832-2878 Questions of a scientific nature related to the collection of fish for MFO analysis should be directed to him.

Dr. Derek Muir Research Scientist Fisheries and Oceans Canada Freshwater Institute 501 University Crescent Winnipeg, Manitoba R3T 2N6 work phone: (204) 983-5168 fax: (204) 984-2403

Questions of a scientific nature related to the collection of fish for contaminant analyses should be directed to him.

V. Literature Cited

- Barton, B. A., C. P. Bjornson and K. L. Egan. 1993a. Special Fish Collections, Upper Athabasca River, May 1992. Northern River Basins Study Project Report No. 8. Prepared by: Environmental Management Associates, Calgary, Alberta. 37 pp. + appendices.
- Barton, B. A., D. J. Patan and L. Seely. 1993b. Special Fish Collections, Upper Athabasca River, September and October 1992. Northern River Basins Study Project Report No. 10. Prepared by: Environmental Management Associates, Calgary, Alberta. 50 pp. + appendices.
- Berry, D. K. 1986. Migration Patterns of Fish in the Lower Athabasca River and Peace-Athabasca Delta Regions of Alberta. Fish and Wildlife Division, Alberta Forestry, Lands and Wildlife. 42 pp.
- Boag, T. D. 1993. A General Fish and Riverine Habitat Inventory, Peace and Slave Rivers, April to June 1992. Northern River Basins Study Project Report No. 8. Prepared by: D. A. Westworth & Associates, Edmonton, Alberta.
- Boag, T. D. and W. C. MacKay. In prep. a. The Pattern of Growth of Burbot (Lota lota) in Central Alberta.
- Boag, T. D. and W. C. MacKay. In prep. b. Environmental Effects on the Fecundity of Burbot (Lota lota).
- Bond, W. A. and R. N. Erickson. 1985. Life History Studies of Anadromous Coregonid Fishes in Two Freshwater Lake Systems on the Tuktoyaktuk Peninsula, Northwest Territories. Canadian Technical Report of Fisheries and Aquatic Sciences 1336.
- Brown, S. B., R. E. Evans, L. Vandenbyllaardt and A. Bordeleau. 1993. Analyses and Interpretation of Steroid Hormones and Gonad Morphology in Fish, Upper Athabasca River, 1992. Northern River Basins Study Project Report No. 13. Prepared by: Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba. 82 pp.
- Clayton, T. and C. McLeod. 1994. Seasonal Movements of Radio Tagged Fish, Upper Athabasca River, August 1992 to March 1993. Northern River Basins Study Project Report No. 33. Prepared by: R. L. & L. Environmental Services Ltd., Edmonton, Alberta. 48 pp. + appendices.
- Dutton, M. D., M. Stephenson and J. F. Klaverkamp. 1993. A Mercury Saturation Assay for Measuring Metallothionein in Fish. Environmental Toxicology and Chemistry. Vol 12: 1193-1202.

- Environment Canada and Department of Fisheries and Oceans. 1993. Technical Guidance Document for Aquatic Environmental Effects Monitoring Related to Federal Fisheries Act Requirements. Version 1 (April 1993).
- Guillou, A., G. Choubert and J. de la Noue. 1993. Separation and Determination of Carotenoids, Retinol, Retinal, and Their Dyhydro Forms by Isocratic Reversed-Phase HPLC. Food Chemistry 476: 93-99.
- Hodson, P. V., P. J. Kloepper-Sams, K. R. Munkittrick, W. L. Lockhart, D. A. Metner, P.L. Luxon, I. R. Smith, M. M. Gagnon, M. Servos and J. F. Payne. 1991. Protocols for Measuring Mixed Function Oxygenases of Fish Liver. Canadian Technical Report of Fisheries and Aquatic Sciences 1829.
- Steve E. Hrudey & Associates Ltd. 1988. An Assessment of Freshwater Impacts from Petroleum Hydrocarbons on the MacKenzie River at Norman Wells, NWT. Prepared for: Environmental Protection, Conservation and Protection, Environment Canada, Western and Northern Region, Yellowknife District Office, Environment Canada. Report CP(EP) WNR 87/88-5C.
- Hvenegaard, P. J. and T. Boag. 1993. Burbot Collections, Smoky, Wapiti and Peace Rivers, October and November, 1992. Northern River Basins Study Project Report No. 12. Prepared by D. A. Westworth & Associates Ltd., Edmonton, Alberta.
- Lockhart, W. L. and D. A. Metner. 1992. Applications of Hepatic Mixed Function Oxidase Enzyme Activities to Northern Freshwater Fish: I. Burbot, *Lota lota*. Marine Environmental Research 34: 175-180.
- Lockhart, W. L., D. A. Metner and D. F. Kenny. 1993. Liver Microsomal Mixed Function Oxidase in Fish from the Athabasca River, Alberta, Supplied Under the Representative Area Program of the Northern River Basins Study, 1992 (draft). Prepared by: Department of Fisheries and Oceans, Winnipeg. Prepared for: Northern River Basins Study, Edmonton. 25 pp.
- MacKay, W. C., G. R. Ash and H. J. Norris (ed.). 1990. Fish Ageing Methods for Alberta. R. L. & L. Environmental Services Ltd. in association with Alberta Fish And Wildlife Division and the University of Alberta. 113 pp.
- McLeod, C. and T. Clayton. 1993. Fish Radiotelemetry Demonstration Project, Upper Athabasca River, May to August 1992. Northern River Basins Study Project Report No. 11. Prepared by R. L. & L. Environmental Services Ltd., Edmonton. 42 pp.

- McMaster, M. E., K. R. Munkittrick and G. J. Van Der Kraak. 1992. Protocol for Measuring Circulating Levels of Gonadal Sex Steroids in Fish. Canadian Technical Report of Fisheries and Aquatic Sciences 1836.
- Morgan, J. D., G. A. Vigers, P. G. Nix and J. M. Park. 1987. Determination of Hydrocarbon Uptake and Effects on MacKenzie River Fishes Using Bile Analysis. Water Pollution Research Journal of Canada. 22(4): 604-615.
- Muir, D. C. G., C. A. Ford, N. P. Grift, D. A. Metner and W. L. Lockhart. 1990. Geographic Variation of Chlorinated Hydrocarbons in Burbot (*Lota lota*) from Remote Lakes and Rivers in Canada. Archives of Environmental Contaminants and Toxicology, 19: 530-542.
- Paetz, M. 1984. Fish and Fisheries of the Peace River Basin: Their Status and Environmental Requirements. Prepared for: Planning Division, Alberta Environment. 240 pp.
- Palace, V. P. and S. B. Brown. 1994. HPLC Determination of Tocopherol, Retinol, Dehydroretinol and Retinyl Palmitate in Tissues of Lake Char (Salvelinus namaycush) Exposed to Coplanar 3,3',4,4',5-Pentachlorobiphenyl. Environmental Toxicology and Chemistry, Vol. 13, No. 3: 473-476.
- R. L. & L. Environmental Services Ltd. 1994a. A General Fish and Riverine Habitat Inventory, Athabasca River, Athabasca River, April to May 1992. Northern River Basins Study Project Report No. 32. 74 pp. + appendices.
- R. L. & L. Environmental Services Ltd. 1994b. Athabasca River Fish and Habitat Inventory, Fall 1993 (draft). Prepared for: Northern River Basins Study. 129 pp. + appendices.
- R. L. & L. Environmental Services Ltd/Environmental Management Associates. 1985. Burbot Movements and Domestic Utilization in the Slave River, N.W.T. Prepared for: Slave River Hydro Study Group.
- Swanson, S (ed.). 1992. Wapiti/Smoky River Ecosystem Study. Prepared for: Weyerhauser Canada and Procter and Gamble. Prepared by: Sentar Consultants Ltd.
- Wallace, R.-R. and P. J. McCart. 1984. The Fish and Fisheries of the Athabasca River Basin: Their Status and Environmental Requirements. Prepared for: Planning Division, Alberta Environment. 269 pp. + appendices.

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE A LOCATION AND QUANTITY OF FISH TO BE COLLECTED

1. The study area includes the Peace, Athabasca and Slave river basins of Alberta and the Northwest Territories. Fish collections are to be made at the following locations:

Athabasca River¹

Upstream of Hinton (between Muskata Creek and Brule Lake) Downstream of Hinton (between Hinton and Whitecourt) Downstream of Whitecourt Downstream of AlPac In the vicinity of Fort MacKay⁶ Peace-Athabasca Delta (Quatre Fourche⁷ or Jackfish Lake Fishing Village)⁶ Lake Athabasca (off Goose Island)⁶

Wapiti-Smoky-Peace Rivers²

Wapiti River upstream of Grande Prairie

Smoky River upstream of confluence with the Wapiti River (near Grande Cache) Smoky River downstream of confluence with the Wapiti River

Peace River between BC border and Dunvegan (preferably near BC border) Peace downstream of the Daishowa mill Peace downstream of Fort Vermilion⁶

Slave River³

Slave River at Fort Fitzgerald⁶ Slave River Delta/Great Slave Lake^{6,8}

Tributaries

McLeod River⁴ Lesser Slave River (downstream of Slave Lake Pulp)⁴ Clearwater River⁴ Pembina River⁴ Little Smoky River⁵ Wabasca River⁵

Reference Site

Birch River^{4,6,7,9}

8

- ¹ Target species to be collected are to include burbot, northern pike and longnose sucker. To the extent possible, sampling should be carried out in appropriate habitats at locations near to those outlined in Barton *et al.* (1993a & b) and R. L. & L. Environmental Services Ltd. (1994a). Please note that northern pike do not frequently occur on the Athabasca River upstream of the Berland River Bridge.
- ² Target species to be collected are to include burbot, northern pike, longnose sucker and flathead chub. To the extent possible, sampling locations should be similar to those outlined in Hvenegaard and Boag (1993).
- ¹ Target species to be collected are to include burbot, if available, northern pike, longnose sucker and flathead chub.
- ⁴ Target species to be collected are to include burbot, northern pike and longnose sucker. Sampling should be carried out in suitable habitat on the tributaries some distance (at least 10 km) upstream from the confluence with the Athabasca River. The intent is to collect fish that are potentially resident in the tributaries. Where possible, collections should be located upstream of major obstacles that may limit fish passage.
- ⁵ Collections are to include burbot, northern pike, longnose sucker and flathead chub. Sampling should be carried out in suitable habitat on the tributaries some distance (at least 10 km) upstream from the confluence with the Peace River. The intent is to collect fish that may be resident in the tributaries. Where possible, collections should be located upstream of major obstacles that may limit fish passage.
- Mr. Sonny Flett, Traditional Knowledge Component Leader, NRBS (phone: (403) 427-1742, fax: (403) 422-3055) is to be informed one to two weeks in advance about the timing of fish collections at these sites.
- ⁷ Collection permit required from Wood Buffalo National Park.
 - Collections at this site require prior authorization from the Science Institute of the Northwest Territories. Contact: Tanya Joyce at (403) 873-7592.
- ⁹ Sediment collections are to be made at this site.

- 2. Fish collections are to be made from August to mid-October 1994.
- 3. A minimum of ten adult male and a minimum of ten adult female burbot (>400 g), longnose sucker and flathead chub are to be collected from the sites identified in 1, above, for contaminant and biochemical analyses. <u>Ideally</u>. for these species, fifteen adult fish of each sex should be collected at each site (Hodson *et al.* 1991).
- 4. Northern pike caught incidentally during the collection of other target fish species (burbot, longnose sucker and flathead chub) are also to be collected for contaminant and biochemical analyses. Up to fifteen adult male and fifteen adult female northern pike may be retained from each site.
- 5. Up to ten individuals of other fish species caught incidentally during target fish collections are to be saved for contaminant analyses at each sampling location.
- 6. In the event that difficulty is experienced in collecting the desired species and age class at the stipulated sites, the contractor is to consult with the Component Coordinator as soon as possible. Any deviation from the above requirements must be approved in advance and in writing by the Component Coordinator.

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE B BURBOT COLLECTION AND HANDLING PROTOCOL

- 1. Burbot are to be collected at all sites using set lines. The sampling period <u>must</u> be standardized between collection sites; suggest one-half hour after sunset to one-half hour after sunrise. It is important to obtain blood and tissue sub-samples for analyses from fish that are alive after collection and immediately before tissue sampling, and which have experienced minimum handling stress.
- 2. Burbot tissues are being collected for the following purposes:

Blood	Sex Steroid	s, Stabl	e Isotopes		
Liver	MFO, Re	tinols,	Possible	Metallothionein	Analyses,
	Contaminar	nts			
Kidneys	Possible Metallothionein Analyses				
Intestine	Possible Metallothionein Analyses				
Gills	Possible Metallothionein Analyses				
Gonads	Gonad Morphology, State of Sexual Developmen				
Stomach Contents	Diet, Possible Stable Isotope Analyses				
Carcass	Possible Contaminant and Stable Isotope Analyses				
Bile	Possible Co	ntamin	ant Analyse	es	

- 3. Several other measurements must be taken on burbot at the time of processing. These include: total body weight (g), gutted carcass weight (weight (g) after removal of viscera), gonad weight (g), liver weight (g), fork length ((cm), tip of the snout to the deepest fork in the tail), total length ((cm), tip of the snout to the longest point of the tail), sex and age (y). From these measurements, the condition factor (CF = (total weight/length³) x 10⁵, gonadosomatic index (GSI = 100 x (gonad weight/gutted weight) and liver somatic index (LSI = 100 x liver weight/gutted weight) are to be calculated.
- 4. Mr. Don Metner (Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6 ph. (204) 983-5168, fax (204) 984-2403) will accompany the contractor to the first collection site to review proper methods for sub-sampling tissue from Burbot. The contractor is to contact Mr. Metner to make arrangements for him to be present during the initial field collections. Mr. Metner's expenses will be paid for by the NRBS. All contractor staff involved with the collection and processing of fish must attend the field session with Mr. Metner.

- 5. A sample numbering system must be designed and used to facilitate tracking of all tissue sub-samples taken from the same fish. All tissue samples <u>must</u> be appropriately labelled.
- 6. Data sheets are to be developed for each collection site and are to include the following: 1) sampling location, 2) collection method, 3) set number, 4) date, 5) time the fish is taken out of the water, 6) sample number, 7) names of individuals collecting and processing the fish, 8) time the blood sample is taken, 9) time the blood sample is centrifuged, 10) time the fish is killed, 11) time the liver, gall bladder, kidney, gill arches and intestines are removed from the body and frozen, 12) fork length, 13) total length, 14) amount of bile collected, 15) total weight, 16) gutted weight, 17) liver weight, 18) percent stomach fullness, 19) gonad weight, 20) sex, and 21) sexual maturity.
- 7. All tissue samples must be quick frozen between slabs of dry ice or in liquid nitrogen immediately after removal from the body.
- 8. Immediately after the fish is taken from the water (only live fish are to be used for sex steroid analyses) remove 1-3 mL of blood from the caudal vessel using a separate heparinized needle for each fish. Fish can be immobilized during blood sampling by placing the fish vent side up in a longitudinal slit cut into a piece of high density foam. Transfer each blood sample to an appropriately stoppered centrifuge tube, label and store it on ice until centrifuging. Within 30 minutes after blood removal centrifuge the blood (5 to 7 minutes), aspirate plasma into appropriately labelled storage tubes and freeze on dry ice. This blood sample is being collected for sex steroid analyses and <u>must</u> be stored and transported at -60°C.
- 9. To minimize within-site variation, blood samples for sex steroid analyses must be taken from same sex fish within a consistent two to three hour period after removal from the water at all sampling locations (McMaster et al. 1992: pg. 6).
- 10. Re-stopper the centrifuge tube with the remaining red blood cells, freeze and retain for possible stable isotope analyses. This blood sample must be stored and transported at 20°C or lower.
- 11. After bleeding, fish can be marked and placed in a wet well for holding while blood samples are being collected from other fish and while blood samples are being centrifuged.
- 12. An external examination should then be conducted for abrasions, lesions, secondary sexual characteristics (if obvious), missing fins or eyes, opercular, fin or gill damage, or other anomalous features. All external and internal lesions should be recorded as to position, shape, size, colouration, depth, appearance on cut surface and any other features of note. This information is to be recorded on a gross pathology sheet contained in Schedule G for any fish showing abnormalities/deformities. The checklist presented in Schedule G should be used as a guide for reviewing internal and external abnormalities/deformities on each

fish. Prepare a photographic record of any external or internal abnormalities/deformities encountered. A standard Kodak Colour chart is to be shown in each photograph of external or internal abnormalities or deformities. A label clearly showing the sample number of the fish is also to be shown in each photo.

- 13. Sampling of other fish tissues can begin after blood sampling and the external examination have been completed. Fish should be euthanized via concussion, cervical dislocation or with an overdose of anaesthetic. Work must progress quickly on the euthanized fish and tissue samples must be quick frozen between slabs of dry ice or in liquid nitrogen as soon as possible after death to avoid spoiling of tissue samples.
- 14. Total and fork length should be measured to the nearest mm. The fish should then be towelled dry and weighed to the nearest g. Separate towels should be used to dry each fish.
- 15. Open the fish ventrally and examine fish for internal lesions and record any abnormalities. Care should be taken not to cut into internal organs when opening the fish. A summary table is to be included in the final report outlining the frequency and types of abnormalities and deformities encountered.
- 16. Prepare a photographic record of the internal organs of the fish before organ removal. Close-up photographs are to be taken of all fish using 35 mm, print film (100 - 200 ASA, lower ASAs preferred because of reduced graininess in the photo) in a camera having a 50-55 mm or other appropriate lens. A standard Kodak Colour Chart is to be shown in each photo. A label clearly showing the sample number of the fish is also to be shown in each photo. The intestines of the fish should be moved to one side of the body before the picture is taken so that the liver and gonads can be clearly seen in the picture.
- 17. Cut the esophagus and lower intestine (immediately anterior to the vent) to allow total removal of the gastrointestinal tract.

If only one person is involved with sample processing, the gastrointestinal tract should be kept cool (not frozen) until further work is carried out under step 21. This can be accomplished by placing the sample in a whirlpak bag and storing it over ice or in a container cooled by a small amount of dry-ice. If two people are involved with sample processing, then one person should move immediately to step 21.

18. Tie-off the bile duct leading to the gall bladder using a haemostat or clamp. Sever the bile duct above where it has been tied off and remove the gall bladder from the body cavity. Care must be taken not to rupture the gall bladder as bile leakage can contaminate other tissue samples. Once the gall bladder has been removed from the body cavity, drain the bile using a tuberculin syringe (Becton Dickson, 1cc26G3/8, Tuberculin, part number 9625). Note the volume of bile collected, cap the syringe, label the syringe and freeze the

syringe containing the bile on dry ice or in liquid nitrogen. The bile must be stored and transported at or below -20°C.

19. Next remove the liver (this must occur within two minutes of the death of the fish) and weigh and record weight to the nearest 0.1 gm. The spleen should be removed from the liver before weighing.

21

- a) Immediately after weighing, separate the longest posterior branch of the liver from the liver. This tissue sample will be used for MFO, metallothionein and retinol analyses and at least 10 g of tissue sample are required.
- b) Rinse this sample with 0.15 M KCl to remove traces of blood and bile. Each sample of the longest posterior branch of the liver must then be placed in a whirlpak (air removed as much as possible), labelled and frozen between slabs of dry ice or in liquid nitrogen. For tissue storage and transport, all liver MFO samples must be maintained at -60°C or lower; storage at -20°C is not acceptable even for very short periods of time. Liver tissue <u>must</u> also be stored and transported in the dark.
- c) The remaining portion of the liver is to be placed in a Department of Fisheries and Oceans approved contaminant free bag (to be supplied to the contractor by the NRBS), labelled and frozen between slabs of dry ice. This liver sample will be retained for contaminant analyses. The liver sample for contaminant analyses must be stored and transported at or below -20°C.
- 20. Remove the kidneys by making lengthwise incisions along each edge of the tissue and then detach using the "spoon" end of a stainless steel weighing spatula by applying firm, but gentle, pressure against the upper abdominal cavity wall (ie. against the dorsal aorta). In this procedure, the kidney is scraped away from the dorsal aorta and all associated connective tissue. The kidney is then to be placed in a cryovial or whirlpak, labelled and frozen in liquid nitrogen or dry ice. The kidney is to be removed from the fish and frozen as soon after death as possible. The kidney tissue <u>must</u> be stored and transported in the dark at -60°C.
- 21. Remove the intestine by severing immediately posterior to the stomach, or pyloric caeca, if applicable, and immediately anterior to the vent (anus). Remove gut contents from the intestine by running the gut through pinched fingers several times in order to squeeze out the contents. Then place the intestines in a whirlpak (air removed as much as possible), label and freeze on dry ice or in liquid nitrogen. The intestines are to be removed from the fish and frozen as soon after death as possible. Intestinal tissue <u>must</u> be stored and transported in the dark at -60°C.

- 22. Gut contents from each fish are to be placed in labelled containers and preserved in a 5% formalin solution. Gut contents are being retained for visual inspection and possible nitrogen stable isotope analyses. Gut contents from fish collected at the Slave River sites are to be delivered to the Freshwater Institute. Gut contents from all other locations are to be visually inspected by the contractor and the contents recorded. After visual inspection, these samples are also to be delivered to the Freshwater Institute.
- 23. Remove the gill arches and attached filaments by severing the dorsal and ventral cartilaginous attachments of the arches to the surrounding oral cavity. Place the gill arches in a whirlpak, label and freeze on dry ice or in liquid nitrogen. Gill arches are to be removed from the fish and frozen as soon after death as possible. Gill arches <u>must</u> be stored and transported in the dark at -60°C.
- 24. Score each fish for gender and for state of sexual development.
- 25. Remove gonads, weigh and record the weight to nearest 0.1 gm. Each gonad sample must then be prepared and stored as follows:

Materials

HistoPrep Tissue Capsules ((disposable polypropylene) $38 \times 8 \text{ mm}$ (Dia XH)) are used in preserving and processing tissues. Pertinent information (e.g., fish sample number) and identification of the specimen should be written on each capsule with an HB pencil. The capsules are available from Fisher Scientific (product number 15-182-218).

Nalgene Square Polyethylene wide mouth bottles (Ngle 2114) of 1 litre capacity have proven to be excellent for field sampling simply because they do not leak. Bottles containing about 750 ml of Davidson's solution are packed (two to a bag) in plastic bags (14" x 22") and secured with masking tape for transportation. The bottles are available from Fisher Scientific (product number 03-3120).

Davidson's fixative is used to preserve the pieces of gonads that have been removed from each fish. Tissue capsules containing gonad samples are immersed in this solution for at least 24 hours and can be stored for several weeks. The Davidson solution can be prepared as follows:

95% ethyl alcohol	300.0 mL
formaldehyde	200.0 mL
glacial acetic acid	100.0 mL
distilled water	300.0 mL
glycerine	100.0 mL

These ingredients should be adequately stirred.

A 5% buffered formalin solution is also used to preserve pieces of ovary. When fresh eggs are placed directly into 5% buffered formalin, there is no significant alteration in egg weight. Labelled tissue capsules are used to hold and identify each sample. The formalin is made up as follows:

formaldehyde	50.0 mL
sodium phosphate monobasic	4.0 g
sodium phosphate dibasic, anhydrous	6.5 g
distilled water added to make 1 litre	

Procedure for Fixation:

Two litre Nalgene bottles containing 750 mL Davidson's and two bottles containing 5% formalin solutions are readied. After weighing the gonads, pieces are dissected out with a scalpel. Generally, the mid-region of the gonad from one side, i.e., the left gonad is used from each fish. It is important that the tissue pieces do not exceed 0.5 cm in thickness but may be slightly larger (usually not greater than 1.0 cm) in the other dimensions. The tissue pieces should easily fit into the tissue capsules without being squashed, and should not take up more than half the capsule space. If a sensitive analytical balance is available, the pieces of tissue to be placed in formalin can be weighed and the weight recorded (0.1 g) in a notebook and on the capsule. Gonad tissue from each fish should be placed into two capsules. Tissue should be placed into each of the fixatives and with forceps, momentarily submersed (the tissue capsules tend to float in the fixatives). No more than 24 tissue capsules are to be placed in each 1 litre bottle to ensure adequate fixative volume. Duplicate tissue samples from the same fish should be stored in separate Nalgene bottles. Nalgene bottles should be labelled to indicate which samples they contain.

For female burbot caught at the Slave River sites, the remaining egg mass should be placed in small glass or plastic jars, or whirlpaks and preserved in 5% buffered formalin. This tissue sample is to be delivered to the Freshwater Institute.

- 26. Weigh the gutted carcass of the fish.
- 27. Retain, store and label the appropriate ageing structure (otoliths see MacKay *et al.* 1990: pgs. 78-80) of all burbot sampled.
- 28. Place the remaining fish carcass in a contaminant free bag (to be supplied to the contractor by the NRBS), label and store on dry ice or in liquid nitrogen. The carcass must be stored and transported at or below -20°C.

- 29. The use of dry ice or liquid nitrogen for initial freezing and shipping of all samples is mandatory. If dry ice is used, tissue samples should be placed between slabs of dry ice and liberal quantities of dry ice should be placed along the sides and top and bottom of each cooler.
- 30. The use of sturdy styrofoam coolers is most practical and is recommended for storage and transport of fish samples. Styrofoam coolers of weak construction may not assure constant freezing and may break down during shipping. Duct tape should be wrapped around coolers before shipping to ensure that the lid is held firmly in place during transport. Coleman type coolers may be used but may not necessarily be returned immediately for repetitive use. The Contractor is responsible for picking up coolers when notified by Alberta Environmental Protection or Freshwater Institute. A listing of the contents of each cooler should be attached to each cooler. A copy of the listing for each cooler should also be submitted to the component coordinator.
- 31. The gutted carcass, liver sample secured for contaminant analyses and bile samples can be stored together in the same coolers. These tissue samples will be delivered to Alberta Environmental Protection, Edmonton. All other tissue samples can also be stored together in the same cooler (they should be kept in the dark until analyzed), but they <u>must not</u> be stored in the same cooler as the carcass, liver sample secured for contaminant analyses and bile samples. These tissue samples will be delivered to the Freshwater Institute, Winnipeg.
- 32. With the exception of carcasses, liver samples secured for contaminant analyses and bile samples, all tissues are to be shipped directly to:

Don Metner Fisheries and Oceans Canada Freshwater Institute 501 University Crescent Winnipeg, Manitoba R3T 2N6 work phone: (204) 983-5168 fax: (204) 984-2403

-or-

Dr. Lyle Lockhart

Prior arrangements must be made with Mr. Metner or Dr. Lockhart to ensure that samples are picked-up immediately upon arrival in Winnipeg. The intent is that samples will make

there way to appropriate freezing facilities as soon as they get to Winnipeg. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

33. All other samples (livers and carcasses for contaminant analyses, and bile samples) are to be delivered to:

Earle Baddaloo Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 434-8967

-01-

Dr. Sub Ramamoorthy Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 435-8137

Prior arrangements must be made with Mr. Baddaloo or Dr. Ramamoorthy to ensure that samples are picked-up immediately upon arrival in Edmonton. The intent is that samples will make there way to appropriate freezing facilities as soon as they are delivered to Edmonton. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

34. If any problems are encountered in following the above protocols the contractor is to contact the scientific authority for advice. Any deviation from the above established protocol/procedure should be justified and accounted for in writing and a detailed description of what was done is to be submitted with the fish sample; this is to assure credibility and validity of results.

- 35. With the exception of Fisheries and Oceans Canada recommended contaminant free bags, the contractor will provide all equipment and supplies required to collect, process, preserve and transport fish collected under this contract.
- 36. All sampling equipment and specimens must be kept away from fuel, exhaust, oil, smoke, plastic and anything else that may potentially contaminate samples.
- 37. All dissection equipment **must** be decontaminated before processing begins on each fish. Dissecting equipment is to be rinsed in acetone, air dried, then rinsed in hexane and air dried. Field crews should where masks to avoid inhaling fumes of acetone and hexane. It is also recommended that acetone and hexane not be used in enclosed spaces such as tents and that the decontamination of equipment proceed away from the main work area used to process fish.
- 38. It is recommended that the contractor use disposal rubber or plastic gloves during the processing fish. A new pair of gloves should be used to process each fish.
- 39. All cutting surfaces used to process fish should be wiped clean with wet paper towels after each fish has been processed. Separate paper towels must be used for each cleaning session.

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE C

COLLECTION AND HANDLING PROTOCOL FOR NORTHERN PIKE, LONG-NOSE SUCKER AND FLATHEAD CHUB

- 1. Longnose sucker and flathead chub may be collected using a variety of techniques including:
 - Electrofishing
 - Trap nets
 - Gill nets
 - Seines
 - Set lines
 - Angling

However, only one sampling method can be selected for each species and once a sampling method is selected it <u>must</u> be employed for that species at <u>all</u> sampling locations (McMaster *et al.* 1992: pg. 6). It is important to obtain blood and tissue sub-samples for analyses from fish that are alive after collection and immediately before tissue sampling, and which have experienced minimum handling stress.

- 2. Northern pike are to be collected incidentally during the collection of burbot, longnose sucker and flathead chub. No collection method is to be employed that specifically targets northern pike.
- 3. Northern pike, longnose sucker and flathead chub tissue samples are being collected for the following purposes:

Blood	Sex Steroids, Stable Isotopes				
Liver	MFO, Retinols, Possible Metallothionein Analyses,				
	Contaminants				
Kidneys	Possible Metallothionein Analyses				
Intestine	Possible Metallothionein Analyses				
Gills	Possible Metallothionein Analyses				
Gonads	Gonad Morphology, State of Sexual Development				
Stomach Contents	Diet, Possible Stable Isotope Analyses				
Carcass	Possible Contaminant and Stable Isotope Analyses				
Bile	Possible Contaminant Analyses				

- 4. Several other measurements must be taken on fish at the time of processing. These include: total body weight (g), gutted carcass weight (weight (g) after removal of viscera), gonad weight (g), liver weight (g), fork length ((cm), tip of the snout to the deepest fork in the tail), total length ((cm), tip of the snout to the longest point of the tail) sex and age (y). From these measurements, the condition factor (CF = (total weight/length³) x 10⁵, gonadosomatic index (GSI = 100 x (gonad weight/gutted weight) and liver somatic index (LSI = 100 x liver weight/gutted weight) are to be calculated.
- 5. Mr. Don Metner (Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6 ph. (204) 983-5168, fax (204) 984-2403) will accompany the contractor to the first collection site to review proper methods for sub-sampling tissue from target fish species. The contractor is to contact Mr. Metner to make arrangements for him to be present during the initial field collections. Mr. Metner's expenses will be paid for by the NRBS. All contractor staff involved with the collection and processing of fish must attend the field session with Mr. Metner.
- 6. A sample numbering system must be designed and used to facilitate tracking of all tissue sub-samples taken from the same fish. All tissue samples <u>must</u> be appropriately labelled.
- 7. Data sheets are to be developed for each collection site and are to include the following: 1) sampling location, 2) collection method, 3) set number, 4) date, 5) time the fish is taken out of the water, 6) sample number, 7) names of individuals collecting and processing the fish, 8) time the blood sample is taken, 9) time the blood sample is centrifuged, 10) time the fish is killed, 11) time the liver, gall bladder, kidney, gill arches and intestines are removed from the body and frozen, 12) fork length, 13) total length, 14) amount of bile collected, 15) total weight, 16) gutted weight, 17) liver weight, 18) percent stomach fullness, 19) gonad weight, 20) sex, and 21) sexual maturity.
- 8. All tissue samples should be quick frozen between slabs of dry ice or in liquid nitrogen immediately after removal from the body.
- 9. Immediately after the fish is taken from the water (only live fish are to be used for sex steroid analyses) remove 1-3 Ml of blood from the caudal vessel using a separate heparinized needle for each fish. Fish can be immobilized during blood sampling by placing the fish vent side up in a longitudinal slit cut into a piece of high density foam. Transfer each blood sample to an appropriately stoppered centrifuge tube, label and store it on ice until centrifuging. Within 30 minutes after blood removal centrifuge the blood (5 to 7 minutes), aspirate plasma into appropriately labelled storage tubes and freeze on dry ice. This blood sample is being collected for sex steroid analyses and <u>must</u> be stored and transported at -60°C.

- 10. To minimize within-site variation, blood samples for sex steroid analyses <u>must</u> be taken from same sex fish within a consistent two to three hour period at all sampling locations (McMaster et al. 1992: pg. 6).
- 11. Re-stopper the centrifuge tube with the remaining red blood cells, freeze and retain for possible stable isotope analyses. This blood sample must be stored and transported at or below -20°C.
- 12. After bleeding, fish can be marked and placed in a wet well for holding while blood samples are being collected from other fish and while blood samples are being centrifuged.
- 13. An external examination should then be conducted for abrasions, lesions, secondary sexual characteristics (if obvious), missing fins or eyes, opercular, fin or gill damage, or other anomalous features. All external and internal lesions should be recorded as to position, shape, size, colouration, depth, appearance on cut surface and any other features of note. This information is to be recorded on a gross pathology sheet contained in Schedule G for any fish showing abnormalities/deformities. The checklist presented in Schedule G should be used as a guide for reviewing internal and external abnormalities/deformities on each fish. Prepare a photographic record of any external or internal abnormalities/deformities encountered. A standard Kodak Colour chart is to be shown in each photograph of external or internal abnormalities or deformities. A label clearly showing the sample number of the fish is also to be shown in each photo.
- 14. Sampling of other fish tissues can begin after blood sampling and the external examination have been completed. Fish should be euthanized via concussion, cervical dislocation or with an overdose of anaesthetic. Work must progress <u>quickly</u> on the euthanized fish and tissue samples must be quick frozen between slabs of dry ice or in liquid nitrogen as soon as possible after death to avoid spoiling of tissue samples.
- 15. Total and fork length should be measured to the nearest mm. The fish should then be towelled dry and weighed to the nearest g. Separate towels should be used to dry each fish.
- 16. Open the fish ventrally and examine fish for internal lesions and record any abnormalities. Care should be taken not to cut into internal organs when opening the fish. A summary table is to be included in the final report outlining the frequency and types of abnormalities and deformities encountered.
- 17. Prepare a photographic record of the internal organs of the fish before organ removal. Close-up photographs are to be taken of all fish using 35 mm, print film (100 - 200 ASA, lower ASA preferred because of reduced graininess in the photo) in a camera having a 50-

55 mm or other appropriate lens. A standard Kodak Colour Chart is to be shown in each photo. A label clearly indicating the sample number of the fish is also to be shown in each photo. The intestines of the fish should be moved to one side of the body before the picture is taken so that the liver and gonads can be clearly seen in the picture.

18. Cut the oesophagus and lower intestine (immediately anterior to the vent) to allow total removal of the gastrointestinal tract.

If only one person is involved with sample processing, the gastrointestinal tract should be kept cool (not frozen) until further work is carried out under step 22. This can be accomplished by placing the sample in a whirlpak bag and storing it over ice or in a container cooled by a small amount of dry-ice. If two people are involved with sample processing, then one person should move immediately to step 22.

- 19. Tie-off the bile duct leading to the gall bladder using a haemostat or clamp. Sever the bile duct above where it has been tied off and remove the gall bladder from the body cavity. Care must be taken not to rupture the gall bladder as bile leakage can contaminate other tissue samples. Once the gall bladder has been removed from the body cavity, drain the bile using a tuberculin syringe (Becton Dickson, 1cc26G3/8, Tuberculin, part number 9625). Note the volume of bile collected, cap the syringe, label the syringe and freeze the syringe containing the bile on dry ice or in liquid nitrogen. The bile must be stored and transported at or below -20°C.
- 20. Next remove the liver (this must occur within two minutes of the death of the fish) and weigh and record weight to the nearest 0.1 gm. The spleen should be removed from the liver before weighing. Rinse the liver with 0.15 M KCl to remove traces of blood and bile. The liver must then be placed in a whirlpak bag (air removed as much as possible), labelled and frozen between slabs of dry ice or in liquid nitrogen. For tissue storage and transport the liver sample must be maintained in the dark at -60°C or lower; storage at -20°C is not acceptable even for very short periods of time.
- 21. Remove the kidneys by making lengthwise incisions along each edge of the tissue and then detach using the "spoon" end of a stainless steel weighing spatula by applying firm, but gentle, pressure against the upper abdominal cavity wall (ie. against the dorsal aorta). In this procedure, the kidney is scraped away from the dorsal aorta and all associated connective tissue. The kidney is then to be placed in a cryovial or whirlpak, labelled and frozen in liquid nitrogen or dry ice. The kidney is to be removed from the fish and frozen as soon after death as possible. The kidney tissue <u>must</u> be stored and transported in the dark at -60°C.

- 22. Remove the intestine by severing immediately posterior to the stomach, or pyloric caeca, if applicable, and immediately anterior to the vent (anus). Remove gut contents from the intestine by running the gut through pinched fingers several times in order to squeeze out the contents. Then place the intestines in a whirlpak (air removed as much as possible), label and freeze on dry ice or liquid nitrogen. The intestines are to be removed from the fish and frozen as soon after death as possible. Intestinal tissue <u>must</u> be stored and transported in the dark at -60°C.
- 23. Gut contents from each fish are to be placed in labelled containers and preserved in a 5% formalin solution. Gut contents are being retained for visual inspection and possible nitrogen stable isotope analyses. Gut contents from fish collected at the Slave River sites are to be delivered to the Freshwater Institute. Gut contents from all other locations are to be visually inspected by the contractor and the contents recorded. After visual inspection, these samples are also to be delivered to the Freshwater Institute.
- 24. Remove the gill arches and attached filaments by severing the dorsal and ventral cartilaginous attachments of the arches to the surrounding oral cavity. Place the gill arches in a whirlpak, label and freeze on dry ice or in liquid nitrogen. Gill arches are to be removed from the fish and frozen as soon after death as possible. Gill arches <u>must</u> be stored and transported in the dark at -60°C.
- 25. Score each fish for gender and for state of sexual development.
- 26. Remove gonads, weigh and record the weight to nearest 0.1 gm. Each gonad sample must then be prepared and stored as follows:

Materials

HistoPrep Tissue Capsules ((disposable polypropylene) $38 \times 8 \text{ mm}$ (Dia XH)) are used in preserving and processing tissues. Pertinent information (e.g., fish sample number) and identification of the specimen should be written on each capsule with an HB pencil. The capsules are available from Fisher Scientific (product number 15-182-218).

Nalgene Square Polyethylene wide mouth bottles (Ngle 2114) of 1 litre capacity have proven to be excellent for field sampling simply because they do not leak. Bottles containing about 750 ml of Davidson's solution are packed (2 to a bag) in plastic bags (14" x 22") and secured with masking tape for transportation. The bottles are available from Fisher Scientific (product number 03-3120).

Davidson's fixative is used to preserve the pieces of gonads that have been removed from each fish. Tissue capsules containing gonad samples are immersed in this solution for at

least 24 hours and can be stored for several weeks. The Davidson solution can be prepared as follows:

95% ethyl alcohol	300.0 mL
formaldehyde	200.0 mL
glacial acetic acid	100.0 mL
distilled water	300.0 mL
glycerine	100.0 mL

These ingredients should be adequately stirred.

A 5% buffered formalin solution is also used to preserve pieces of ovary. When fresh eggs are placed directly into 5% buffered formalin, there is no significant alteration in egg weight. Labelled tissue capsules are used to hold and identify each sample. The formalin is made up as follows:

formaldehyde	50.0 mI
sodium phosphate monobasic	4.0 g
sodium phosphate dibasic, anhydrous	6.5 g
distilled water added to make 1 litre	

Procedure for Fixation:

One litre Nalgene bottles containing 750 mL Davidson's and 5% formalin solutions are readied. After weighing the gonads, pieces are dissected out with a scalpel. Generally, the mid-region of the gonad from one side, i.e., the left gonad is used from each fish. It is important that the tissue pieces do not exceed 0.5 cm in thickness but may be slightly larger (usually not greater than 1.0 cm) in the other dimensions. The tissue pieces should easily fit into the tissue capsules without being squashed, and should not take up more than half the capsule space. If a sensitive analytical balance is available, the piece of tissue to be placed in formalin can be weighed and the weight recorded (0.1 g) in a notebook and on the capsule. Gonad tissue from each fish should be placed into two capsules. Tissue should be placed into each of the fixatives and with forceps, momentarily submersed (the tissue capsules tend to float in the fixatives). No more than 24 tissue capsules are to be placed in each 1 litre bottle to ensure adequate fixative volume. Tissue samples from the same fish should be stored in separate Nalgene bottles. Nalgene bottles should be labelled to indicate which samples they contain.

27. Weigh the gutted carcass of the fish.

- 28. Retain, store and label the appropriate ageing structure (see MacKay *et al.* 1990) of all northern pike, longnose sucker and flathead chub sampled.
- 29. Place the remaining fish carcass in a contaminant free bag (to be supplied to the contractor by the NRBS), label and store on dry ice or in liquid nitrogen. The carcass must be stored and transported at or below -20°C.
- 30. The use of dry ice or liquid nitrogen for initial freezing and shipping and shipping of all samples is <u>mandatory</u>. If dry ice is used, tissue samples should be placed between slabs of dry ice and liberal quantities of dry ice should be placed along the sides and top and bottom of each cooler.
- 31. The use of sturdy styrofoam coolers is mandatory for the storage and transport of fish samples. Styrofoam coolers of weak construction may not assure constant freezing and may break down during shipping. Duct tape should be wrapped around coolers before shipping to ensure that the lid is held firmly in place during transport. Coleman type coolers may be used but may not necessarily be returned immediately for repetitive use. The Contractor is responsible for picking up coolers when notified by Alberta Environmental Protection or Freshwater Institute. A listing of the contents of each cooler should be attached to each cooler. A copy of the listing for each cooler should also be submitted to the component coordinator.
- 32. Fish carcasses and bile samples retained for contaminant analyses can be stored together in the same coolers. These tissue samples will be delivered to Alberta Environmental Protection, Edmonton. All other tissue samples can also be stored together in the same cooler (they should be kept in the dark until analyzed), but they <u>must not</u> be stored in the same cooler as the carcasses and bile samples secured for contaminant analyses. These tissues will be delivered to the Freshwater Institute, Winnipeg.

33. With the exception of carcasses secured for contaminant analyses and bile samples, all tissue samples are to be shipped directly to:

Don Metner Fisheries and Oceans Canada Freshwater Institute 501 University Crescent Winnipeg, Manitoba R3T 2N6 work phone: (204) 983-5168 fax: (204) 984-2403

-or-

Dr. Lyle Lockhart

Prior arrangements must be made with Mr. Metner or Dr. Lockhart to ensure that samples are picked-up immediately upon arrival in Winnipeg. The intent is that samples will make their way to appropriate freezing facilities as soon as they get to Winnipeg. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

34. All other samples (bile samples and carcasses for contaminant analyses) are to be delivered to:

Earle Baddaloo Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 434-8967

-0r-

Dr. Sub Ramamoorthy Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 435-8137

Prior arrangements must be made with Mr. Baddaloo or Dr. Ramamoorthy to ensure that samples are picked-up immediately upon arrival in Edmonton. The intent is that samples will make there way to appropriate freezing facilities as soon as they are delivered to Edmonton. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

- 35. If any problems are encountered in following the above protocols the contractor is to contact the scientific authority for advice. Any deviation from the above established protocol/procedure should be justified and accounted for in writing and a detailed description of what was done is to be submitted with the fish sample; this is to assure credibility and validity of results.
- 36. With the exception of Fisheries and Oceans Canada recommended contaminant free bags, the contractor will provide all equipment and supplies required to collect, process, preserve and transport fish collected under this contract.

- 37. All sampling equipment and specimens must be kept away from fuel, exhaust, oil, smoke, plastic and anything else that may potentially contaminate samples.
- 38. All dissection equipment must be decontaminated before processing begins on each fish. Dissecting equipment is to be rinsed in acetone, air dried, then rinsed in hexane and air dried. Field crews should where masks to avoid inhaling fumes of acetone and hexane. It is also recommended that acetone and hexane not be used in an enclosed spaces such as tents and that the decontamination of equipment proceed away from the main work area used to process fish.
- 39. It is recommended that the contractor use disposal rubber or plastic gloves during the processing fish. A new pair of glove should be used to process each fish.
- 40. All cutting surfaces used to process fish should be wiped clean with wet paper towels after each fish has been processed. Separate paper towels used for each cleaning session.

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE D COLLECTION AND HANDLING PROTOCOL FOR NON-TARGET FISH SPECIES FOR ALL SITES EXCEPT SLAVE RIVER COLLECTION SITES

- 1. Up to ten individuals of each non-target fish species from each sampling location that are captured during the collection of target fish species (burbot, northern pike, longnose sucker and flathead chub) are to be retained for contaminant analyses.
- 2. A sample numbering system must be designed and used to facilitate tracking of non-target fish samples.
- 3. For each fish caught record the following information: 1) species, 2) date and time of capture, 3) sampling location, 4) collector(s), 5) set number, 6) weight, 7) fork length, 8) total length, 9) sex (if it can be determined externally), 10) maturity (where it can be determined externally), 10) maturity and 11) sampling method.
- 4. An external examination must be conducted on all fish for abrasions, lesions, secondary sexual characteristics (if obvious), missing fins or eyes, opercular, fin or gill damage, external lesions or other anomalous features. All external lesions should be recorded as to position, shape, size, colouration, depth, appearance on cut surface and any other features of note. This information is to be recorded on a gross pathology sheet contained in Schedule G for any fish showing abnormalities/deformities. Gross pathology sheets presented in Schedule G may have to be modified slightly, to show the body type of the species under examination. The checklist presented in Schedule G should be used as a guide for reviewing internal and external abnormalities/deformities on each fish. Prepare a photographic record of any external abnormalities encountered. A standard Kodak Colour chart is to be shown in each photograph of external abnormalities or deformities. A label clearly showing the sample number of the fish is also to be shown in each photo.
- 5. Retain, store and label the appropriate ageing structure (see MacKay *et al.* 1990) of all fish sampled.
- 6. All fish samples are to be placed into Fisheries and Oceans recommended contaminant-free plastic bags, labelled and frozen on dry ice or in liquid nitrogen as soon as possible after collection.

- 7. Dry ice or liquid nitrogen should be used for initial freezing and shipping of samples. Any freeze-thaw, however moderate it may be, will cause contamination migration within a sample and this may affect contaminant concentration levels. During initial on-site storage and transportation whole fish samples must be maintained at temperatures at or below -20°C.
- 8. The use of sturdy styrofoam coolers is mandatory for the storage and transport of fish samples. Styrofoam coolers of weak construction may not assure constant freezing and may break down during shipping. Duct tape should be wrapped around coolers before shipping to ensure that the lid is held firmly in place during transport. Coleman type coolers may be used but may not necessarily be returned immediately for repetitive use. The Contractor is responsible for picking up coolers when notified by Alberta Environmental Protection or Freshwater Institute. A listing of the contents of each cooler should be attached to each cooler. A copy of the listing for each cooler should also be submitted to the component coordinator.
- 9. If dry ice is to be used to ship samples, liberal quantities should be placed along the sides and top and bottom of the cooler as well as between fish samples.
- 10. All fish samples are to be delivered directly to:

Earle Baddaloo Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 434-8967

-or-

Dr. Sub Ramamoorthy Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 435-8137

Prior arrangements must be made with Mr. Baddaloo or Dr. Ramamoorthy to ensure that samples are picked-up immediately upon arrival in Edmonton. The intent is that samples will make there way to appropriate freezing facilities as soon as they are delivered to Edmonton. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

- 11. Any deviation from the above established protocol/procedure should be justified and accounted for in writing and a detailed description of what was done is to be submitted with the fish sample; this is to assure credibility and validity of results.
- 12. With the exception of Fisheries and Oceans Canada recommended contaminant free bags, the contractor will provide all equipment and supplies required to collect, process, preserve and transport fish collected under this contract.
- 13. All sampling equipment and specimens must be kept away from fuel, exhaust, oil, smoke, plastic and anything else that may potentially contaminate samples.

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE E COLLECTION AND HANDLING PROTOCOL FOR NON-TARGET FISH SPECIES AT SLAVE RIVER COLLECTION SITES

- 1. Up to ten individuals of each non-target fish species from each sampling location that are captured during the collection of target fish species (burbot, northern pike, longnose sucker and flathead chub) are to be retained for contaminant analyses.
- 2. A sample numbering system must be designed and used to facilitate tracking of non-target fish samples.
- 3. For each fish caught record the following information: 1) species, 2) date and time of capture, 3) sampling location, 4) collector(s), 5) set number, 6) weight, 7) fork length, 8) total length, 9) sex, 10) stage of sexual maturity, 10) maturity and 11) sampling method, 12) an estimate of percent stomach fullness, and 13) gonad weight.
- 4. An external examination must be conducted on all fish for abrasions, lesions, secondary sexual characteristics (if obvious), missing fins or eyes, opercular, fin or gill damage, external lesions or other anomalous features. All external lesions should be recorded as to position, shape, size, colouration, depth, appearance on cut surface and any other features of note. This information is to be recorded on a gross pathology sheet contained in Schedule G for any fish showing abnormalities/deformities. Gross pathology sheets presented in Schedule G may have to be modified slightly, to show the body type of the species under examination. The checklist presented in Schedule G should be used as a guide for reviewing internal and external abnormalities/deformities on each fish. Prepare a photographic record of any external abnormalities encountered. A standard Kodak Colour chart is to be shown in each photograph of external abnormalities or deformities. A label clearly showing the sample number of the fish is also to be shown in each photo.
- 5. After the external examination, fish should be euthanized via concussion, cervical dislocation or with an overdose of anaesthetic. Work must progress <u>quickly</u> on the euthanized fish and tissue samples must be quick frozen between slabs of dry ice or in liquid nitrogen as soon as possible after death to avoid spoiling of tissue samples.

- 6. Open the fish ventrally and examine it for internal lesions and record any abnormalities. Care should be taken not to cut into internal organs when opening the fish. A summary table is to be included in the final report outlining the frequency and types of abnormalities and deformities encountered.
- 7. Remove the gonads and weigh them to within 0.1 grams.

In the case of inconnu and Coregoninae species (cisco and whitefish), after weighing place the entire gonad in a whirlpak or other container containing 5% buffered formalin.

- 8. Estimate and record percent stomach fullness.
- 9. Remove the stomach and its contents and place them in a labelled container and preserve in a 5% buffered formalin solution. The gut contents are to be delivered to the Freshwater Institute for further analyses.
- 10. Retain, store and label ageing structure as outlined in MacKay *et al.* (1990) of all fish sampled. In addition, the otoliths of all fish species except pike should be retained for fish ageing. For pike the cliethrum is also to be retained for ageing.
- 11. The remaining fish carcass is to be placed into Fisheries and Oceans recommended contaminant-free plastic bags, labelled and frozen on dry ice or in liquid nitrogen as soon as possible after collection.
- 12. Dry ice or liquid nitrogen should be used for initial freezing and shipping of samples. Any freeze-thaw, however moderate it may be, will cause contamination migration within a sample and this may affect contaminant concentration levels. During initial on-site storage and transportation whole fish samples must be maintained at temperatures at or below -20°C.
- 13. The use of sturdy styrofoam coolers is mandatory for the storage and transport of fish samples. Styrofoam coolers of weak construction may not assure constant freezing and may break down during shipping. Duct tape should be wrapped around coolers before shipping to ensure that the lid is held firmly in place during transport. Coleman type coolers may be used but may not necessarily be returned immediately for repetitive use. The Contractor is responsible for picking up coolers when notified by Alberta Environmental Protection or Freshwater Institute. A listing of the contents of each cooler should be attached to each cooler. A copy of the listing for each cooler should also be submitted to the component coordinator.

- 14. If dry ice is to be used to ship samples, liberal quantities should be placed along the sides and top and bottom of the cooler as well as between fish samples.
- 15. All fish carcasses are to be delivered directly to:

Earle Baddaloo Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 434-8967

-or-

Dr. Sub Ramamoorthy Alberta Environmental Protection 6th Floor, Oxbridge Place 9820-106th Street Edmonton, Alberta T5K 2J6 work phone: (403) 427-6102 fax: (403) 422-9714 home phone: (403) 435-8137

Prior arrangements must be made with Mr. Baddaloo or Dr. Ramamoorthy to ensure that samples are picked-up immediately upon arrival in Edmonton. The intent is that samples will make there way to appropriate freezing facilities as soon as they are delivered to Edmonton. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

16. With the exception of carcasses secured for contaminant analyses, all tissue samples are to be shipped directly to:

Don Metner Fisheries and Oceans Canada Freshwater Institute 501 University Crescent Winnipeg, Manitoba R3T 2N6 work phone: (204) 983-5168 fax: (204) 984-2403

-or-

Dr. Lyle Lockhart

Prior arrangements must be made with Mr. Metner or Dr. Lockhart to ensure that samples are picked-up immediately upon arrival in Winnipeg. The intent is that samples will make there way to appropriate freezing facilities as soon as they get to Winnipeg. The contractor will be responsible for all approvals and costs related to the shipping of samples for this project.

- 17. Any deviation from the above established protocol/procedure should be justified and accounted for in writing and a detailed description of what was done is to be submitted with the fish sample; this is to assure credibility and validity of results.
- 18. With the exception of Fisheries and Oceans Canada recommended contaminant free bags, the contractor will provide all equipment and supplies required to collect, process, preserve and transport fish collected under this contract.
- 19. All sampling equipment and specimens must be kept away from fuel, exhaust, oil, smoke, plastic and anything else that may potentially contaminate samples.
- 20. All dissection equipment **must** be decontaminated before processing begins on each fish. Dissecting equipment is to be rinsed in acetone, air dried, then rinsed in hexane and air dried. Field crews should where masks to avoid inhaling fumes of acetone and hexane. It is also recommended that acetone and hexane not be used in an enclosed spaces such as tents and that the decontamination of equipment proceed away from the main work area used to process fish.

- 21. It is recommended that the contractor use disposal rubber or plastic gloves during the processing fish. A new pair of glove should be used to process each fish.
- 22. All cutting surfaces used to process fish should be wiped clean with wet paper towels after each fish has been processed. Separate paper towels must be used for each cleaning session.

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE F

HABITAT CLASSIFICATION AND DOCUMENTATION SYSTEM FOR USE IN FISHERIES SURVEYS CONDUCTED UNDER THE NORTHERN RIVER BASINS STUDY

1. CHANNEL TYPES

TYPE U - UNOBSTRUCTED CHANNEL

Only one main channel; permanent islands absent; side bars occasionally present with only limited development of exposed med-channel bars during low flows.

TYPE S - SINGULAR ISLAND

Presence of two channels around single, permanent island; side bars and mid-channel bars often present at low flows

TYPE M - MULTIPLE ISLANDS

More than two channels and permanent islands present; generally exhibit extensive side bar and mid-channel bar development during low flows.

TYPE R - RAPIDS

A special channel type used to identify the unique habitat at the Grand Rapids on the Athabasca River.

TYPE F - FALLS

A special channel type used to identify the unique habitat type at Vermilion Falls on the Peace River.

The classification of major habitat units Type U, Type S and Type M is to be based on field observations and air photo interpretation. For example, in instances where a single permanent island is present, but one of the channels around the island is dry, the habitat

classification could be either Type U (unobstructed channel) or Type S (Singular Island) depending on conditions within the dry channel. If the dry channel exhibits a low relief at the inlet and is devoid of permanent vegetation, suggesting that it contained flow during some portion of the open water season (e.g., during spring runoff or freshet flows), the area is to be classed as Type S habitat. If, however, the entrance to the dry channel is at a level near the high water mark, well vegetated with either grasses or willows and appears to contain flows only during extreme flood events, the channel is to be classed Type U. These criteria are also to be used to differentiate between Type S and Type M channel habitats.

2. SPECIAL HABITAT FEATURES

Tributary Confluences (TC)

Confluence area of tributary entering mainstem; classified according to flow at time of survey and wetted width at mouth

- TC1 intermittent flow (dry/trickle); ephermal stream
- TC2 flowing; width at mouth < 5.0 m
- TC3 flowing; width at mouth 5-15 m
- TC4 flowing; width at mouth 15-30 m
- TC5 flowing; width at mouth 30-60 m
- TC6 flowing; width at mouth > 60 m

Riffle (RF)

Portion of channel with increased velocity relative to Run and Pool habitat types; broken water surface due to effects of submerged or exposed bed materials; relatively shallow (less than 25 cm) during moderate to low flow periods.

Riffle (RF) - Typical riffle habitat type; limited submerged or overhead cover for juveniles and adult life stages; coarse substrate.

Riffle-Boulder Garden (RF/BG) - Riffle habitat type with significant occurrence of large boulders; availability of significant instream cover for juveniles (to lesser extent adults) at moderate to high flow events.

Rapids (RA)

Portion of channel with highest velocity relative to other habitat types. Deeper than Riffle (ranging from 25-50 cm); often formed by channel constriction. Substrate extremely

coarse; dominated by large cobble and boulder material. Instream cover provided in pocket eddies (P3) and associated with cobble/boulder substrate. Runs (RU)

Portion of channel characterized by moderate to high current velocity relative to Pool and Flat habitat; water surface largely unbroken. Deeper than Riffle habitat type. Can be differentiated into four types: deep-slow, deep-fast, shallow-slow, and shallow-fast.

Run (Class 1) (RU1) - Highest quality Run habitat type. Maximum depth exceeding 1.5 m; average depth 1.0 m. High instream cover at all flow conditions (submerged boulders/bedrock fractures, depth). Generally of deep-slow type (to a lesser extent deep-fast) and situated proximal to upstream food production area (i.e., RF, RU3).

Run (Class 2) (RU2) - Moderate quality Run habitat type. Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High instream cover during all but low flow events (baseflow). Generally of either deep-fast type or moderately deep-slow type.

Run (Class 2)/Boulder Garden (RU2/BG) - Moderate quality Run habitat type; presence of large boulders in channel; high instream cover (boulder, bedrock fractures, turbulence) at all but low-flow events (baseflow). Depth characteristics similar to RU2; however, required maximum depth lower due to cover afforded by boulders.

Run (Class 3) (RU3) - Lowest quality Run habitat type. Maximum depth of 0.75 m, but averaging < 0.50 m. Low instream cover at all but high flow events. Generally of shallow-fast or shallow-slow types.

Run (Class 3)/Boulder Garden (RU3/BG) - Similar to R# in depth and velocity characteristics; presence of large boulders in channel offers improved instream cover during moderate and high flow events.

Flat (FL)

Area of channel characterized by low current velocities (relative to RF and Ru cover types); near-laminar (i.e., non-turbulent) flow character. Depositional area featuring predominantly sand/silt substrate. Differentiated from Pool habitat type on the basis of high channel uniformity and lack of direct riffle/run association. More depositional in nature than RU3 habitat (sand/silt substrate, lower food production, low cover, etc.).

89

Flat (Class 1) (F1) - High quality Flat habitat type. Maximum depth exceeding 1.5 m; average depth 1.0 m or greater.

Flat (Class 2) (F2) - Moderate quality Flat habitat type. Maximum depth exceeding 1.0 m; generally average depth exceeding 0.75 m.

Flat (Class 3) (F3) - Low quality Flat habitat type. Maximum depth of 0.75 m, averaging less than 0.50 m.

Pool (P)

Discrete portion of channel featuring increased depth and reduced velocity (downstream oriented) relative to Riffle and Run habitat types.

Pool (Class 1) (P1) - Highest quality Pool habitat type. Maximum depth exceeding 1.5 m; average depth 1.0 m or greater; high instream cover at all flow-conditions (submerged boulder, bedrock fractures, depth, bank irregularities). Generally featuring high Riffle and/or Run association (i.e., food input). Often intergrades with deep-slow type of RU1.

Pool (Class 2) (P2) - Moderately quality Pool habitat type. Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High instream cover at all but low flow events (baseflow).

Pool (Class 3) (P3) - Low quality pool habitat type. Maximum depth of 0.75 m, averaging < 0.50 m. Low instream cover at all but high flow events. Includes small pocket eddy type habitat.

Other Features

Includes the following instream features:

Chutes (CH) - Area of channel constriction, generally resulting in channel deepening and increased velocity. Associated habitat types are R1 and R2.

Ledges (LG) - Areas of bedrock intrusion into the channel; often create Chutes and Pools.

Other - Miscellaneous features (fallen tree, log jams, large boulder, etc.).

Shoal (SH)

Shallow (<1.0 m depth), submerged areas of coarse (SHC) or fine (SHF) substrates generally found in mid-channel areas or associated with depositional areas around islands and side bars.

Backwater (BW)

Discrete, localized area of variable size, exhibiting a reversed flow direction relative to the main current; generally produced by bank irregularities; velocities variable but generally lower than in adjacent main flow; substrate similar to that in adjacent channel although usually with a higher percentage of fines.

Snye (SN)

Area characterized by a non-flowing body of water (generally within a side channel_ which retained a connection to a flowing channel at its downstream end; most commonly associated with braided channel areas but also occurred in singular channels in association with point or side-bar development; substrate mainly silt/sand; depths within the snye proper were only recorded at snyes in intensive sites.

Slough (SL)

A non-flowing body of water located in the flood plain but completely isolated from flowing waters except during annual or irregular flood events. Often exhibited more extensive littoral development in comparison to snye areas (dependent upon frequency of inundation); substrate of silt and organic material; water levels maintained by seepage, springs, precipitation, etc.

N.B. - In all cases note whether the feature is associated with the main channel or a side channel.

3. BANK HABITAT TYPES

Armoured/Stable

A1 Banks generally stable and at repose with cobble/small boulder/gravel substrates predominating; uniform shoreline configuration with few/minor bank irregularities; velocities adjacent to bank generally low-moderate, instream cover limited to substrate roughness (i.e., cobble/small boulder interstices); overhead cover provided by turbidity.

- A2 Banks generally stable and at repose with cobble/small boulder and large boulder substrates predominating; irregular shoreline configuration generally consisting of a series of armoured cobble/boulder outcrops that produce Backwater habitats; velocities adjacent to bank generally moderate with low velocities provided in Backwater habitats; instream cover provided by Backwater areas and substrate roughness; overhead cover provided by depth and turbidity; occasionally associated with C1, E4 and E5 banks.
- A3 Similar to A2 in terms of bank configuration and composition, although generally with higher composition of large boulders/bedrock fractures; very irregular shoreline produced by large boulders and bed rock outcrops; velocities adjacent to bank generally moderate to high; instream cover provided by numerous small Backwater areas, eddy pools behind submerged boulders and substrate interstices; overhead cover provided by depth and turbidity; exhibits greater depths offshore than found in A1 or A2 banks; often associated with C1 banks.
- A4 Rip-rap substrates consisting of angular boulder-sized materials; may be native rock or concrete debris; often associated with high velocity areas; generally with deep water situated immediately offshore; instream cover provided by substrate roughness; overhead cover provided by depth and turbulence; similar in many ways to A3 habitat but generally with smooth bank profile.

Canyon

- C1 Valley walls forming banks; bank substrate consists primarily of large cobble/boulder/bedrock fractures; generally stable at bank-water interface although on upper bank slumps/rock falls common; typically deep with high current velocities offshore; abundant velocity cover provided by substrate roughness and frequent bank irregularities.
- C2 Steep, stable bedrock banks associated with canyon cliffs or bedrock outcrops; deep to moderate depths offshore with generally moderate to fast current velocities; regular bank form; velocity cover occasionally provided by bedrock fractures in channel.
- C2B Similar to C2 but bank is regular with no instream cover.
- C3 Valley wall forming banks, bank substrate consists primarily of fines with some gravel/cobble at base; moderately eroding at bank-water interface, slumping on upper bank common. Moderate-high velocities no instream cover.

Depositional

- D1 Low relief, gently sloping bank type with shallow water depths offshore; substrate consists predominantly of fines (i.e., sand/silt); low current velocities offshore; instream cover generally absent or, if present, consisting of shallow depressions produced by dune formation (i.e., in sand substrates) or embedded cobble or boulders and vegetative debris; this bank type is generally associated with bar formations.
- D2 Low relief, gently sloping bank type with shallow water depths offshore; substrate consists of coarse materials (i.e., gravels/cobbles); low-moderate current velocities offshore; areas with higher velocities usually producing riffle areas; overhead cover provided by surface turbidity or surface turbulence in riffle area; instream cover provided by substrate roughness; often associated with bar formations; and shoal habitat.
- D3 Similar to D2 but with coarser substrates (i.e., large cobble/small boulder) more dominant; boulders often embedded in cobble/gravel matrix; generally found in areas with higher average flow velocities than D1 or D2 banks; instream cover abundantly available in form of substrate roughness; overhead cover provided by surface turbulence; often associated with fast riffle or rapid areas offshore; generally moderate to high velocities offshore; transitional bank type that exhibits characteristics of both Armoured and Depositional bank types.

Erosional

- E1 High, steep, eroding banks often with terraced profile; bank unstable, frequently slumping and eroding; substrate consists of sand/silt materials; moderate to high offshore current velocities; steep bank profile extends under water surfaces resulting in deep water immediately offshore; instream cover provided by abundant submerged bankside vegetation (i.e., trees, shrubs, root wads, etc.) that has fallen into the channel from the eroding bank crest; overhead cover provided by partially submerged vegetation, depth and turbidity.
- E2 Similar to A1 except without the high amount of instream vegetative debris (i.e., banks generally clean); depths offshore generally shallower than along E1 banks.
- E3 High, steep and eroding banks, substrate consists of loose till deposits (i.e., gravel/cobble/sand mixture); moderate to high current velocities offshore; moderate depths offshore; instream cover availability limited to substrate roughness; overhead cover provided by turbidity.

- E4 Steep, eroding or slumping highwall bank; substrates variable but primarily consisting of fines (i.e., clays/silts); moderate to high current velocities offshore; depths offshore generally moderate to deep; instream cover limited to occasional Backwater formed by bank irregularities; overhead cover provided by depth and turbidity.
- E4B Same as E4, but instream cover also provided by log-jams and woody debris.
- E5 Low, steep banks, often with terraced profile; predominantly composed of silt/sad substrates; generally low current velocities offshore; depths offshore variable but generally shallow to moderate; instream cover usually absent; this bank type is often associated with Backwater habitats in A1 and A2 bank types; overhead cover provided by turbidity.
- E6 Low slumping/eroding bank; substrates may either be cobble/gravel or silt with occasional cobble/gravel patches; depths offshore moderate; velocities moderatehigh instream cover provided by abundant woody debris of occasional boulders; overhead cover provided by overhanging trees and depth and turbidity; numerous small Backwaters often with A1 or A2 habitats right at bank interface.

Composite

These classifications are used in situations where the bank-water interface (i.e., nearshore bank) is predominantly one bank type but is still strongly influenced by the adjacent farshore bank (e.g., A2/C2 used where the nearshore bank is type A2 but was produced by active bedrock fracturing from the farshore bank type C2). In these composite bank types, the first bank type given is the dominant type at the bank-water interface.

4. SUBSTRATE ANALYSIS

Substrate Classes - plant detritus/organic material; mud/soft clay; silt; sand; gravel (0.2 - 5.0 cm diameter); cobble (5.1 - 20.0 cm diameter); boulder (>20.0 cm diameter); and bedrock.

Where substrates can be visually identified, the percentage composition of each substrate type is to be estimated. In deeper areas, bottom type will be determined by "feeling" the bottom or from echo sounding tracing. Substrate classification in these areas will generally be limited to the identification of the dominant/co-dominant types (e.g., sand/silt, cobble or boulder, etc.).

5. CHANNEL MORPHOLOGY AND STREAM VELOCITIES

At each collection site take water depth measurements to determine the channel cross sectional profile and bankside habitat configuration. Measurements can be taken manually or be surveyed with sonar. These measurements should provide an indication of the average water depth and range of water depths at each collection site. Stream velocity measurements should also be recorded at each collection site. These measurements should also allow for a determination of average water velocity and the range of water velocities at each site.

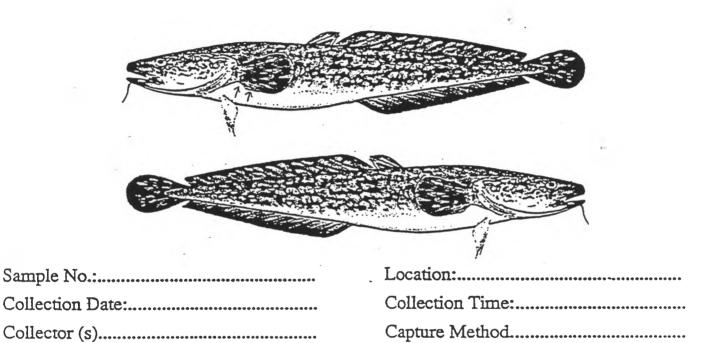
NORTHERN RIVER BASINS STUDY

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE G GROSS PATHOLOGY EXAMINATION SHEETS

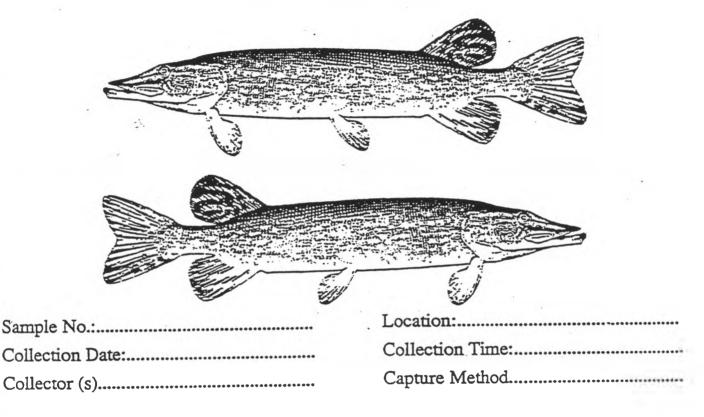
- 1. Gross Pathology Examination Sheets are to be filled out for any fish captured (collected for contaminant and/or biochemical analyses, tagged or sacrificed) under this project that exhibits any internal or external abnormalities/deformities. Gross Pathology Examination Sheets do not have to be filled out for fish that do not exhibit internal or external abnormalities.
- 2. The accompanying checklist is to be used as a guide by the contractor for reviewing the presence of internal or external abnormalities/deformities. To the extent possible, the types of abnormalities/deformities present should be characterized as outlined on the checklist. Descriptive information (colour, size, location, number) should also be provided for any abnormalities/deformities observed.
- 3. For target fish species (burbot, northern pike, longnose sucker and flathead chub) the location and size of external abnormalities/deformities should be indicated on the diagram at the top of the Gross Pathology Examination Sheet. For non-target fish species the Gross Pathology Examination Sheets provided will have to be modified in the field, to indicate the species and body shape of the specimen under review.
- 4. Colour photographs are to be taken of all external or internal abnormalities or deformities and are to be submitted with the Gross Pathology Examination Sheets as an appendix to the final report. Appropriate captioning should accompany each photograph to link it to an individual fish specimen. A standard Kodak colour chart is to be included in each photograph of any internal or external abnormalities/deformities.
- 5. In the event that a large number of specimens at any site have internal or external abnormalities/deformities, the contractor is asked to notify the Component Coordinator immediately.

NORTHERN RIVER BASINS STUDY GROSS PATHOLOGY EXAMINATION SHEET CHECKLIST

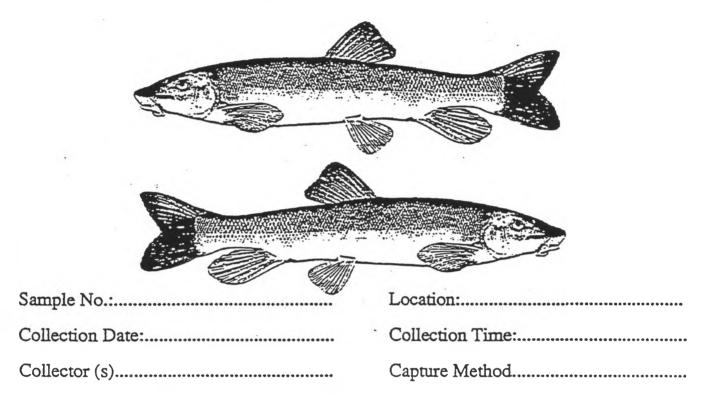

Gross External Examination

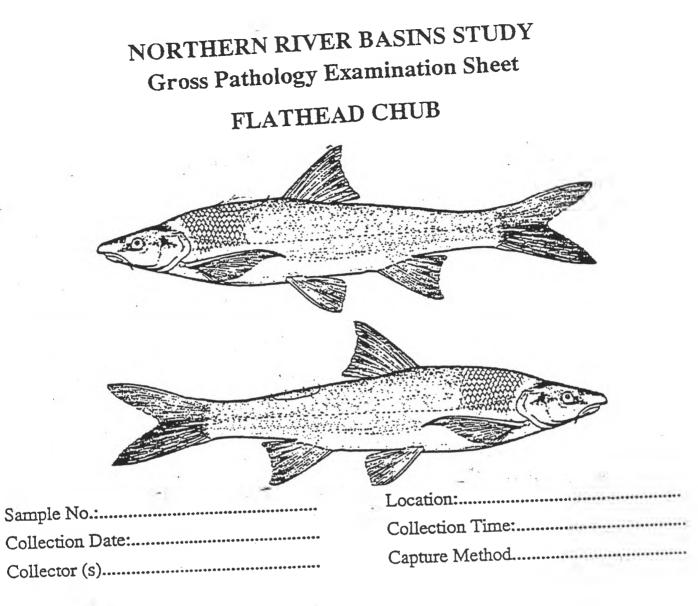
Skin:	Normal Lesions Open Wounds Closed Wounds	Haemorrhagic Tumour Necrotic Lost Scales	Blisters Excessive Muc Ulcer Abnormal Col	eus our (note colour)
	Note whether the woun	d is raised above, depres	sed or even with	the skin surface
Eyes:	Normal Opaque cornea Exophthalmia	Cataract Parasites Haemorrhagic	Lens Lost Bilateral	
Fins:	Normal Frayed	Eroded Deformed	Haemorrhagic	
Gills:	Normal Necrotic Telangiectasia Pale	Mottled Cysts Fungus Visible Haemorrhagic	Excessive Muc Gas Emboli Hyperplasia Large Parasite	
Gross	Internal Examination			
Adipos	e Tissue: Normal Excessive	Reduced Cysts	Abnormal Col Petechial Haer	our (note colour) norrhagic
Liver:	Normal Excessive Reduced	Colour (pale) Colour (mottled) Lesions (single or multi	Tumour Necrotic iple)	Haemorrhagic Cysts (parasites) Cysts (fluid)
Spleen	: Normal Enlarged Reduced	Raspberry Cysts (parasite) Cysts (fluid)	Abnormal Col	our
Intestin	nes: Normal Flaccid Distended (fluid)	Haemorrhagic Cysts Distended (mucoid)	Tumour	
Kidney	y: Normal Enlarged Multiple	Lesions (single or mult Gritty and White in Co Tumour	-	(parasite) (fluid)

÷.


NORTHERN RIVER BASINS STUDY Gross Pathology Examination Sheet

BURBOT


NORTHERN RIVER BASINS STUDY Gross Pathology Examination Sheet


NORTHERN PIKE

NORTHERN RIVER BASINS STUDY Gross Pathology Examination Sheet

LONGNOSE SUCKER

NORTHERN RIVER BASINS STUDY

PROJECT 3144-D1: BASIN-WIDE FALL BURBOT COLLECTION

SCHEDULE H PROTOCOL FOR THE COLLECTION OF SEDIMENT ON THE LOWER BIRCH RIVER

- 1. Sediment samples are to be collected from the lower Birch River in the same area that fish collections are made.
- 2. Sediment samples are to be collected along a 50 to 100 m river reach. A minimum of ten separate samples (grabs) are to be taken along the reach. Individual sampling locations are to be assigned separate sampling location codes.
- 3. Sediments are to be collected from depositional areas and should be as fine grained as possible (mud vs. sand). Only the top 5 cm of sediment are to be sampled.
- 4. Sediment samples may be collected with an Ekman dredge, coring device or a scoop ladle depending on water depth. Collecting equipment should be made from stainless steel and pre-cleaned in the laboratory to trace organic standards. Sampling equipment should be rinsed with river water between sites and before collection.
- 5. Individual samples are to be placed in separate 500 mL glass jars. Glass jars are to be labelled indicating the latitude and longitude of the sampling location, date of sampling, site # and sampler(s). The 500 mL glass jars will be provided to the contractor by the NRBS.
- 6. A numbering system is to be developed to designate individual sampling sites. Individual sampling sites are to be indicated on a 1:50,000 air photo enlargement.
- 7. Glass jars containing sediments are to be placed on dry-ice in styrofoam coolers for on-site storage and transportation. Pieces of styrofoam (or other soft material) should be placed between the glass containers to avoid breakage during shipping.

8. Sediment samples are to be delivered to:

Bob Crosley Environment Canada Room 845 220 - 4th Avenue S.E. Calgary, Alberta T2G 4X3 phone: (403) 292-5473 fax: (403) 292-5314

- 9. Sampling gear should be kept away from fuel, exhaust, oil, smoke, plastic and anything else that may potentially contaminate samples.
- 10. With the exception of 500 mL glass jars, the contractor will provide all equipment and supplies required to collect, preserve and transport sediment collected under this contract.

APPENDIX B. LIFE HISTORY DATA SUMMARY OF TARGET FISH

- -

Abbreviations:

Species	BURB - burbot; NRPK - northern pike; LNSC - longnose sucker; FLCH - flathead chub, etc. (following Mackay et al. 1990)
FL	Fork length
TL	Total length
CF	Condition factor
GSI	Gonadosomatic index
LSI	Liver somatic index
Sex	U - unknown; F - female; M - male
Mat.	Maturity code:
	Female Male State of Maturity

Female	Male	State of Maturity
1	6	immature
2	7	maturing
3	8	mature
4	9	ripe
5	10	spent
0		unknown

Ageing structure Capture method OT - otolith; CL - cleithra; FR - fin ray; SC - scale SL - set line; EF - electrofishing; A - angling; GN - gill net

	Comments	n SL							n SL	n SL											died after blood taken																		n SL		13	HOP.	
	ē	dead on SL							dead on SL	dead on SL											died at																		dead on SL		IS no beep	CLEV V	
Capture	Method	SL	IS I	10	SL	SL	SL	SL	SL	SL	EF	Ш	5	5 8	EF	EF	EF	EF	EF	EF	EF EF	14	E E	ΕF	EF	HH HH	ы ЦШ ЦШ	EF	EF	SL	SL	3	2	E	SL	SL	SL	SL	SL	S	SL	EF	1.1
Ageing	structure	N/A	01	5 5	TO	OT	OT	OT	ОТ	OT	SC	FR	N C	FR	N/A	FR	FR	FR	FR	Ϋ́	5 5	CL	CL	OT	oT	OT 0	5 5	OT	OT	OT	OT	OT	SC	SC	sc	FR							
	Age 3		12	• •	. 9	12	00	00	12	12	2	=		~ oc	6	s	2	6	~	00			6	12	6, 6	~ ~	n m	ŝ		1	2	9	n [15	п	80	7	6	1	00 1	- 4	10	-
	Mat.	0	5 5	7 0	6	7	7	2	2	7	0	7	7 -	- 6	2	9	7	2	5	2 4		-	5	2		~ ~	- 7	2	9	2	9			. 6	2	2	2	2	5	~			
	Sex	D	<u>ند</u> ۱	L, [X	Σ	<u>ت</u>	L .	Μ	ц	Σ	D	ш I	н, ()	- [7	124	Σ	ч	Ч	X	ч:	⊃ ≱	2	4	ы	in 1	4 7	Ч	Σ	Σ	Ľ.	Σ	Z :	ΣΣ	<u>н</u>	ц	M	Σ	ш	н)	н ;	E H	. 12	•
	ISI			00.0	4.33	1.87	2,95	2,98			5.33	2.49	C/-1	2.17	2.07	1.46	1.96	1,84	141	2.07	1 84	2.01	2.43	2.52	1.54	00.7	1.47	2.28	1.33	1.52	1.32		21.0	2.81	4.49	3.09	2.69	1.37	1	0.68	1.2.1	1.81	1.0.1
	GSI	þ		40.0	3.96	0.72	0.92	3.88			0.00	5.02	0.60	1.68	7.75	01.0	1.20	4.60	2.82	1 28	02.5	16.0	9.22	8.41	0.18	101	1.15	2.98	0.83	0.63	0.22		5.48	2.53	0.70	5.06	4.89	0.51		2.05	3.23	1.54	
	CF	0.51	0.52	0.46	0.55	0.46	0.56	0.42	0.43	0.49	0.88	1 09	171	1.13	1.24	1.21	1,23	90.1	1.13	1.25	1 06	1 07	1 09	1.21	1:09	07.1	0.69	0,82	0,82	0.48	0.47	0,52	0.71	0.49	0.55	0.47	0.48	0.49	1/13	16.0	TH I	1.21	-
	Gonad		27.0	5.2	13.0	5.0	9.1	19.0	6.2	3.0		52.0	070	11.0	67.5	0,4	1.9	39.0	18.0	8.0	13.0	59	68.2	66.0	1.2	0.50	6.5	40.9	1.0	7.0	1.0		167.0	46.0	0.6	36.0	40.0	6.0.	1	3.0	8.0	17.0	
			23.7	13.7	14.2	13.0	29.0	14.6			1.6	25.8	0.11	14.2	18.0	5.9	10.0	15.6	0.6	13.0	114	13.0	18.0	19.8	10.0	0.41	2.00	31.3	1.6	17.0	0.0		162.0	51.0	58.0	22.0	22.0	16.0		0.1	3.0	20.0	2.24
Weight	Carcass Liver			575	328	694	984	490			30	1035	670	654	871	404	510	848	639	170	620	648	740	785	650	/U8 826	564	1371	120	1115	454		3045		167	712	818	167		146	248	1102	
	Total Ca	505	1063	2		734	108		969	116			601					ĩ.		07/						505				1			3672 3			827 ,		÷.,			207		
Л	mm) To		590 10	0		541 7							1 424			364 4					440 7					440 M		628 16					804 36								12 CZ2 12 CZ2		
FL J	(mm) (m		590 5										4 075	-						587 4 414 4						4 CI 4						5113 51									264 20		
Time 1	of death (n		1502 5			1139 5	1104 5	1123 5	\$				C 150			827 3				5 5US	1652 4					5 LCC		1743 5			806 4		1201 8		128 6	026 5		1116 6			2 0001	1644 4	
F	ofd		15	4	4	-	1	T			01			15	1	18	16	14	5	2	91	61	14	13	4 0	1 -	12	11	15	15	00		17	15	E.	10	01	I	1	11	IN	16	2
Time	caught	1.018	941	925	941	914	617	616			1021	1054	101	1106	1107	1109	1121	1139	1141	2411	1148	1151	1153	1133	1137	1056	1058	1059	1135	939	940	242	1035	6011	126	930	216	912		907	cla	1122	-
	No.	-		n' 🕈	S	9	-1	00	6	10	-	- ,	2 6	4	s	9	7	80	6	2 :	12	13	14	15	91	2 -	- 7	ŝ	4		2			9	7	00	6	10		C1 r	r 4	·	
	Species	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	FLCH	LNSC	TNSC 1	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LINEC	LNSC	LNSC	1.NSC	LNSC	LNSC	NRPK	NRPK	NRPK	NRPK	BURB	BUILB	FLCH	FLCH	FLCH	LNSC								
	Site	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PR1	DB1	PRI	PRI	PRI	PRI	PRI	PRI	L NI	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PRI	PR2	PR2	PK2	PR2	PR2	PR2	FR2	PR2	PR2	PR2	PR2	PR2	PR2	
	River/Delta	R.	X a	2	R.	R.	R.	R.	R.	R.	R.	R.	N N	R	R	R.	R.	R	2	Y a	2 Z	2	R.	R.	2 c	2 2	R	R.	R.	R.	~ .	X a	2 2	R.	R.	R.	R.	R.	R.	×.	x a	R.	
			Peace K.			Peace R.	Peace R		Pence R				Posce R			Peace R	Peace R.			Peace K					Peace R.	Peare R	Peace R.	Peace R.	Peace R	Peace R	Pcace R	Peace K	Peace R	Peace R.	Peace R.	Peace R	Peace R.	Peace R	Peace R.	Peace R.	Peace R.	Peace R.	United and
	Date	28-Sep-94	29-5cp-94	30-Scn-94	30-Sep-94	01-0ct-94	01-0ct-94	1-6-100-10	6-10-(0	01-0:t-94	0)-Oct-94	28-Sep-94	28. Sen 94	28-Sep-94	28-Sep-94	28-Sep-94	28 Sep-94	28-Sep-94	28-Sep-94	46-dac-97	28-Sen-94	28-Sep-94	28-Sep-94	30-Sep-94	30-Sep-94	28. Sen-94	28-Sep-94	28-Scp-94	30-Sep-94	03 Oct-94	03-Oct-94	03-Uct-94	03-Oct-94	03-Oci-94	04-Oct-94	04-Oct-94	04-Oct-94	05-Oc1-94	03-Oct-94	04-Oct-94	05-Oct-94	03-Oct-94	

	Comments				-	Dundinom						died after blood taken																																			
Capture	Method	SL	7	7			SL	SL	SL	SL			SL	SL 10	75		5 8	EP	EF	1 1	EF.	ы	EF	EF	EF	EF	EF	70	SL	5		IS	SL	SL	SL	EF	EF	EF									
Ageing	structure	OT	10	5 6	5 5	56	10	OT	OT	OT	OT	N/A	SC	S	20			NIA	SC	SC	SC	SC	SC	FR	FR										ð	55	5 5	10	UT C	0T	OT	OT	OT	SC	SC	SC	
	Age	01	÷ د	= ;	= •	~ ~	× •	4	4	4	5	••	~	× •	io t	~ 0	• •		~	ŝ	4	\$	s		œ										•	^ •	a 4	-	-	12	=	2	10	ę	e	4	
	Mat.	-		- 1	- 1		21	2		1	2	0	2	2 0	2 1	4 C	4 0	0	2	9	0	٢	2	2	2	9 9	~ 1	- 1	- ~	2	2	2	2	2	0 0		- r	4 0	4 0	2		2	2	0	I	1	
	Sex	Σι	- 2	Ξ;	Ξ.	ξı	× ;	Σ	£۲.	12.	Σ	þ	íد ا	<u>ن</u> ب	L ()	- 12	- 12		Σ	Σ	D	Σ	ч	ш	Σ	Σı	<u>ب</u>	ΣΣ	Ц	, II.	ĽL,	ц	ш	њ.		- 2	μZ	L (1	- 12	. 14	Σ	Σ	ц	ш	ц	Ŀ.	
	ISI	6.26	C4.0	1.0	19.4	100 4	05.5	3.24	7.31	5.62	4.63		0.48	10	5/0	1 05	15		0.47	1.67	0.43	0.29	0,42	1,38	0.31	0,53	1,20	0.78	1 77	0.84	0.76	1.21	0.78	1.05		101	1 20	1 95	477	4.65	4.42	2.45	5.19	1.20	0.87	6.0	
	GSI	3.52	19.0	50.7	15.0	0/1	177	1.85	0.46	0.40	3.31		3.81	96.7	16.2	200	1 57	1	0.31	3.33	0.00	0.43	2.08	6,04	1,09	0.44	1.50	100	100	3.36	0.86	6.17	0.68	4.62		06-1	01.0	01 10	18 37	2 52	8.05	6.79	3.61	1.60	0.87	0.63	
	CF	0.55	50.0	0.40	50.0	500	0.49	0.55	0.47	0.56	0.54	0.58	0.96	to 1		001	1.02	0.92	0.94	0.78	0.88	06.0	0.95	1.20	1.15	0.93	66'0	171	1 07	1.04	1.07	96'0	1.15	=	1.19		50.0	114	190	0.54	0.47	0.52	0.51	0.68	0.74	0.84	
	Gonad		0.4						1.0		16.0				1.0				0.4			0.3	1.5				0.01	0.05	099	36.0	0.9	46.0	4.0	24.6			0.12				55.0					0.2	
	Liver G			4.52		10.0		0.7	16.0	14.0	22.4		1.0	0.1	0.1	0	0	.	0.6	0.5	0.2	0.2	0.3	8.0	2.0	7	0 0	000	162	0.6	5.3	0.6	4.6	56		0.77	5.0	0.01	00	29.0	30.2	10.0	55.0	0.3	0.2	0.3	
Weight	Carcass I				040					249			210	35	147		9	2	127	30			72		641	52	668				696	745 -	589	533		6161			212						23	12	
	Total Car		0 00/		C 970			1	2			400			7 4/7						51 4						762 6								164		19.0		183		824 6		Č,		26		
TL	mm) To				140 0									1 4/2													454 7					484 8				100							-			179	
FL	(mm) (i		210	C60	- 024				375	369			287	245	200	17	196	162	242	153	176	200	200	381	393	296	425	010	470	487	415	445	381	376	238	010	450	004	456	605	260	446	628	150	146	158	
Time	of death (1526	1601	FINCT	67/1	1040	141	1 48	1216	1115	1518		1555	1317	6161	21412	1505		IIII	1058	1743	1754	1733	1429	1359	1453	266	6402	9010	947	1156	1123	1140	1807	0	1305	PC51	1208	1105	100	E16	1201	1218	1053	1454	1442	
The	caught o	1432	1438	2641	103/	1001	80/1	925	952	1034	1034	846	1437	936	CCA	1 20VC	Chert								1305											/001	6771	1122	0101	816	815	006	1018	1000	1406	1408	
	No.	0 :	= :	71	51	÷ •	2 :	16	17	18	19	20	,	2 6	•∩ •	r 4		L	∞	6	10	1	12	-	5	m .	4 4	n v	0 F	. 00	6	0	R	12	<u>.</u>	,	7 6	n			. ~	۰ m	4	<u> </u>	2	٩	
	Species	BURB	BUKB	BUKB	BURB	BUKB	BUKB	BURB	BURB	BURB	BURB	BURB	FLCH	H.CH	FLCH FLCH		FI CH	FLCH	FLCH	FLCH	FLCH	FLCH	FLCH	LNSC	LNSC	L'NSC	LNSC	LNSC	1 NSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	NRPK	NKK	L NISC	BIRR	RURB	BURB	BURB	BURB	FLCH	FLCH	FLCH	
	Site											SR1	SRI	SKI	SKI SP1	1 US	SR1	SR1	SRI	SR1	SR1	SP.1						SP 1				SRI					1 HS									WRI	
	River/Delta	Smoky R	Smoky K	Smoky R	Smoky R.	Smoky R	Smoky R	Smoky R	Smoky R	Smoky R	Smoky K	Smort D	Smoky R	Smoky R	Smoky R	Smoky R	Sinoky R	Smoky R.	Smoky R	Smoky R.	Smoky R.	Smoky R.	Smoky R	Smoky K	Smot v R	Smot v R.	Smoky R.	Smoky R.	Smoky R.	Smoky R	Smoky R.	Smoky R	Smoky K.	Smoky R	Smoky R	Wanti R	Wanti R	Wabiti R	Wapiti R	Wapiti R	Wapiti R.	Wapiti R.	the second state of the se				
	Date	14-Sep-94	14-Sep-94	14-Sep-94	14-Scp-94	14-3cp-94	14-Sep-94	15-Scp-94	15-Sep-94	15-Sep-94	17-Scp-94	17-Sep-94	14-Scp-94	15-Sep-94	96-dac-c1	11-3ch-74	17-Sen-04	19-Sen-94	19-Sep-94	19-Sep-94	19-Sep-94	19-Sep-94	19-Sep-94	17-Sep-94	17-Sep-94	17-Sep-94	19-Sep-94	10 Sam 04	18 Sen 94	19-Sen-94	19-Scp-94	19-Scp-94	19-S-p-94	19-Sep-94	19-Scp-94	13-Sep-94	14-Scp-94	14 0 - 04	10-00-14	24 Sm 94	10-u-s-pc	26-Scp 94	26-Sep-94	23-Sep-94	26-Sep-94	26-Sep-94	- ALLAN AND

	Comments																																		dead on SL			no bile taken									
Capture	Method	H		1 8	EF	EF	EF	BF	18	BF	BF	EF	EF	EF	ΕF	EF	EF	ΕĿ	EF	EF E	11	EF	N IS	лс ЕF	EF	SL	SL	SL	SL	SL	SL	SL	SL	10	SL	SL	SL	SL	SL	EF	EF	EF	EF	ΕF	EF	EF	ЧГ
Ageing	structure	SC	Y G	E	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	CL	d i	51	0	5	5	5 5	5 5	50	3 5	50	OT	OT	OT	OT	OT	OT	OT	DT 0	5 5	OT	OT	OT	CL	ОТ	OT	SC						
	Age	m :		•			80		0	00	15	2	ŝ	7	m	4	a I	-	m -	m c	N 0	7	4 4	1 0	1 1	6	9	r.	2	10	4	00		~ ~	6	10	6	4	9	00	ŝ						
	Mat.	0 0	7 5	. 6	2	0	2	7	2	2	7	1	0	5	9	-		7	7	1			4 1	-	- 9	L	7	2	1	2	2	7	2 1		. 6	2	2	2	2	2	1	7	2	7		1	<
	Sex	D	- X	1 L	ш	ш	L .,	<u>ا</u> لد	14	ш	<u>لت</u>	Σ	D	Σ	W	Σ	Ξ	н	Σ	Σų	L (1. L	- ∑	14	×Σ	M	<u>11</u>	X	M	щ	Σ	[1	н;	ΞŽ	-	Μ	1	<u>ال</u>	1 -1	<u>ل</u> ت	ц	11	<u>н</u>	11	ш	ш.	11
	ISI	2 22	12	2.32	1.33	1.03	1.35	177	1.46	1.83	1,33	1.51	1 28	86.0	20	151	1.8.0	2.37	0 88	98 0	17.1	1.0	1.03	1 02	1.67	4.14	6.11	4.89	4,05	6.04	2 81	5 60	5.64	63 6	1	2.87	4.66		5.27	2.91	4.50	1.76	151	2.08	1.15	2.22	200
	GSI	0.56	10.12	6.75	1.38	0.81	7.86	8.51	5.46	5.17	4.74	6.28	610	5.88	1 43	112	3 38	4.55	1.72	1 90	26.0	11.0	1.86	0.66	1.92	22.70	5.07	14.33	16,22	4,49	15,09	4.30	4.77	06 51		14.18	5.96		13,67	3.25	7.25	6.16	6.44	6.23	0,94	1,27	
	CF	0.78	61.1	61.1	1.02	1.03	115	1.18	1.08	16'0	0.88	0.97	0.95	1 08	0 68	69 0	1.9.0	96 0	0.62	0 68	200	19.0	89.0	0.57	0.51	0.72	0,54	0.57	0.57	0.52	0 60	0.50	0.56	250	0.53	0.59	0.57	0.69	0.55	0.56	0.98	1.21	1.09	1,13	1,08	1.05	00.1
	Pe		0.4/	37.0	6.0	3.3	535	59.0	30.3		28 8	25.3	0.5	26.7	3.6	68.0	22.0	130.6	4.5	12.0	+ 7 C	2.0	18.6	1.6	23	126.0	44.0	85.0	24.0	26.0	59.0	30.0	33.0	0.00	74.0	94 0	32.0	31.0	52.9	14.5	2.9	42.0	47.0	33.0	1.8	2.0	0
	-	0.4	14 0			42	92	12.3	8.1	9.2			3.4	10.0					23	4	1 0	2.2	001	2.5	2.0		53.0	29,0	6.0	35.0	11.0	39 0	0.05	0.01		19.0	25.0	16.0	20.4	13.0	1.8	12.0	0 11	11.0	2.2	3.5	
Weight									\$55														1080					593 2						9476		663											
	ů		CEN			407	681	693			2																																				
	F		515			452										ř.							1085											601											3 210		
TL	-		370				445	452	423														579				576	510						C04													
H	(mm)	132	341	378	363	352	412	418	392	390	430	363	312	475	345	542	475	710	356	464	195	353	586	155	290	472	576	510	322	505	434	549	527	405	619	518	483	512	450	471	165	405	432	380	268	252	201
Time	of dear	1504	124/	1145	1201	1106	1215	1122	1736	1033	946	1044	1055	1217	1658	1711	1724	1053	1138	1113	CU21	1152	1130	1528	1542	1532	1611	1552	1434	1640	1743	1415	1453	1703		1347	1724	1013	1416	1339	053	1323	1005	1023	1052	1041	1106
Time	caught	1415	976 978	930	932	934	937	958	1658	829	831	834	838	938	1629	1631	1/00	934	939	941	94.5	948	855 970	1405	1404	930	933	946	948	950	1010	1012	1018	1042	1057	1100	1156	976	1034	1204	835	1201	816	821	825	827	100
	No.	÷0	- ^	1 m	4	\$	9	7	00	6	10	Ξ	12	13		2	m ·	4	Ş	0 1		~ ~	6	2 =	12	-	2	m	4	5	9	~	90	2	2 =	12	13	-	-	-	-	~	2	Э	4	S	
	Species	FLCH	L NSC	LNSC	LNSC	LNSC	LNSC	LNSC	I NSC	LNSC	LNSC	LNSC	LNSC	LNSC	NKPK	NRPK	NRUK	NRPK	NRPK	NRPK	NKUYN	NRPK	NRPK	NRPK	NRPK	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BUKB	RURB	BURB	BURB	NRPK	BURB	BURB	FLCH	LNSC	LNSC	LNSC	LNSC	LNSC	0014
	Site	WRI	WR	WR	WRI	WR1	WR1	WRI	WRI	WR	WR1	WR1	WRI	WRI	WR	WR	WR	WRI	WRI	WR	WK	WR	WR	WR	WR	WR2	WR2	WR2	WR2	WR2	WR2	WR2	WR2	WK2	WR3	WR2	WR2	WR2	LSR2	LSR)	LSRI	LSRI	LSRI	L.SR1	LSR)	LSRI	1 0 0 1
	River/Delta	Wapiti R	Wapiu IC.	Waniti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Wnpiti R.	Wapiti K.	Wapili R.	Wapiti R.	Wapiti R.	Waniti R	Wapiti R.	Wapiti R.	Wapiti R.	Wapiti R.	Waniti R	Wapiti R.	Wapiti R.	Wapiti R.	Little Smoky R.	Little Smoky R.	Little Smoky R.	Little Smoky R.	Liule Smoky R.	Little Smoky R.	Little Smoky R.	Little Smoky R.										
	Date	26-Sep-94	Sop.04	21-Sen-94	23-Sep-94	23-Sep-94	21-Scp-94	21-Sep-94	23-Sep-94	24-Sep-94	24 Sep 94	24-Sep-94	24-Scp-94	25-Sep-94	22-Sep-94	22-Sep-94	23-Scp-94	25-Sep-94	25-Sep-94	25-Sep-94	22-Sep-94	75-S-p-94	26-Sep-94	20-Sep-94	20-Sep-24	19-0c1 94	19-0:1-94	19-0c1-94	19 Oct-94	19 Oct 94	19-0 cl - 94	19-0ct-94	19-0ct-94	19-031-94	P0-1-0-61	19-0:1-94	19-0 ct-94	20-Oct-94	8-Dic-94	20-Sep-94	21-Sep-94	20-Scp-94	21-Scp-94	21-Sep-94	21-Sep-94	21-Sep-94	

	Comments											dead on SL	released	released plink tag 7903		died after blood taken	died after blood taken	died after blood taken														dand on CI	TO UN NOT										
Capture	Method	SL	7	N.	IS	ls.	SL	SL	SL	IS	SL		IS IS		SL	SL			SI,	2	No.	SL	SL	EF	SL	K IS	SL	SL	SL	SL	SL			SL	EF	EF	SL	SL	de a	SL	ol.	10	10
Ageing	structure	NIA	5 5	50	DT C	DTO	IO	TO	TO	TO	SC			OT	OT				TO	10	TO	TO	TO	FR	50	3 8	5	TO	OT	TO	LO	5 6	TO	TO	FR	FR	FR	FR	FR	OT	5 6	D C	5
	Age	4	• •	. 4	- 10	-		4	10	*				9	•0				~ '		- 00	Ś	٢	9	-n e	2 1	4		6	= 1	-	4 F	, ei	Ŧ	9	9	00	4	Ś	-	-	n vr	r
	Mat.	0	N (1 0	5	~	2	2	2	2	2	0	0 0	2	2	0	0	0			7 7	2	7	~		2 1	1	2	2	7	~ •		- 7	2	-	0	5	5	0 1	~			
	Sex	D i	1. L		Σ	11.	Ľ۵,	Σ	Σ	ц.,	Σ		1	N	X	P	2	P	-	14 H		1	W	X	Z 4	- 14	M	4	H	-	-	E X	E 14	1	1	ŋ	11.	la. :		XX	N N	X	N.
	LSI		07.2	1.65	4.15	2.16	4.64		2.82	4.23	5.88			7.24	7.66			2	5.76	SC.1	5.78	7.93	8,49	60	01.1	2.19	0.94	4.95	5.44	6.74	21.5	10.0	8.73	5.04	0.96	0.94	141	1.29	-96	4.55	3 55	3.04	5
	GSI		CC 0	591	38	0.72	5.96		9.58	5.00	5.88			6.07	6.52				4.02	5.34	375	3.25	10.91	6.54	2.2	3.85	2.17	5.37	4.20	4.69	11.5	71-1	5.54	5.25	0.48	01.0	1.32	8.65	0.63	4.55	1 79	2 86	00"7
	CF	69.0	0.50	0.43	0.54	0.48	0.50	0.53	0.57	0.57	1 03			0.43	0.56				0.39	0.48	0.50	0.48	0.55	1.30	0.67	0.78	0.69	0.44	0.50	0.48	0.56	55.0	0.65	0.52	1.16	60	1.12	1.24	507	0.49	0.50	550	
	Gonad								34.0 0		4.0			35.8 (611					121						0.701									14.2			
	Liver 6		0.4	2.0	12.0	3.0	14.0		10.0	11.0	4.0			42.7	45,5				18.9	207	30.4	29 5	44.0	6.7	0'2	49.9	10.8	27.0	48.4	84.8	119.6	0//1	268.2	82.5	2.4	2.8	6.1	10.7	2.2	14.2	1.21		2
Weight	Carcass 1	2	107	121	289	139	302		355	260	68			069	594				328	275	526	372	518	612	757							100	3071	1637	241	298	432	828	112	312	242	283	20
	Total Ca		117					305	447 .3		75				200					210					5//						1	2005								378			
TL	(mm) Te		7 190					386 31	426 4	380 3		425	335		æ		484			4 004					a 003			519 6			768 25									424 3			
FL T	(mm) (mm	255 2						386 3	426 4;	380 3			335 3		÷.		484 4			4 0CF		÷			C 489						7 897									424 42			
	-							ŝ				4	n c				4																										
Three	of deat		CH01	1114	1036	1145	1056		1124	1144	1054			834	1326				544	1024	1451	1518	1020	2156	1715	949	1038	1155	1230	1241	000	000	1033	1124	1720	2049	1205	1232	1757	1015	0111	1131	1
Time	caught	- unit	500	908	912	923	910	933	927	1037	1007	1030	1050	001	13 8	1417	1417	1417	1537	1072	1448	1515	1015	1839	6701	92.2	1014	1151	1226	1238	1043	C76	1030	1113	1715	2045	1200	1228	747	1012	1103	1100	1100
	No.		- ~	4 m	4	Ş	9	Ĺ	-	6	-			-	2			1	6	- 0	. 0	10	Ξ			4 m	4	-	2	~ ·	4 4	n v	-	80	-	2	ę	4	ŝ	- ~	7 6	שו	r
	Species	NRPK		BURB	FLCH	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	LNSC	NRPK	NRFK	NRPK	BURB	BURB	BURB	BUKB	BUILD	BURB	BURB	LNSC	LNSC	LNSC	LNSC	LNSC	BURB	DING	BURB	DUND						
	Sile	LSR	10M	WBI	WBI	WBI	WBI	WBI	WB1	WBI	WBI	Ala	Ala	Ala	AIb	AIb	Alb	Alb	Alb	AIL	Alb	AIb	Alb	Ala	AIN	Alb	Alb	A2	A2	A2	2V	CV	A2	A2	A2	A2	A2	A2	V 2	A3	64 57	EV	2
	River/Delta	Little Smoky R.	Wabneed R.	Wabnsca R.	Wabasca R.	Athabasca R.	Athabasca K.	Athubasea R.	Athabasca R.	Athabasca R.	Athabasea R.	Athabasea R.	Athabason R.	Athebasca K.	Athebasica R.	Athabasea R.	Athebasea R.	Athabasea R.	Athabasca K.	Athabasca R.	Athebasca R.	Athabasca R.	Athebasca K.	Athenese R	ALINUMANA AN																		
	Date	18-Sep-94	11-0-11-94	11-Oct-94	11-Oct-94	11-Oci-94	11-Oci-94	11-Oct-94	2-0cl-94	2-Oci-94	12-Oci-94	11-Sep-94	11-Sep-94	13 Sep 94	13 Sep 94	13 Sep 94	13-Sep-94	13-Sep-94	13-Sep-94	13 Sep-94	14-Scn 94	14-Sep-94	15-Sep-94	12-Sep-94	13-Sep-94	15 Sep 94	15-Sep-94	21-Sep-94	21-Sep-94	21-Sep-94	22-Sep-94	22 Sen 04	23-Sep-94	24-Sep-94	21-Sep-94	22 Sep-94	24-Sep-94	24 Sep-94	24-Sep-94	27-Sen-94	27 Sen 04	27 Sen 94	

-)

	Comments																	dead on SL										dead on SL	dead on SL	dead on SL																	
Capture	Method	N.	SL	25	SL			SI	SL	N I	210	15	SL	SL	SL	2	SL				No.	SL	SL	SL	SL	SI	SL	SL	SL	SL	SL	SI	SL	SI	SL	10											
Ageing	structure	10	10	5	5	10	OT	OT	OT	TO	OT	OT	OT		OT	TO	TO	TO	TO	TO	10	5 5	50	DI	DT	TO	TO	OT	TO	TO	10	TO	OT	OT	OT	DT	TO	TO	IO	TO	OT	OT	OT	OT	OT	DI	10
1	Age	e :	01		= 1	n 1	0	=	1	s	ş	9	9		2	13	9	4	œ ·	с (- *	t 0	• =	1	٢	4	Ś	ŝ	· 0	4	d 0	0	Ś	ę	2	6	4	5	ŝ	4	m	9	2	S	9	10	
-	Mat.			~ ~			2	2	7	-	9	-	٢	2	2	2	2	7	-	~ ~		- ~	1 5-	. 71	5	9	-	9	· 0	9 0	∨ (1 [7	9	2	7		7	2		9	2	2	2	2	2	٢
	24.5	X :	Z	. ;	Z I	×, 1	-	<u>11.</u>	Z	14	X	ц	Σ	Σ	X	Σ	Σ	ц	Σ	ц. (4 2	ž u	- X	: H	ſĽ.	Σ	ц	Σ	Σ	Σ÷	ы, Б	- X	н	Σ	Σ	Σ	н	Σ	Σ	1 1	Σ	Σ	Σ	Σ	ц	Σ	
	ISI .	65.1	3.12	11'8	3.20	4,98	4.06	2.70	4.23	2.89	2.87	247	2.95	3.98	4.57	4.90	2.41		6.10	5.12	0.04	202	69.65	4.12	5.17	2.77	1 61				1.61	1.98	5.75	1.39	3.61	2.59	1.78	1.88	5.00	1.49	2.45	5.01	2.51	1.87	4 46	5.77	00
	CSI	10.5	15.4	16.6	97.4	10'0	2.57	3.03	4.12	0.54	0.11	0.55	5.50	5.30	5.11	4.58	3.78	1	0.10	2.32	2,98	0.34	60 2	0.58	0.48	0.00	0.38				10.0	10.86	7.59	0.04	7.88	8.29	0.56	12.39	05.11	0.14	0.14	11.64	10.46	15.38	3.46	8 91	00 00
ł	- P	65.0	10.0	9C.0	0.48	0.50	0.50	0.55	0.45	0.46	0.53	0.46	0.48	0.52	0.54	0.57	0.44	0.56	0.53	0.51	100	250	0.64	0.50	0.51	0.45	0.46	0.53	0.48	0.44	040	0.59	0.49	0.48	0.44	1,10	0,47	0,53	0,60	0.40	0.53	1 05	0.54	0.52	0.56	0.54	
																2					21.9		1								0.0							2						_			
	- T																											0	0													2					
50	-	4.4	18.1	C 08	20.4	21.4	17.2	63.2	33.2	11.2	15.4	11.8	13.0	16.5	288	115.2	9.1		50.7	38.6	48.9	1 142	115.7	35.3	49.3	6.5	3.4				1.0	17.5	23.1	3.2	22.8	19.0	5.1	10.7	28.4	5.2	10.7	35.4	19.8	6.8	26.6	52.9	4.4.4
Mo	Carcass	316	280	766	070	430	424	821	784	387	537	477	440	415	630	2353	378		831	754	736	040 013	6611	857	954	235	211				010	882	402	231	631	735	286	568	568	350	437	706	788	364	266	917	
1	Iotal	202	104	1242	143	208	496	1094	931	445	594	529	514	493	736	2774	432	467	982	896	896 616	0501	1523	1050	1128	274	245	408	294	134	000	1103	468	260	805	912	326	726	813	399	530	920	945	477	758	1162	
TL	(mm)	1004	515	510	010	467	462	583	590	458	480	487	475	455	514	787	459	436	570	558	559	275	029	593	603	391	374	425	392	310	242	571	457	377	567	435	410	514	513	462	463	443	560	451	513	599	
FL	(mm)	000	515	613	050	467	462	583	590	458	480	487	475	455	514	787	459	436	570	558	559	575	009	593	603	391	374	425	392	310	545	571	457	377	567	435	410	514	513	462	463	443	560	451	513	599	
Time	of death	1248	308	1423	1454	1522	1546	1620	1659	1724	1806	1834	1001	1925	1947	2015	2035		1045	1110	1136	0011	4051	1344	1400	1423	1442				1024	1130	1150	1213	1236	1150	1216	1247	1307	1336	- 1357	1447	1509	1535	1549	1650	
Time	caught	1244	1243	1419	1421	1518	1516	1616	1618	1720	1718	1830	1828	1921	1918	2011	2028		1042	1041	1133	9201	0771	1341	1342	1417	1418				2101	1126	1.127	1209	1207	1143	1140	1246	1247	1333	1332	1443	1441	1532	1530	1629	
	No.		00	ۍ د د	2	=	12	13	14	15	16	11	18	6	20	21	22	23	-	. 5	، س	4 v	n ve		00	6	10	=	12	5	4	<u>-</u>	5	ñ	4	S	9	7	80	6	10	=	12	13	14	15	
		BUKB	BURB	BURB	BUKB	BURB	BURU	BURB	BURD	BURB	BURU	BUKB	BURB	BURB	BURB	BURI	BURB	BURB	BLRB	BURB	BURB	BURB	BURB	BURH	BURB	BURB	BURB	-																			
	Site	N.	A3	۲.	N.	V3	A3	٨3	A3	A3.	A3	٨3	Λ4	A4	44	A4	44	A4	A4 A5	A5	A 5	A5	A5	A5	A5	A5	A5	Δ5	A5	A5	A5	A5	Λ5														
	River/Delta	Athabasca R.	Athabasca R.	Athabasca R.	Athabasca R.	Alhabasca R.	Athabasca R.	Athabasca R.	Athabasca R.	Athabasca R.	Athahasca R.	Athabasca R.	Allabasca K.	Athebacca R.	Athabasca N.	Athabasca R.	Athabasca K.	Athabasca R	Athabasca R.	Athabasca R.	Athabasca R.	Athabasca R.	Athubasca R.	Athabasca R.	Athabasca R.	Athabasca R.	Athabasca R.	Adrabasca R.	Athabasca R.	Athabasca R.	Athabasca R.																
	Date	27-Sep-94	27-Sep-94	2.7-Sep-94	27-Sep-94	27-Sep-94	27-Sep-94	27-Scp-94	27-Sep-94	27-Sep-94	27-Sip-94	27-Sep-94	27-Sup-94	27-Sep-94	27-Sep-94	27-Sep-94	27-S-:p-94	27-S-:p-94	08-Oct-94	08-Oct-94	08-Oct-94	08-Uct-94	08-0-1-94	08-01-94	08-Oct-94	08-Oct-94	08-Oct-94	08-Oct-94	08-Oct-94	08-Oct-94	09-Oct-94	14 O - 04	14-Oct-94	4-Oct-94	4-Oct-94	15-Oct-94	5-Oct-94	15-Oct-94	5-Oct-94	5-Oct-94	15-Oct-94	5-Oct-94	5-Oct-94	15-Oct-94	15-Oct-94	15-Oct-94	

	Comments	dead on SL	dead on SI	dead on SL		released						1000	dead on SL												dead on SL	dead on SL							dead on SL													
Capture	Method	SL	IS			EF	SL	EF	SL	SI	SL			10	- Lo			IS	- TS	SL	S	SI	SL	SL		č.,	A R	10	15	SL	SL	SL		IS	7	SL	10	No.	SI S	SL S	SL	SL	SL	SL	SL	
Ageing	1.1	or T	DT 0	OT	CL		TO	FR	cr	5	5	50	38	5 6	TO TO	10	0T	OT	OT	OT	OT	OT	OT	IO	OT	OT	5 6	38	50	DT	OT	OT	TO	10	10	10	5 5	10	55	5 10	IO	TO	IO	DI	OT	1
	Age s	r v		2	7			6	2	ŝ	5		~ ~	• •		. v	. ~	4	- 00	ş	=	10	4	5	7	12	~ ~	0 0	6	00	7	10	10		• •	ۍ د ۱	2.0	× 0	~ ~	2 2	-	4	n n	1 00	6	
	Mat. /	2 5	5	7	2	0	-	7	-	1	-	- 1		4 F	· ~	4 C	. 4	5	5	2	2	2	7	2	2	~ ~		ч Г [.]	- 7	7	7	2	2			N V	2 2	2 6	4 5	- 64	5	2	_	. 9	7	
	Sex	⊭. ≥	Σ	ш	щ	D	щ	Σ	<u>بد</u>	Z	<u>ل</u> ت ا	ы ;	ΣĽ	- ∑	5	. LI.	, ц.	, (L	Σ	ш	щ	ш	Σ	щ	ц	<u>ب</u>	Σ	L X	1 4	Σ	Σ	ш	<u>ت</u> ـ	Σ 3	Ξr	- ≥	Σu	ц (1	- ≥	<u>2</u> (L.	μ.	Σ	<u>ц</u> .	ž	M	1
	LSI				08.		1.42	1.05	0.50	0.50	0.76	0.68	11	8E C	376	34	3.08	6.03	2.59	2.18	3.36	2.76	1.72	2.00		4	0.83	50.5	2.97	7,48	3.83	11.9		17 00	06-1	3.66	00.0	0.19	2 00 S	3.41	4 83	4.60	2.21	2.90	4.17	
	GSI				4,41		0.87	5.91	0.37	2 02	0.40	0.58	00.00	20 37	1 43	1911	32	13.17	22.15	4.86	2.76	3.94	3.47	3.62			1.28	32 2	0.49	7.24	5 13	0.84	1	0.40	1	0.16	2 67	10.5	583	9/.0	4.74	5.59	0.36	0.20	7.16	
	CF	0.54	0.59	0.55			0.43 0							1 550									0.52 3	0.47 3	0.47		1 00.0							0 040		0.45 0							ċ.			
	Gonnd C	41.6 0.										2.4	0 0																		÷												5			
		41	ä	37	7 55																				20									1.12												
Weight	Liver				22.7		5.7	5.7	1.5	3.9	2.5	7.8	2 5 5	0	191	10.0	13.6	31.0	10.7	3.9	19.4	11.9	11,9	4,8			0.2	CIE	18.8	33.9	17.7	46.3		10.8	0.04	20.00	20.02	0 44	503	28.7	15.5	22.4	3.1	21.5	27.2	
W	Carcass				1261		402	545	301	782	328	411	515	183	478	299	441	514	413	179	577	431	692	240			1421	440	634	453	462	069	2	530	205	546	010	202	1001	841	321	487	140	742	652	
	Total	1002	1004	730	1411	268	463	655	322	785	350	4/4	100	514	530	386	513	579	563	225	671	490	806	290	632	1014	2/7	255	715	566	538	802	1042	400	01/	159	100	101	9661	016	392	593	169	835	805	
IL	(mm)	505	553	510	637	360	475	409	391	526	417	104	104	452	481	430	474	513	463	380	517	500	538	394	511	570	541	460	549	465	470	5 32	607	940	103	170		565	629	583	423	387	312	525	547	
FL	(mm)	569 505	553	510	608	360	475	381	370	494	393	479	1004	452	481	430	474	513	463	380	517	500	538	394	511	570	205	460	549	465	470	552	607	440 616	103	170	070	595	629	583	423	387	312	525	547	
Time	of denth				1311		1016	1851	1047	1128	958	1030	1347	1420	1329	1118	1137	1159	1058	1233	1303	1128	1149	643			CI 91	1430	1458	1556	1536	1616		1054	0711	1149	9221	00001	1429	1453	1520	1538	1616	1637	1655	
Time	caught				1307	1400	1008	1838	1043	1121	955	C701	1306	1308	1310	830	835	838	841	1230	1228	1125	1123	166			1813	8071	1426	532	1534	1533		1001	1146	1143	1237	1328	1426	1424	1517	1515	1613	1611	1609	
		18	20	17	-		-	-	-	2	~ ·	4 4	n -	- 6		4	s	9	7	-	2	e	4	2	9	۰.	- ~		- ~	Ē	4	S	9	` °	0 0	ہ 10 م		= 2	1 1	14	15	16	11	8	19	
	Species	BURB	BURB	BURB	NRPK	BURB	BURB	LNSC	NRPK	NRPK	NRPK	NUCK	DIMP	BURB	BURR	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	NRPK	RURB	BURB	BURB	BURB	BURB	BURB	BUIKB		BURB	DUIDD	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	
	Site	A5 A5	AS	AS	AS	MIRI	MR.1	MR I	MR1	MR	MR	MIN	C CDY	MR2	MR2	MR2	MR2	MR2	MR2	Ч	Ь	Р	Ъ	Р	Ч	<u>م</u> ،	<u> </u>	1 SV	LSV	LSV	LSV	LSV	LSV	LSV LSV	1 617	LSV LSV	1 51	7 T 2 V	LSV	LSV	LSV	LSV	LSV	LSV	LSV	
	River/Delta	Athabasca R. Athabasca R.	Athabasca R.	Athabasca R.	Athabasca R.	McLeod R.	McLend R.	McLend R.	McLend R.	McLead R.	McLeod R.	McLeod K.	Mart and D	Mrd.end R.	Met and R	McLeod R.	McLeod R.	McLeod R.	McLeod R.	Pembina R.	Pembina R	Pembina R.	Pembina K.	Letter Slave R	Lesser Slave R.	Lesser Slave R.	Lesser Slave R.		Lesser Slave R	Lesser Slave K.	Lesser Slave N.	Lesser Slave R.	Losser Claus D	Lesser Slave R.		Lesser Slave R.										
	Date	15-Oct-94	5-Oct-94	5-Oct-94	4-Oct-94	[7-Sep-94	7-S-p-94	6-Scp-94	8-Sep-94	18-Scp-94	9-Sep-94	19-3cp-94	15 Due 04	15-Dec-94	15-Dure-94	15-Dec-94	15-Dec-94	15-Dec-94	16-Dec-94	29-Sep-94	29-Scp-94	30-Sep-94	30-Scp-94	01-Oct-94	01-Oct-94	01-Oct-94	1.6 d 20. 72	03-0-1-01	03-Oct-94	03-Oct-94	03-Oct-94	03-0=1-94	03-0c1-94	04-061-94		04-Oct-94	04 Ore 04	04-0-1-04	01-04-94	04-0c1-94	04-Oct-94	04-Oct-94	04-Oct-94	04-Oct-94	04-Oct-94	

APPENDIX C. LIFE HISTORY DATA SUMMARY OF NON-TARGET FISH

					FL	TL	Total		Capture	Tag
Date	Location	Site	Species	No.	(mm)	(mm)	Weight (g)	Sex	Method	Number
9/28/94	Peace R.	PR1	MNWH	1	436	471	741	U	EF	
9/28/94	Peace R.	PR1	MNWH	2	362	393	525	U	EF	
9/28/94	Peace R.	PR1	MNWH	3	326	355	316	U	EF	
9/30/94	Peace R.	PRI	MNWH	4	409	445	601	υ	EF	
9/28/94	Peace R.	PRI	WHSC	1	381	406	636	Ū	EF	
9/28/94	Peace R.	PR1	WHSC	2	431	459	862	U	EF	
9/30/94	Peace R.	PR1	WHSC	3	456	485	1118	U	EF	
10/4/94	Peace R.	PR2	GOLD	1	326	357	371	F	EF	
10/4/94	Peace R.	PR2	GOLD	2	348	385	526	М	EF	
10/4/94	Peace R.	PR2	GOLD	3	334	368	440	М	EF	
10/4/94	Peace R.	PR2	GOLD	4	355	393	494	М	EF	
10/5/94	Peace R.	PR2	WALL	1	277	295	196	U	SL	
10/5/94	Peace R.	PR2	WALL	2	280	296	211	U	EF	
10/4/94	Peace R.	PR2	WHSC	1	436	469	960	U	EF	
10/7/94	Peace R.	PR3	ARGR	1	285	314	257	U	EF	
10/7/94	Peace R.	PR3	ARGR	2	293	323	282	U	EF	
10/9/94	Peace R.	PR3	WALL	1	377	402	562	U	SL	
10/9/94	Peace R.	PR3	WALL	2	381	410	580	U	SL	
10/9/94	Peace R.	PR3	WALL	3	386	412	613	U	SL	
9/18/94	Smoky R.	SR1	GOLD	1	388	430	754	F	EF	
9/15/94	Smoky R.	SR1	WALL	1	231		120	U	SL	
9/15/94	Smoky R.	SR1	WALL	2	273			U	SL	
9/16/94	Smoky R.	SR1	WALL	3	442	465		U	SL	
9/16/94	Smoky R.	SR1	WALL	4	460	491		U	EF	
9/16/94	Smoky R.	SR1	WALL	5	420	449		U	EF	
9/16/94	Smoky R.	SR1	WALL	6	473	500		U	EF	
9/16/94	Smoky R.	SR1	WALL	7	312	330		U	EF	
9/18/94	Smoky R.	SR1	WALL	8	610	644	2465	U	EF	
9/18/94	Smoky R.	SR1	WALL	9	520	552	1552	U	EF	
9/18/94	Smoky R.	SR1	WALL	10	430	453	768	U	EF	
9/18/94	Smoky R.	SR1	WALL	11	406	432	734	U	EF	
9/18/94	Smoky R.	SR1	WALL	12	442	470	940	U	EF	
9/18/94	Smoky R.	SR1	WALL	13	313	335	308	U	EF	
0/17/94	Smoky R.	SR2	ARGR	1	366	401	646	U	SL	
0/15/94	Smoky R.	SR2	BLTR	1	372	393	524	U	SL	
0/16/94	Smoky R.	SR2	BLTR	2	402	427	577	U	SL	
0/16/94	Smoky R.	SR2	BLTR	3	402	428	611	U	SL	
0/16/94	Smoky R.	SR2	BLTR	4	360	380	420	U	SL	
0/16/94	Smoky R.	SR2	BLTR	5	415	443	696	U	SL	
0/16/94	Smoky R.	SR2	BLTR	6	389	414	540	U	SL	
0/16/94	Smoky R.	SR2	BLTR	7	358	375	413	U	SL	
0/16/94	Smoky R.	SR2	BLTR	8	386	397	522	U	SL	
0/16/94	Smoky R.	SR2	BLTR	9	385	404	522	U	SL	
0/16/94	Smoky R.	SR2	BLTR	10	336	358	324	U	SL	
0/16/94	Smoky R.	SR2	BLTR	11	315	335	309	U	SL	
0/16/94	Smoky R.	SR2	BLTR	12	309	332	270	U	SL	
0/16/94	Smoky R.	SR2	BLTR	13	291	312	231	U	SL	
0/16/94	Smoky R.	SR2	BLTR	14	287	304	232	U	SL	
0/16/94	Smoky R.	SR2	BLTR	15	268	287	169	U	SL	
0/16/94	Smoky R.	SR2	BLTR	16	232	258	134	U	SL	
0/16/94	Smoky R.	SR2	BLTR	17	220	234	111	U	SL	
0/16/94	Smoky R.	SR2	BLTR	18	387	408	578	U	SL	

					FL	TL	Total		Capture	Tag
Date	Location	Site	Species	No.	(mm)	(mm)	Weight (g)	Sex	Method	Number
10/17/94	Smoky R.	SR2	BLTR	19	356	376	473	U	SL	
10/17/94	Smoky R.	SR2	BLTR	20	288	306	219	υ	SL	
10/17/94	Smoky R.	SR2	BLTR	21	356	379	429	U	SL	
10/17/94	Smoky R.	SR2	BLTR	22	353	374	422	U	SL	
10/17/94	Smoky R.	SR2	BLTR	23	362	385	481	U	SL	
10/17/94	Smoky R.	SR2	BLTR	24	312	332	314	U	SL	
10/17/94	Smoky R.	SR2	BLTR	25	321	341	337	U	SL	
10/16/94	Smoky R.	SR2	MNWH	1	351	377	441	U	SL	
9/23/94	Wapiti R.	WR1	ARGR	1	264	291	212	U	EF	
9/23/94	Wapiti R.	WR1	BLTR	1	446	467		U	SL	013001
9/23/94	Wapiti R.	WRI	BLTR	2	373	394		U	EF	013002
9/23/94	Wapiti R.	WR1	MNWH	1	390	422	637	U	EF	
9/22/94	Wapiti R.	WR1	WHSC	1	475	508	1124	U	EF	
9/22/94	Wapiti R.	WR1	WHSC	2	485	512	1242	U	EF	
9/22/94	Wapiti R.	WR1	WHSC	3	337	364	458	U	EF	
9/22/94	Wapiti R.	WR1	WHSC	4	341	366	460	Ū	EF	
9/22/94	Wapiti R.	WR1	WHSC	5	388	415	558	Ŭ	EF	
9/22/94	Wapiti R.	WRI	WHSC	6	375	397	584	U	EF	
9/23/94	Wapiti R.	WR1	WHSC	7	347	366	472	Ŭ	EF	
9/23/94	Wapiti R.	WR1	WHSC	8	393	422	654	Ŭ	EF	
9/25/94	Wapiti R.	WR1	WHSC	9	374	404	601	Ū	EF	
10/19/94	Wapiti R.	WR2	BLTR	I	571	101	001	Ŭ	SL	
10/19/94	Wapiti R.	WR2	BLTR	2				Ŭ	SL	
9/18/94	Little Smoky R.	SR1	NRSQ	I	453	488	1054	U	SL	
9/18/94	Little Smoky R.	SR1	WALL	1	356	375	472	U	SL	
9/18/94	Little Smoky R.	SR1	WALL	2	360	375	462	U	SL	
9/18/94	Little Smoky R.	SR1	WALL	3	529	561	1420	U	A	
9/18/94	Little Smoky R.	SR1	WALL	4	296	315	0	U	A	
9/19/94 9/19/94	Little Smoky R.	SR1	WALL	5	367	392	496	U	SL	
9/19/94	Little Smoky R.	SR1	WALL	6	468	499	1081	U	SL	
9/21/94 9/21/94	Little Smoky R.	SR1	WHSC	1	358	383	525	U	EF	
9/12/94 9/12/94	Athabasca R.	Al	MNWH	1	211	236	103	U	EF	
9/12/94 9/12/94	Athabasca R.	Al	MNWH	2	157	175	33	U	EF	
9/12/94 9/10/94	Athabasca R.	AI Al	RNTR	1	412	415	858	U	SL	
9/12/94 9/12/94	Athabasca R.	Al	RNTR	2	315	333	377	U	SL	
9/12/94 9/12/94	Athabasca R.	Al	RNTR	3	296	315	262	U	SL	
9/12/94	Athabasca R.	Al	RNTR	4	230	226	202 96	U	SL	
9/12/94 9/12/94	Athabasca R.		WHSC	1	406	433			EF	
9/12/94 9/12/94	Athabasca R.	Al	WHSC	2	375	396	840 621	U U	EF	
9/12/94 9/13/94	Athabasca R.	AI Al	BLTR	2	212	280	021	U	A	
9/13/94	Athabasca R.	AI	BLTR		531	555	1508	U.	SL	
9/24/94	Athabasca R.	A2	BLTR	6	418	441	720	F	SL	
9/22/94	Athabasca R.	A2 A2	BLTR	5	503	523	1276	F	SL	
9/22/94 9/25/94	Athabasca R.	A2 A2	BLTR	8	303	349	349	r F	SL	
9/25/94	Athabasca R.	A2 A2	BLTR	° 7	328	349	362	r F	SL	
9/21/94	Athabasca R.	A2 A2	BLTR	1	342	355	389	r U	SL	
9/21/94	Athabasca R.	A2 A2	BLTR	1	342 490	512	1060	M	SL	
9/21/94 9/21/94	Athabasca R.	A2 A2	BLTR	2	322		337	l™i U	SL SL	
9/21/94	Athabasca R. Athabasca R.	A2 A2	BLTR	4	572	346 593		F	SL	
						593	1114			
9/22/94	Athabasca R.	A2	BLTR	3	314	331	294	F	SL	
9/23/94	Athabasca R.	A2	MNWH	1	348	379	529	F	EF	
9/23/94	Athabasca R.	A2	MNWH	2	315	344	336	F	EF	

					FL	TL	Total		Capture	Tag
Date	Location	Site	Species	No.	(mm)	(mm)	Weight (g)	Sex	Method	Number
9/23/94	Athabasca R.	A2	MNWH	3	277	308	235	М	EF	
9/21/94	Athabasca R.	A2	RNTR	1	327	346	425	М	SL	
9/21/94	Athabasca R.	A2	RNTR	2	314	332	308	F	SL	
9/21/94	Athabasca R.	A2	RNTR	3	240	256	144	F	SL	
9/22/94	Athabasca R.	A2	RNTR	4	403	422	768	F	SL	
9/22/94	Athabasca R.	A2	RNTR	5	285	299	280	F	SL	
9/23/94	Athabasca R.	A2	RNTR	6	227	236	117	F	SL	
9/24/94	Athabasca R.	A2	RNTR	7	320	339	340	F	SL	
9/25/94	Athabasca R.	A2 .	RNTR	8	350	364	490	F	SL	
9/25/94	Athabasca R.	A2	RNTR	´9	367	385	517	М	SL	
9/25/94	Athabasca R.	A2	RNTR	10	287	301	234	F	SL	
10/8/94	Athabasca R.	A4	WALL	1	401	422	675	F	SL	
10/8/94	Athabasca R.	A4	WALL	2	388	405	559	F	SL	
10/8/94	Athabasca R.	A4	WALL	3	345	367	352	М	SL	
10/8/94	Athabasca R.	A4	WALL	4	414	440	744	М	SL	
10/8/94	Athabasca R.	A4	WALL	5	329	348	362	М	SL	
10/9/94	Athabasca R.	A4	WALL	6	350	374	403	М	SL	
10/9/94	Athabasca R.	A4	WALL	7	396	420	644	М	SL	
10/9/94	Athabasca R.	A4	WALL	8	377	401	541	М	SL	
10/9/94	Athabasca R.	A4	WALL	9	487	512	1182	М	SL	
10/15/94	Athabasca R.	A5	GOLD	1	386	424	677	F	SL	
10/14/94	Athabasca R.	A5	WALL	1	459	482	1082	М	SL	
0/14/94	Athabasca R.	A5	WALL	2	437	460	837	М	SL	
10/14/94	Athabasca R.	A5	WALL	3	406	425	598	F	SL	
10/14/94	Athabasca R.	A5	WALL	4	321	335	305	М	SL	
10/15/94	Athabasca R.	A5	WALL	5	486	508	1189	М ~	SL	
0/15/94	Athabasca R.	A5	WALL	6	425	443	778	М	SL	
10/15/94	Athabasca R.	A5	WALL	7	505	527	1295	F	SL	
0/15/94	Athabasca R.	A5	WALL	8	378	398	577	м	SL	
0/15/94	Athabasca R.	A5	WALL	9	381	402	582	M	SL	
10/15/94	Athabasca R.	A5	WALL	10	398	419	683	M	SL	
9/18/94	McLeod R.	MR1	MNWH		250	262	157	U	EF	
10/1/94	Pembina R.	P	WALL	1	200	339	388	F	SL	
10/3/94	Lesser Slave R.	LSV	WALL	1	341	365	451	F	SL	
10/11/94	Clearwater R.	A4	WALL	I	381	410	545	M	SL	
10/11/94	Clearwater R.	A4	WALL	2	406	428	698	M	SL	
10/11/94	Clearwater R.	A4	WALL	3	374	399	613	F	SL	
10/11/94	Clearwater R.	A4	WALL	4	379	401	517	F	SL	
10/11/94	Clearwater R.	A4	WALL	5	331	349	348	F	SL	
10/12/94	Clearwater R.	A4	WALL	6	482	511	1172	F	SL	
10/12/94	Clearwater R.	A4-	WALL	7	384	403	600	F	SL	
9/19/94	P-A Delta	JV1	WALL	*	>200	-05	000	1	GN	
9/20/94	P-A Delta	JV1	WALL		>200				GN	
9/20/94	P-A Delta	JV1 JV1	WALL		>200				GN	
9/19/94	P-A Delta	JVI	GOLD		>200				SL	

APPENDIX D. CATCH PER UNIT EFFORT FOR SET LINES, ELECTROFISHING, AND GILL NETS.

Line	Habitat type	Depth	of Hooks	Effort (h)	Hours	BURB No. CPUE	E No. CPUE	LNSC No. CPUE	FLCH No. CPUE	WALL NRSQ BLTR RNTR ARGR MNWII
ce Kl	Peace River upstream of Dunvegan (near Many Islands): September 12 - 18, 1994	ar Many Islar	rds): Septemb	er 12 - 18, 19	247					
	Dackwatch	111	07	Dut.	740					
2 4	backwater	E	07		340					
m	LUN	Ξ	20	11	340					0
4	uni	ш	20	16.6	332					
Ş	un	s	20	11	340					
9	backwater	p	20	72.5	1450	1 0.07				
~	backwater	р	20	72.5	1450	1 0.07				
00	backwater	q	20	73	1460	1 0.07	_			
6	run	s	20	16.8	336	6				
10	run	Ε	20	16.8	336					
=	tun	E	20	16.8	336					
12	snve	Ε	20	16.5	330					
<u>~</u>	Shve	Ε	20	15.6	312					
14	SUVE	E	20	15.6	312					
2	hackwater	Ε	00	30.8	706	1 013				
2 4	backtuater	8	20	40	BOD					
	Dackwalc	I	0 0	0.00						
1	Dackwater	E	70	6.65	86/	3 0.38				
00	backwater	E	20	40	800	1 0,13				
6	backwater	ш	20	40.2	804	1 0.12				
20	backwater	E	20	40.3	806					
21	backwater	Ε	20	40.1	802	1 0.12	0			
	Site PR1 total =		8		13622	10 0.07	-			
	61. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Annual Contraction	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
D'N'D	reace retrief downstream or Diasnowa (near mount of hourkerin kriver). Ostober 2 - 5, 1994	uncar mouth o	20 20	aivery, Uctobe	602	\$66			1 0.17	
2	backwater	E	20	29.9	598				in the second se	
ŝ	backwater	P	20	46	920				P	
4	backwater	þ	20	45.8	916	2 0.22			11.0 1	
5	backwater	p	20	45.7	914	1 0.11			1 0.11	
9	backwater	Е	20	46.3	926					
2	backwater	ш	20	46.2	924	11.0				
00	snye	u	20	29.7	594					
6	snye	в	20	47.1	942	4 0.42				
10	Snye	-07	20	47.2	944	0.11	1 0.11	_	1 0.11	1
Π	bankwater	m	20	34.3	686				6	
12	baskwater	E	20	16.8	336					
13	backwater	ш	20	16.8	336					
	and the				areas.	20 0 N	100		10.00	

....

Set			Number		Hook	BU	BURB	NF	NRPK	LI	LNSC	FLCH	H		-uoN	Non-target Species		
Line	Habitat type	Depth	of Hooks	Effort (h)	Hours No.		CPUE 1	No.	CPUE	No.	CPUE	No. (PUE	No. CPUE No. CPUE No. CPUE WALL NRSQ BLTR RNTR ARGR MNWH	Q BL	FR RNTR A	ARGR N	HMNI
Peace Ri	Peace River near Fort Vermilion: October 6 - 9, 1994	er 6 - 9, 1994																
1,2,3	backwater	Е	60	104.8	6288	5	0.03											
4,5	backwater	p	40	74.3	2972	1	0.03											
9	backwater	н	20	45.4	908	2	0.22											
2	backwater	Е	20	45.3	906	1	0.11											
8	backwater	E	20	29.7	594	6												
6	backwater	н	20	29.7	594													
10	backwater	н	20	30.3	909	1	0.17											
11	backwater	ш	20	29.7	594	1	0.17											
12	snye	ш	20	15.3	306									1				
13	snye	ш	20	15.5	310	2												
14	snye	E	20	15.5	310	1	0.32											
15	snye	ш	20	15.1	302									1				
16	backwater	s	20	15.1	302									1				
	Site PR3 total =				14992	6	0.06							3				

Set Line	Habitat type	Depth	Number of Hooks	Effort (h)	Hook Hours	BURB No. CP	CPUE No.	NRPK 0. CPUE	LNSC No. CPUE	No.	FLCH CPUE	Non-target Species WALL NRSQ BLTR RNTR ARGR MNWH	HWI
Smoky R	Smoky River downstream of confluence with Wapiti River: September 12 - 18, 1994	e with Wapi	iti River: Septe	mber 12 - 18,	1994		t						
- 1	backwater	Е	20	33.3	666	5 0	0.75			1	0.15	1	
2	backwater	ш	20	15.7	314	3 0	0.96	1 0.32					
3	inside current line	E	20	13.9	278		0.00			-			
4	backwater	н.	20	41.7	834		0.24					1	
0	hole	D .	70	41.0	832		0.48				0.12	1	
9 7	hole	p d	20	43.1	862		0.35	I 0.12		-	0.12		
- 0	mud flat	<i>.</i>	07	07	200		90.0		_				
•		0	70	17	000		-						
	Site SR1 total =				4566	20	4	2 0:04		3	0.01	3	
Smoky R	Smoky River upstream of confluence with the Wapiti River near Grande Cache: October	vith the Wap	oiti River near	Grande Cache	: October	15 - 17, 1994	94						
1	backwater	p	20	26.4	528							3 1	
2	backwater	p	20	26.6	532							2	
e	run	ш	20	25.8	516					_		4 1	
4	run	ш	20	27.3	546					_		1	
5	run	ш	20	26.3	526		-		1 0.19	-		3 1	
9	run	Е	20	26	520		-					3	
7	run	ш	20	27.5	550					_			
~	run	ш	20	28.6	572							e c	
6	backwater	s.	20	28.1	562							9	
10	run	Ш	20	35	700		-					ŝ	
11	run	E	20	34.7	694							2	
12	hole	p	20	30.8	616							4	
13	backwater under bridge	н	20	14.2	284							. 2	
14	backwater under bridge	н	20	14.5	290						•	1	
15	backwater under bridge	н	20	30.6	612								
16	run	ш	20	30.7	614		-					. 1	
17	run	н	20	13.5	270					-			
18	backwater	н	20	14	280		-			_		1 1	-
19	backwater	ш	20	15.8	316		-			,		2	
20	run	s	20	16	320							2	
21	run	S	20	16	320		-					2	
22	nu	s	20	15.8	316					_		4	-
	Site SR2 total =				19616	0 0	0.00		1 0.01			50 2 1 1	1
Smoky R	Smoky River upstream of confluence with Wapiti River (at Canfor haul road bridge): December 19 - 21, 1994	vith Wapiti I	River (at Canfc	or haul road br	idge): De	cember 19.	21, 199	4					Γ
1,2,3,4	backwater	E	∞	32	256								
4,5,6,7	backwater	ш	80	32	256		-			_			
8,9,10	run	ш	9	32	192		-						
11,12,13	run	s	9	16	96	1 1	1.04			-			
14,15,16	run	s	9	16	96					-			
17	backwater	s	2	15.5	31					_			
18	backwater	s	2	15.5	31		-			_			
19	backwater	ш	2	15.5	31					_			
20	backwater	ш	2	15	30		-			-			-
21,22,23	backwater	ш	9	15	06					-			
24	backwater	p	2	15	30								
25	backwater	p	2	15	30								
	Site SR3 total =				1169	1 0	0.09			_			

Wapiti Kiver upstream from Grande Prairie: September 22 - 26, 1994 1 run m 20 2 run m 20 3 backwater m 20 4 backwater m 20	Depth	Number of Hooks	Effort (h)	Hook	No. CPUE	JE No.	NRPK CPUE	LNSC No. CPUE	FLCH No. CPUE	Non-farget Species WALL NRSQ BLTR RNTR ARGR MNWH
run run backwater	Prairie: Septen	nber 22 - 26, 1		-						
backwater	E	20	15.6	312		-				
backwater	E	20	16.5	330						
Ladana to a	E	20	17.2	344						
Dackwater	p	20	17.2	344						
backwater	p	20	33.5	670						
backwater	p	20	33.7	674						
backwater	Е	20	17.2	344						
backwater	Ш	20	33.5	670	_					
backwater	ш	20	16.6	332	2 0.60	02				
backwater	p	20	16.6	332		0				
backwater	ш	20	18.5	370	5	_				
snye	ш	20	18.2	364						
along addyline	ш	20	18,2	364						
backwater	E	20	17	340						
backwater	E	20	15.5	310	1 0.32	12			*	
backwater	ш	20	15.2	304	1 033	-	0.66	_		
Site WR1 total =				6404	4 0.06	06 2				1
Wapiti River upstream from Grande Prairie: October 18 - 20, 1994	Prairie: Octobe	sr 18 - 20, 199.	+			-	٩.			
un	Е	20	19	380						
นท	E	20	19	380						
นท	ш	20	61	380	1 0.26	90				
run	ш	20	19	380						
nn	Е	20	18.5	370						1
backwater	Е	20	18.5	370						
backwater	ш	20	17.5	350						
backwater	E	20	18.5	370	1 0.27	Li				
backwater	ш	20	33	660		5				
run below bridge	p	20	32.3	646	2 0.31	-				
run below bridge	þ	20	32.1	642						
run below bridge	q	20	31.6	632	3 0.47	1 1	0.16			
run below bridge	p	20	31	620	2 0.32	12				
run below bridge	ш	20	31.5	630						
run belew bridge	ш	20	31.5	630						
nu	ш	20	31.6	632	1					
пп	Ш	20	31.6	632	1 0.16	9				
run	ш	20	31.6	632	1 0.16	9				
Site WR2 total =			-	9336	13 0.14	4 1	0,01			2

Set			Number		Hook	BU	BURB	NRPK		LNSC	FLCH	HO		Z	Non-target Species	t Species	-
Line	Habitat type	Depth	of Hooks	Effort (h)	Hours No.		CPUE 1	No. CPUE	UE No.	. CPUE	No. 0	CPUE	WALL NRSQ		BLTR	BLTR RNTR ARGR MNWII	HIMNIM
Little Smo	Little Smoky River downstream from Hwy 744 crossing: September 17 - 21	Hwy 744 cros	ssing: Septemb	ber 17 - 21, 1994	94												
1	run	p	20	34	680								1				
2	run	ш	20	34.1	682								1				
ю	backwater	E	20	34.2	684									1			****
4	backwater	E	20	34.3	686								1				
S	backwater	s	20	32.3	646												
9	backwater	S	20	32.3	646				-								
2	backwater	S	20	32.3	646			1 0.15	5								
80	backwater	ш	20	32.5	650												
6	backwater	Ш	20	32.5	650				-				1				
10	backwater	р	20	32.5	650		,		-								
11	backwater	р	20	32.5	650				-								6 (r)
	Site LSR2 total =				7270	0	0.00	1 0.01	10				4	1			
Little Smo	Little Smoky River 3 km downstream of Hwy 744 bridge: December 17 - 1	of Hwy 744 l	bridge: Decem	ber 17 - 19, 1994	94												
1,2,3,4	pool	p	80	32	256	1	0.39		_								
5,6,7,8	pool	p	80	32	256												****
9,10,11	pool	р	9	32	192												
12,13,14	pool	р	9	32	192				-								
15,16,17	run	E	9	32	192				-								
18,19,20	run	н	9	32	192												
21,22,23	run	Ш	9	32	192												
24,25,26	backwater	Ш	9	16	96				-								
27,28,29	backwater	Ш	9	16	96												
30	backwater	p	2	16	32												** **
	Site LSR2 total =				1696	1	0.06		_			1					

Hahitat tyne	Denth	Number	Effort (h)	Hook	BURB No. CPI	RB NRPK CPIIE No. CPIIE	E No. CPUE	FLCH No. CPUE	Non-target Species
Wabasca River: October 10 - 14, 1994									
	ш	20	31	620					
	н	20	47.8	956					
	н	20	47.7	954	1 0.	0.10			
	ш	20	17.3	346					
	н	20	33	660	3 0.	0.45			
	ш	20	33.2	664		-			
	ш	20	50.4	1008				1 0.10	
	ш	20	50.6	1012					
	p	20	50.5	1010					
	р	20	50.8	1016					
	p	20	49.5	066					
	P	20	49.1	982	3 0.	0.31			
	Е	20	15.5	310					
	Е	20	15.3	306					
	н	20	16.6	332	11				
	н	20	16.5	330	2 0.	0.61			
	Е	20	16.5	330					
				11496	0	0.08		1 0.01	

Line	Habitat type	Depth	Number of Hooks	Effort (h)	Hook Heurs	BURB No. CP	UE	NRI K No. CPUE	No. CPI	CPUE No. CPUE	WALL NRSQ BUTR	Non-target Species BLTR RNTR ARGR MNWH
habasca	Athabasca River downstream from Hinton (near Hwy 947): September 11 - 15,	n (near Hw	vy 947): Septer		1994							
4	backwater at boat launch	E	20	14.25	285							
2	mouth of Marshhead Creek	Е	40	25.6	1024	-	0.10					
e	backwater	ш	20	14.5	290		ł					1
4	backwater.	E	40	27	1080	5	0.19					
5	backwater	tu	20	14.5	290							
9	backwater	ш	20	14	280							
7	backwater	m	20	14.6	292							
~	eddie	E	20	14.75	295							
6	mouth of Pine Creek	E	20	14.8	296		9	_				
10	run	E	20	14.2	284		ł	_				
11	run	ш	20	11.5	230	1	0.43					
12	run off of gravel bar	E	60	12	720							
	Site Ala total =				5366	4	0.07					4
habasca	Athabasca River downstream from Hinton (downstream from mouth of Berland	n (downstr	cant from mot	ith of Berland	River: Sc	River: September	12-15,	1994				
-	run	E	40	42.1	1684	1	0.06				1	
2	run	Е	60	53.6	3216	5	0.16					
3	run	q	40	41.45	1658	-	0.06	1 0.06031				
4	run	ш	60	55.25	3315	7	0.06	1 0.03017				
5	run	Е	60	54,25	3255	-	0.03	1 0,03072				
9	along edge of mud flat	s	20	21	420	1	0.24					
	Site A1b total =				13548	11	0.08	3 0.02214				
labasca	Athabasca River upstream from Hinton: September 20 - 25, 1994	September	20 - 25, 1994									
-	run	E	20	15.6	312							-
2	backwater	ш	20	59.6	1192	2	0.17				3	1
34.5	backtvaler	S	60	47,9	2874	2	0.07					
6.7.8	backwater	Е	60	116.2	6972	4	0.06					2
01'6	run	s	40	49.5	1980						ć	1
11,12,13	backwater	ε	60	93.1	5586						4	2
14,15,16	backwater	E	60	88.7	5322						2	2
17,18	run	в	40	29.1	1164						1	
19,20	backwater	Ε	40	28.7	1148							1
21,22	run	E	40	55.6	2224				2 0.0	0.09	3	
23.24.25	backwater	Е	60	53.3	3198					2		
26.27.28	backwater	ш	60	58	3480						2	
					35452	8	0.02		2 0.0	0.01	18	10

-

Line	Habitat type	Depth	Number of Hooks	Effort (h)	Hook	No.	BURB CPUE	No. CPU	E	No. CPUE	No.	FLCH CPUE	WALL NRSQ	Non-target Species BLTR RNTR	Von-target Species BLTR RNTR ARGR MNWH	HWW
thabasca	Athabasca River downstream of Whitecourt (at Fort Assiniboine): September 26 - 28, 1994	court (at For	1 Assiniboine)	: September 2	5-28, 199	2										
-	backwater	E	20	15.5	310		2									
2	un	E	20	15.6	312	ę	0.96									
e	backwater	E	20	15	300	2	0.67									
4	backwater	E	20	28	560	S	0.89									
\$	backwater	E	20	14.3	286				-							
9	backwater	Ε	20	28.5	570	7	0.35									
7	backwater	E	20	29.1	582	S	0.86									
~	backwater	E	20	29	580	7	0.34							-		
6	backwater	p	20	13.5	270	4	1.48									
-	Site A3 total =				3770	23	0.61									
thabasca	Athabasca River downstream from ALPAC: October 7 - 9, 1994	PAC: Octob	er 7 - 9, 1994													
I	backwater	ε	20	30.5	610	9	0.98						2			
2	backwater	E	20	30.7	614	7	0.33						2			
ę	backwater	٤	20	31.8	636								1			
4	backwater	E	20	31.8	636	s	0.79						3			
S	backwater	E	20	31.4	628	×					-					
	backwater	E	20	32.6	652		1									
1	backwater	E	20	16.8	336	2	0.60						1			
	Site A4 total =				4112	15	0.36						6			
thabasca	Athabasca River near Fort MacKay: October 14 - 18, 1994	ctober 14 - 1	8, 1994													
	backwater	Ħ	60	48.9	2934		ţ						3			
	backwater	Ε	60	83.9	5034	4	0.08	1	0.02							
	backwater	ш	09	49.3	2958	9	0.20						4			
10,11,12	backwater	E	60	48.9	2934	10	0.34						2			
13,14	backwater	E	60	35.6	2136	1	0.05						1			
	Site A5 total =				15996	21	0.13	I	0.01				10			

Set Line	Habitat type	Depth	Number of Hooks	Effort (h)	Hook	No. CPI	E	No. CPUE	LNSC No. CPUE	FLCH No. CPUE	WALL NRSQ
McLeod	McLeod River near Eagle campground: September 16 - 19, 1994	1: September	16-19, 1994						1		
1	backwater	E	20	20.3	406		2	2 0.49			
7	run	u.	20	32.1	642	1	0.16				
ę	nn	ιΩ.	20	19.6	392			2 0.51			
4	run	s.	20	19.5	390						
5	run	ш	20	13.5	270			1 0.37			
9	run	E	20	13.1	262						
7	backwater	Е	20	12.5	250						
00	backwater	Ш	20	16	320						-
9,10	backwater	*	40	27.6	1104						
11,12	backwater	-	40	25.2	1008						
13,14,15	1 Iun	E	60	42.8	2568						
16,17	run	s	40	28,6	1144						
18	backwater	E	20	14.3	286						
19,20,21	l backwater	E	09	41.3	2478		ľ,				
	Sile MRI total =				11520	1	0.01	5 0.04			
McLeod	McLeod River upstream from Edson (at Big Eddy); December 15 - 17, 1994	at Big Eddy):	December 15	-17, 1994							
1,2,3	backwater	E	9	48	288	5	1.74				
4,5	backwater	E	4	32	128	2	1.56				
6,7,8,9	backwater	s	8	64	512		i				
10,11,12	2 backwater	E	9	48	288						
13,14	backwater	s	4	32	128						
15	nu	p	2	16	32						
16	backwater	E	2	16	32						
17	backwater	s	2	16	32						
	Site MR2 total =				1440	5	070				

Set			Number		Hook	BURB	Z	NRPK	LNSC	2	FLCH			Non-target Species	
Line	Habitat type	Depth	Depth of Hooks	Effort (b)	Hours	Hours No. CPUE No. CPUE No. CPUE No. CPUE	No.	CPUE	No. C	PUE N	In. CPU	E WA	TT COI	WALL GOLD LKWH RNTR ARGR MNWH	R MNWH
ace-A	Peace-Athabasca Delta near Jackfish Village: September 17 - 18, 1994	/illage: Septe	mber 17 - 18, 1	994											
-	along eddie line	p	20	15.25	305										
2	along eddie line	p	20	15.2	304					_					
ę	pool	p	20	15.2	304							_	-		
4	along eddie line	p	20	15	300										
5	nu	þ	20	15	300					-					
9	run	þ	20	15.25	305										
	Site JV1 total =				1818	0 0.00							1		
ace-A	Peace-Athabasca Delta at Big Eddy: September 18 - 20, 1994	cptember 18	- 20, 1994												
-	run	p	40	17.5	700	(2)									
5	run	p	40	17.1	684							_			
3	run	P	40	17.5	700										
	Site JV2 total =				2084		-	0.05		_		0	-		

cace-A	Peace-Athabasca Delta at Big Eddy: September 18 - 20, 1994	ig Eddy: Septen	nber 18 .	- 20, 1994										_		
-	run		p	40	17.5	700		(2)								
2	nu		p	40	17.1	684						_				
~	un		p	40	17.5	700								8		
	Site JV2 total =					2084			1	0.05				-	2	
Set	Habitat type		Depth	Number of Hooks	Effort (h)	Hook Hours	No.	BURB	No.	NRPK CPUE	LNSC No. CPI	E	FLCH No. CPUE		Non-farget Species WALL GOLD LKWH RNTR ARGR MNWH	R ARGR MNWI
ave Ri	Slave River at "Big Eddy": October 14, 1994	October 14, 199	24											-		
-	unu		p	20	16.25	325	2	0.62								
2	nn		P	20	16.25	325				×				_		
e	unı		p	20	16	320	7	0.63	1	0.31		_				
4	run		p	20	16	320	1	0.31	-	0.31						
	Site SRD1 total =					1290	S	0.39	7	0.16						
ave Ri	Slave River at mouth of Nagle Channel: October 15 - 17, 1994	gle Channel: Oc	stober 15	1 - 17, 1994										-		
-	channei		P	20	20	400										
7	channel		q	20	20	400			-	0.25						
3	nn		q	20	20.1	402			1	0.25						
4	Tun		þ	40	36.75	1470	~	0.54								
S	nun		70	40	38.5	1540	9	0.39	1	0.06						
9	nun		þ	20	22	440										
2	run		p	20	23	460			1	0.22						
00	channel		р	20	23.25	465										
6	nun		p	20	16.5	330	7	0.61	1	1						
	Site SRD2 total =	1				5907	16	0.27	4	0.07						

		Effort		BURB	Z	NRPK	L	LNSC	FL	FLCH	A	WHSC	M	HWNM	Ö	GOLD	Ň	WALL	AF	ARGR	BI	BLTR
River	Site	Site (second) N CPUE N	N	CPUE		CPUE	Z	CPUE N	z	CPUE N CPUE N CPUE N CPUE	z	CPUE	z	CFUE	Z	CPUE	Z	CPUE N		CPUE N		CPUE
Peace River	PRI	3245			4	0.12	17	0.52	-	0.03	m	60.0	4	0.12								
	PR2	8499	1	0.01	4	0.05	00	0,09			-	10'0	-	0.01	Ś	0.06	T	0.01				
	PR3	4585					23	0.50							2	0.04			7	0.04		
Smoky River	SRI	8905			1	0.01	13	0.15	6	0.10			I	0'01	-	0.01	10	0.11		2		
Wapiti River	WRI	5642			10	-	13	0.23	S	0.09	6	0.16	1	0,02					1.0	0.02	1	0,02
Little Smoky River	LSRI	2013	****4	0.05	1	0.05	9	0:30	-	0.05		0.05								5		
Wabasca River	WB	545				1								0								
Athabasca River	AI	1747					1	0.06			7	0.11	7	0,11								
	A2	4302					ŝ	0.07				1	ŝ	0.07								
	A3	708		_									7	0.28								
	A4	2201		_																		
	AS	508		_				6														
McLeod River	MRI	2133	1	0.05			Ļ	0.05					1	0,05								
Lesser Slave River	LSV	612																				

Table 15. Number of fish caught electrofishing (N) and catch per unit effort (CPUE) electrofishing (number/100 seconds).

5

Table 16. Gill net catch.

		Set	Time	Time	Effort		Catch	
Delta	Site	Number	Set	Pulled	(hour)	NRPK	NRPK LKWH WALL	WALL
Peace-Athabasca Delta at Jackfish Creek near Jackfish Village	JVI	1	952	1010	0:30	3	2	
		2	1309	1331	0.37	1	1	
		3	1332	1350	0:30	0	1	
		4	1725	1738	0.22	1		1
		5	1748	1755	0.17	1		
		Total			1.36	9	4	1
Slave River Delta at mouth of Nagle Channel	SRD2	1	1110	1130	0.33	0		
		2	1145	1300	1.25	0		
		e	1300	1400	1.00	1		
		Total			5.3	-		

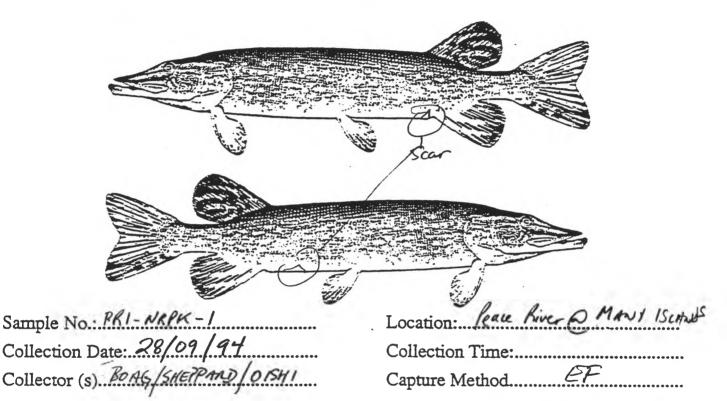
1

APPENDIX E.

۲.,

Gross Pathology Examination Sheet Checklist

Gross Externa						
Skin:	L	lesion	Η	haemorrhagic	В	blister
		open wound		tumor	Ε	excessive mucus
		closed wound	Ν	necrotic	U	ulcer
	Α	abnormal color	L	lost scales		
	No	ote whether wound	l is	raised above, der	ores	ssed or even with skin surface
Eyes:	0	opaque cornea	Ρ	parasites	В	bilateral
	Е	exophthalmia	Η	haemorrhagic	Μ	missing
	С	cataract	L	lens lost		-
Fins:	F	frayed	D	deformed	Т	tumor
	Ε	eroded	Η	haemorrhagic	R	ripped
Gills:	Ν	necrotic	Η	haemorrhagic	G	gas emboli
	Ρ	pale	С	cysts	Ε	excessive mucus
Gross Internal						
Adipose Tissue:	E	excessive		cysts	Η	haemorrhagic
	R	reduced	Α	abnoral color		
	_		_			
Liver:		excessive		color (mottled)		
		reduced		lesions	Ν	necrotic
	Ρ	cysts (parasites)	Η	haemorrhagic		
_	_					
Spleen:		enlarged		raspberry	Α	abnormal color
	R	reduced	С	cysts		
O <i>i</i>	-	a			-	
Gut:		flaccid		haemorrhagic		tumor
	D	distended	C	cysts	Ρ	parasites
Videou	Б	anlanced	т	logione	337	
Kidney:	C	enlarged	L	lesions	W	white
	м	multiple	C	oritty	C	avata
		multiple tumor	U	gritty	C	cysts
	T	LUIIUI				

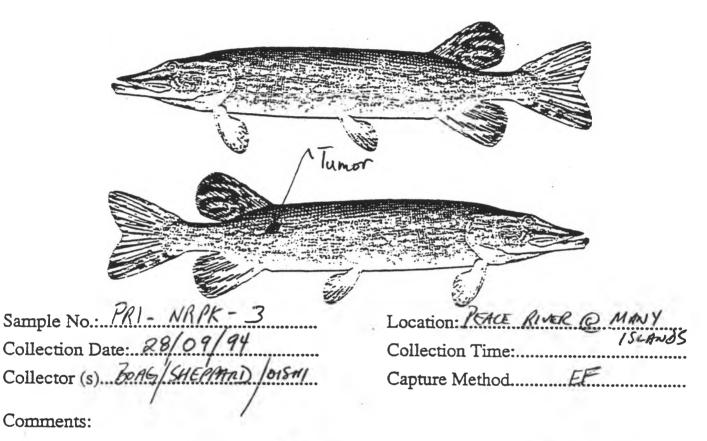

Table 17. Summary of external and internal abnormalities and deformities observed on fish caught in the Peace River, Athabasca River, and Slave River drainages.

Description	purple mottled	raspberry spleen			left eye	left eye	blood loss	below midline below dorsal fin	tumors on ventral side	open wound left side mid-body; guts extruding from wound			dark, hard, granular mass on liver	on skull			mottled with small red spots	mottled with small red spots	predator scar near caudal fin		mottled with small red spots; small (1 cm) round slightly depressed old	no left eye	left ovary four times the size of right ovary		growth on dorsal fin		red lesions			pelvic fin	on caudal peduncle		
Gills Fat Liver Gut Spleen Kidney	С	Α	Р				Ρ				Н	Ч	[-1		Ρ	Ρ	С	С			c			Ρ		E		Ρ	Ρ			Э	E
Skin Eyes Fins (н	E	М		T	Τ	0				Τ					С	Н	c	М			Т		L L			Н	L		
No. Sex Sh	6 F	2 M	2 F	3 U	9 F	7 F	14 M	10 M	4 F	2 M (7 F	8 F	10 M	16 M	1 F	8 M	2 F		15 F	4 M (17 F	3 F	8 M	4 F	15 F	8 F I	14 F	5 F	6 M	Ŀ,		10 F
Species N	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB	BURB		BURB	BURB	BURB	BURB	BURB	BURB	BURB	FLCH	FLCH		LNSC	LNSC	LNSC				LNSC
Site	PR1	PR2	PR3	PR3	SR1	SR1	SR1	SRI	WR1	WR1	WR1	WR2	WR2	WR2	A5	CW	SRD	SRD	SRD	SRD	SRD	SRD	SRD	SRI		PR1		PRI	PRI	PRI	PRI		PR1

Description		dorsal fin	tumor at base of dorsal fin; missing left pectoral fin	tumors on anal, caudal, and left pelvic fins	red lesions on right side between pelvic and pectoral fin	3 gill arches on right side necrotic; old wound on right pectoral fin	right pelvic fin and lower lobe of caudal fin deformed	anal fin (old wound?)	anal fin haemorrhagic; left pelvic fin tumor	caudal fin	anal fin tumor; dorsal fin haemorrhagic	base of dorsal fin	tumor on anal fin; caudal fin deformed (may be predator scar)	tumor on left side and dorsal fin; mouth red and inflammed	near left pectoral fin and on ventral surface	at base of dorsal fin	lesions on dorsal surface		lesions along dorsal surface; haemorrhage on left side	at base of caudal fin	tumor at base of dorsal fin	near caudal fin	liver appeared granular	tumor on left pectoral fin; red lesions below dorsal fin	lesions along both sides	lesions along both sides; tumors at bases of anal, pelvic and pectoral fin	tumor at base of dorsal fin; predator scars	tumors at base of dorsal and right pectoral fins	open wound on skull; growth on right pectoral fin	lesions along right side			scar anterior to anal fin	on right side below dorsal fin .	right pectoral
Skin Eyes Fins Gills Fat Liver Gut Spleen Kidney	Е	Н	D/H	T		LN	D	D	H/T N	H N	N H/T	T	Cl/T	T E				Р		Ρ			R N	T E	Н	Τ			Т	НЕ	Ρ	Р			R
			Т		L								L	Т	L	Т	L	T/L	L/H	Ŋ	Т	L		Τ	Γ	L/T	T/C	Г	0	L			U	H	
. Sex	Ľ.	Ъ	F	F	M	M	Μ	M				Ч		Ч	F	Μ		ц	F				Σ	ц	н	Σ	-	ц	ц	F	щ	D	Σ	Σ	т
S No.			3	13	-	12	11	19	20	18	14	80	Ξ	80	7	2	9	1	4	1	2	6	13	L	4	2	10	8	5	3	7	9	1	m	
Species	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	LNSC	NRPK	NRPK	NRPK
Site	PR1	PR2	PR2	PR3	PR3	PR3	PR3	PR3	PR3	PR3	PR3	PR3	PR3	SR1	SR1	SR1	SR1	SRI	SR1	SR1	SR1	SR1	WR1	WR1	WR1	WR1	WR1	WR1	WR1	WR1	LSR2	LSR2	PR1	PR1	PR2

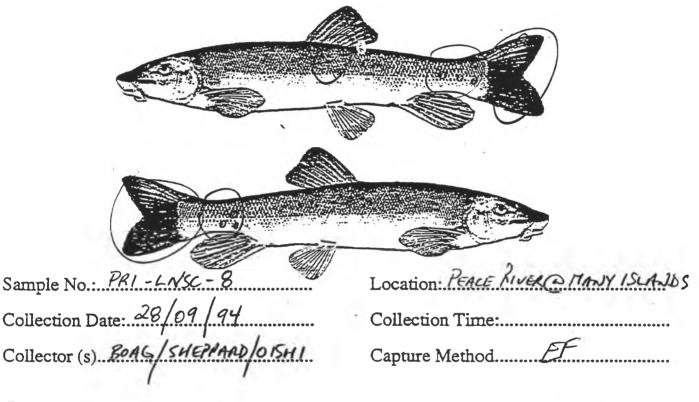
Description	left eye	under-developed left pelvic fin	left eye	turnor at base of right operculum	caudal fin	caudal fin	caudal fin	wounds from SL	caudal fin wound from SL	open wound on dorsal side anterior to dorsal fin		base of caudal fin			lesions along left side near midline and near pectoral fin	
Kidney	-			ţ				-								
t Liver Gut Spleen Kidney																
Skin Eyes Fins Gills Fat		D			Н	Τ	Н		R	F/E		Τ				
škin Ey	Е		L H	T			L	H O		0	Ρ		d	H	L	
Sex S	н	щ	M	Σ	ĽL.	ш	М	ш	ы	ц	N	M	Ъ	У	D	
No.	1	m	2	12	2	œ	5	e		5	2		-	e	-	6
Species	NRPK	NRPK	NRPK	NRPK	NRPK	NRPK	NRPK	NRPK	NRPK	BLTR	BLTR	BLTR	BLTR	HWNM	WHSC	
Site	SR1	SRI	SRI	WR1	WRI	WR1	WR1	AI	A5	A2	A2	A2	A2	A2	AI	

NORTHERN PIKE

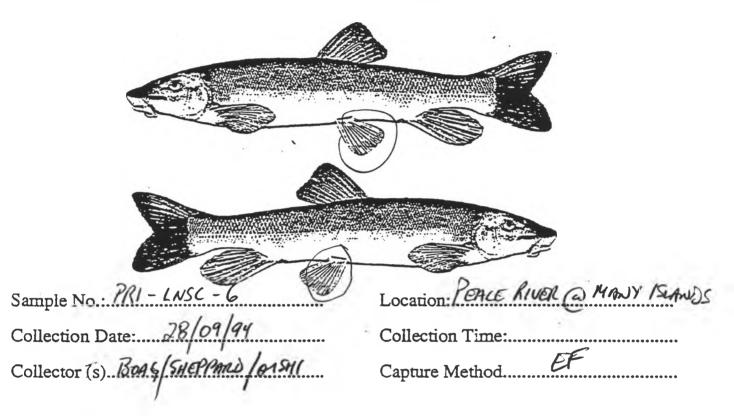

- Broad scar on ventral surface, anterior to anal fin

LONGNOSE SUCKER

Location: PEALE FIVEL @ MANY ISLANDS Sample No.: PRI - LNSC - 1 Collection Date: 28/09/94 Collection Time: Collector (s) Bong/SHEPPANS / OISHI Capture Method......EF


- Small, red lisions part the base of Candal Jeducle

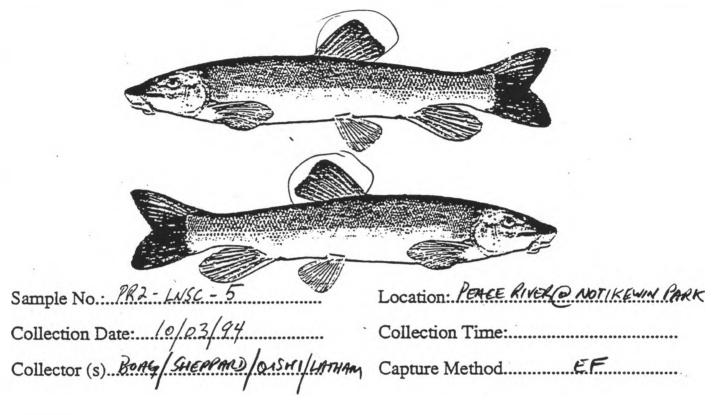
NORTHERN PIKE


- Tumor above lateral line, below dorral Fin, on Fish's right side

LONGNOSE SUCKER

- Small, red lesions on candal jeduncle, below dorsal fin (on left side), and on the tail.

LONGNOSE SUCKER

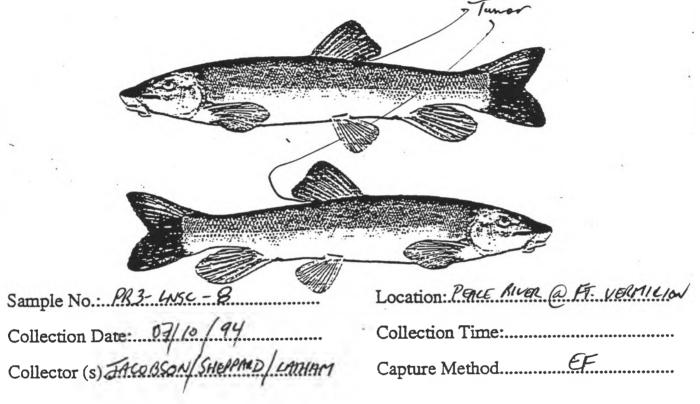

- Pelvic Fins hemonthagic

LONGNOSE SUCKER

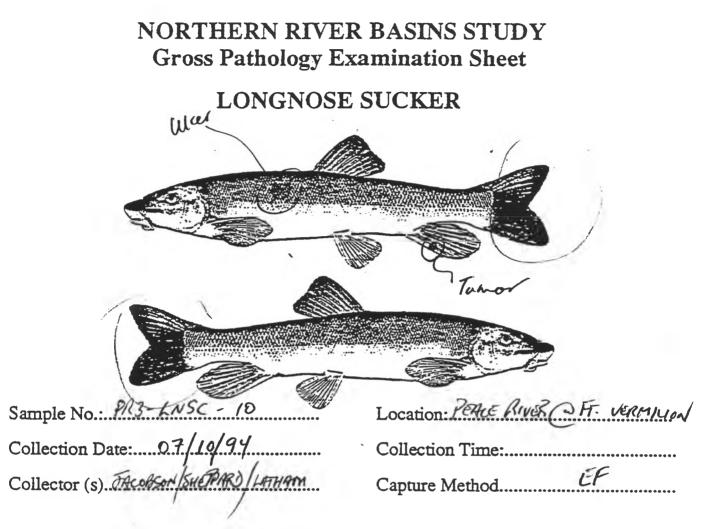
Sample No.: PR2: NKPK-3 Collection Date: 10/0.3/94 Collector (s). Both SHEMAND / OVEH J/LATIMAN Capture Method.

- Tumor @ base of dorsal Kin -Anal Fin hemorrhagic - Left pectoral Fin absent.

LONGNOSE SUCKER


- Small, red lesions on dorsal Fin

LONGNOSE SUCKER


Sample No. PR3 - LNSC - 1	Location PEACE RIVER @ FF. VERMILION
Collection Date: 07/10/94	Collection Time:
Collector (s) SHEPPAND SACOBSON/ LATHAM	Capture Method.

- Small, red lerson on Fish's rightside, below lateral line, and between the pelvic & pectoral Fins.

LONGNOSE SUCKER

- Tumor on the base of the last ray of the dorsal fin

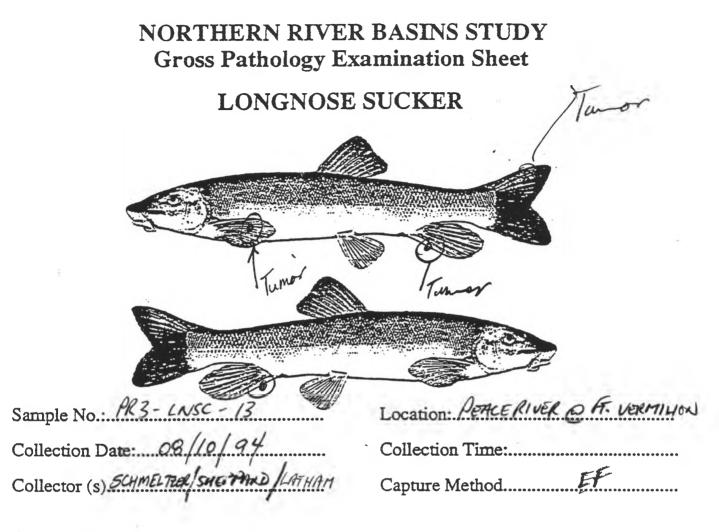
- Candal fin detormed: upper lobe may have been scarred by a predator.

- Small two present on the anal fin

Ularona lesion above lateral line, on Fish's left side, anterior to the dorsal Lin

LONGNOSE SUCKER

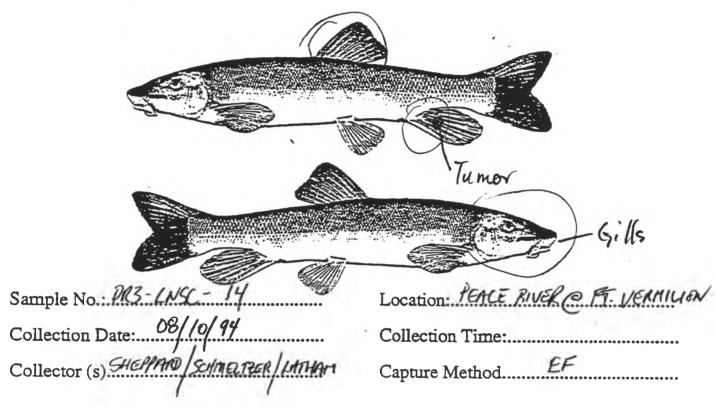
Sample No.: <u>PR3-LNSC-11</u> Collection Date: <u>0.7//.0/94</u> Collector (s). <u>IntcolfSonfituePhysic</u>/stime. Collector (s). <u>IntcolfSonfituePhysic</u>/stime.


- hight pelvic and lower lobe of candal fin are malformed.

LONGNOSE SUCKER

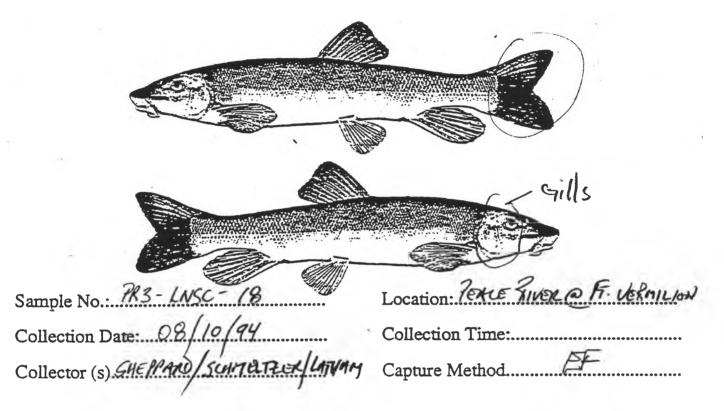
Sample No. <u>PK3-LASC-12</u> Collector (s). <u>SHERIMED</u>/SHMKTTREE/LATMAN

- Lesion present at the base of the left pectoral fin


- First and second rays of right pectoral for previously wounded, now healed - 3 gillarches on right side of sucker are necrotic, 4rth as fraged

-Tumor on lift pelvic tin. - Tumor on anal fin

- Candal for upper lobe has a Shall tour


LONGNOSE SUCKER

- Dorsal fin hemorrhagic

- Tumor present on anal fin - Gill Filaments necrotic

LONGNOSE SUCKER

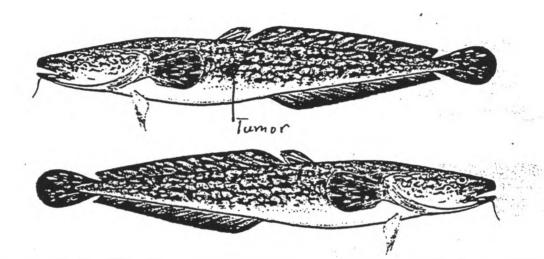
- Candal fin hemorrhagic

- Gill filaments frayed Inconstic

LONGNOSE SUCKER

Sample No.: PR3-LNSC-19	Location: PEACE RIVER OF F. VERTILION
Collection Date: 08/10/94	Collection Time:
Collector (s) SHEPPAD SCHMELT LER/LATINAM	Capture Method.

- Ann Fin is deformed. May be an old predator Star and has subsequet healed -

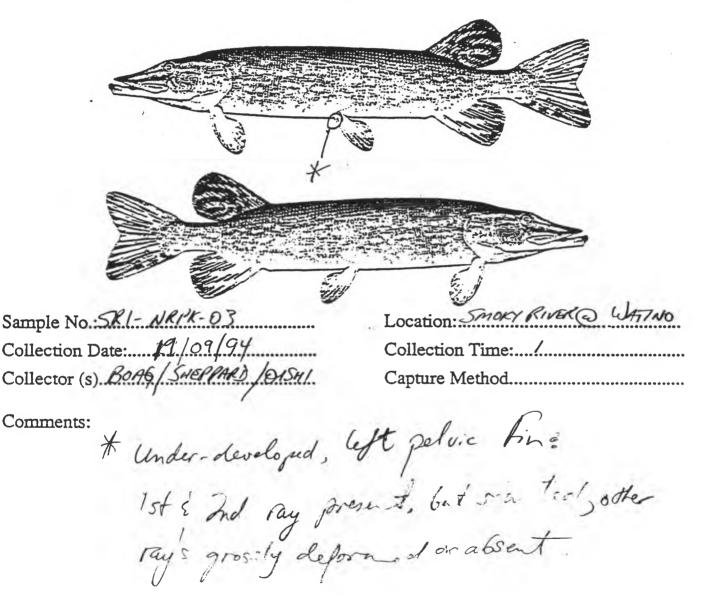

LONGNOSE SUCKER

-Small tumor on left pelvic hin.

- anal Fin hemorrhagic

- Gill Filaments Frayed + necrofic

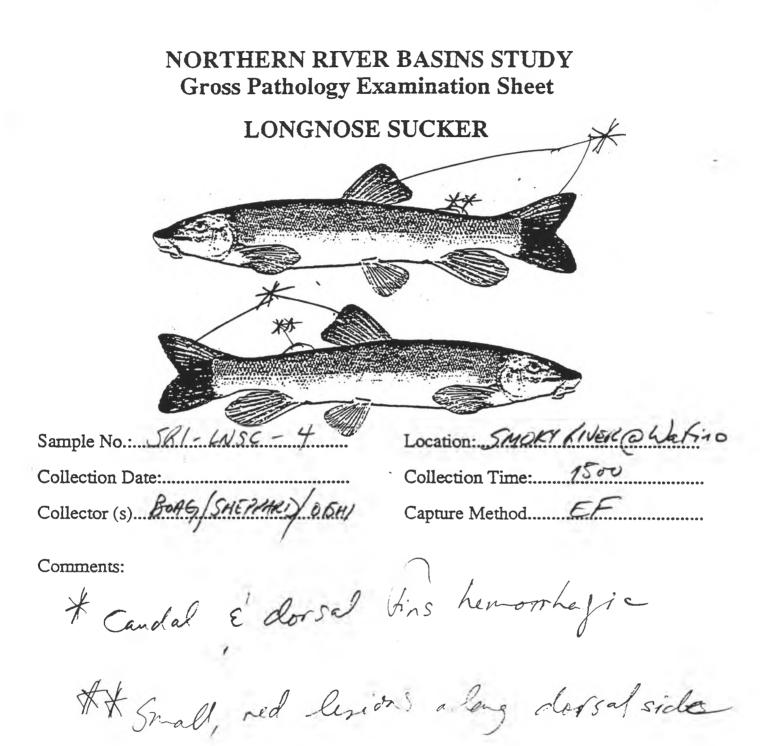
BURBOT



Sample No: SK1-Burg-10 Collection Date: SEAT 14/94 Collector (s) BOAG SHEPPARD / DISH 1

Location: Smort River Wating Collection Time: 14:35 PM Capture Method. SETLINE

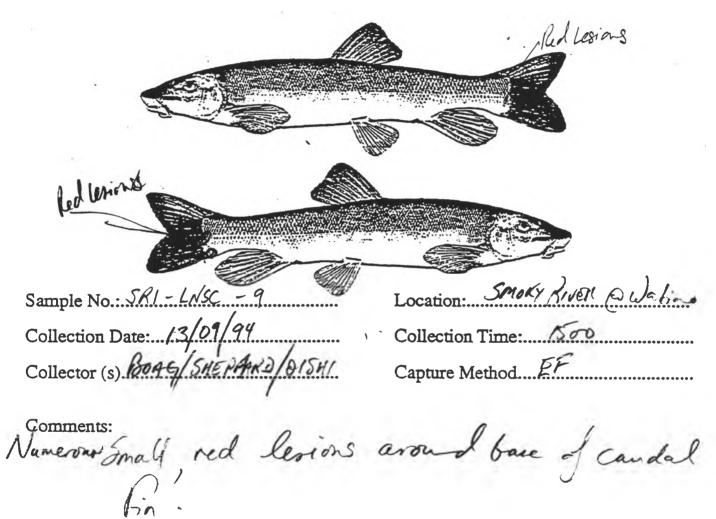
- Left side, below midline, directly under the anterior dorsal fin is an intermal tumor. (photographed)


NORTHERN PIKE

LONGNOSE SUCKER

Sample No.: <u>SRI - LUSE - 02</u> Collector (s). <u>Monte friedling (or SMI)</u>

* Small, white tumor @ candal e of Gare of dorsal fin.

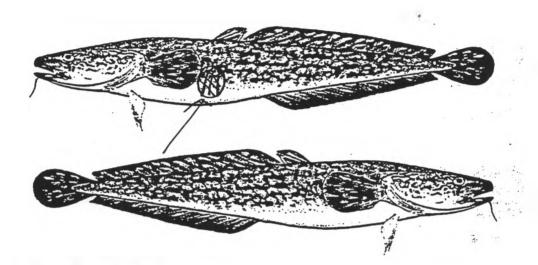

LONGNOSE SUCKER

Sample No.: <u>SRI-WSC-7</u> Collector (s). <u>BrA9</u>/<u>SHE PPIAP</u>/<u>OISHI</u> Location Time: <u>1570</u> Collector (s). <u>BrA9</u>/<u>SHE PPIAP</u>/<u>OISHI</u> Collector (s). <u>BrA9</u>/<u>SHE PPIAP</u>/<u>OISHI</u>

Small, red lesions along inderside and a small tumor (red) at the base of the left pectoral fin.

NORTHERN RIVER BASINS STUDY **Gross Pathology Examination Sheet** LONGNOSE SUCKER Location: SMOKY BIVER @ Wahno Sample No: SRI-LUSC-B · *** Collection Time: 1500 Collection Date:... Collector (s) BOAG/SHET PARD/OPSH Capture Method. Comments: # Tunor on lift side, dorsal hin. Ht heft "Sucher" of nout "inflomed a lord XXX Excernic tal atong intertine & and Ston d.

LONGNOSE SUCKER

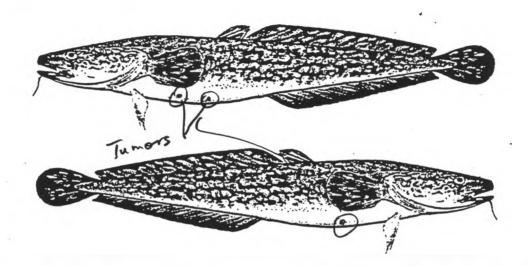


LONGNOSE SUCKER

*	The second secon
Sample No. SRI- LAISC - 12	Location: 5MOKY RIVER @ WATTNO
Collection Date:	Collection Time: 500
Collector (s). BOAG SHEAMAD OGHI	Capture MethodEF
0	

* alcerons lesion a base of Candal tin

BURBOT


Sample No .: WRI - BURB - 2 Collection Date: 24/09/94 Collector (s). BOAG / SHEPPARD / 6 ISHI

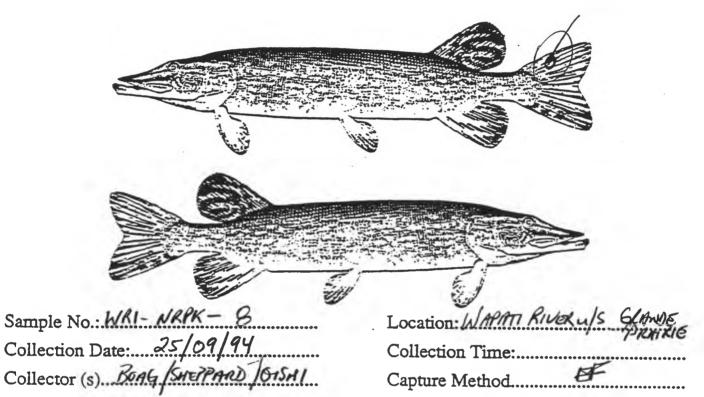
Location: WAPATI RIVER US GROUDE RATRIC Collection Time: Capture Method.

- Open lercon on Fish's left side. Entires gut Éliver hanging outside of basbot, emergi through the open wound

- Intestines rod, in Flamed, and probably ising balance stressed.

BURBOT

Sample No.: WRI-BURB-4 Collection Date: 26/09/94 Collector (s)...BOAG SHEPPARD OTSHI Location: WAPAN RIVER uss GRADE PRANA Collection Time: Capture Method.


-Small, dark tumors on ventral surface, anterior to the anal tin

NORTHERN PIKE

Sample No.: WRI - NRPK-02 "A Collection Date: 23/09/94 Collector (s). BOAG /SHERIARD /OISHI Location: WAPATI RIVER u/s GAMUSE PAR. Collection Time: 1500 Capture Method. EF

* Lesions (small, red) aroud candal pedencle () along each side of rish below tateral line

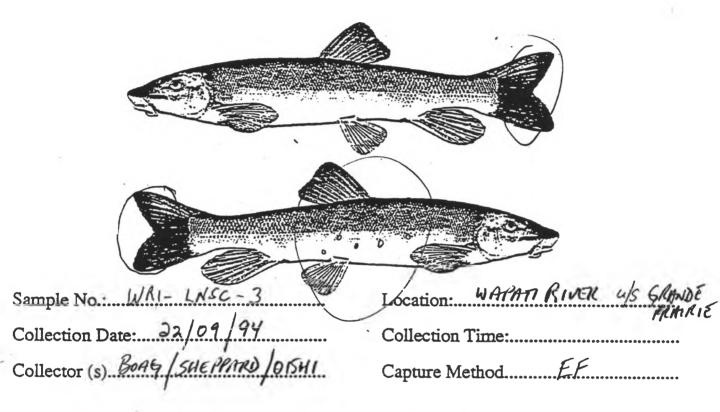
NORTHERN PIKE

- GROWTH on upper lobe of candal Fin

NORTHERN PIKE

Sample No.: WAI - NRPK - 12 Collection Date: 26/09/94 Collector (s). Bong / SHEPAND / 01SHI	Location: WAPATI RIVER u/S GRAPPE Collection Time: Capture Method.

-Tumor on the 60thom of the right operculum


LONGNOSE SUCKER

Sample No.: <u>WRI-LNSC - 2</u> Collection Date: 23. 109. 194 Collector (s). <u>Body Mermin / ersul</u> Collector (s). <u>Body Mermin / ersul</u>

- 2 small tumors at base of left pelvic 61 - Tumor at base of anal fin - Tumor at base of left pectoral fin

- Small, red Cerions on both sides of Fish below and posterior to dorsal fin

LONGNOSE SUCKER

- Numerous small, red lesions along right side

- Tail is slightly hemmorhagic - Excessive Fat

LONGNOSE SUCKER

Sample No.: W.B.I. - LNSC - 4 Collection Date: 23/09/94 Collector (s). BOAG SHEPPAND O ISHI Location WAPATI RIVER US GRANDS PRARIE

Collection Time:

Capture Method......EF

Comments:

- Few small, red lesions below dorsal fin on both right & left sides

- Tail slightly hemmhoragic

LONGNOSE SUCKER

* 2 tomors (red, I white) on right pectoral

Hole in head, mildly recroice

LONGNOSE SUCKER

 ##
 ##

 Sample No.:
 WPI-LNSC-7

 Collection Date:
 23/09/94

 Collector (s).
 10045/040/05541

Capture Method.

* Small, red lesions below dorsal Fr, above lateral line.

Candal Fin hemborragic

LONGNOSE SUCKER

Sample No.: <u>MR1 - 4NSC - 8</u> Collection Date: <u>23/09/94</u> Collector (s)...<u>bn45/Stht./MAPD /prSH1</u> Comments:

- Tumor at base of Right pectoral fin

- Tumor at base of dorsal fin.

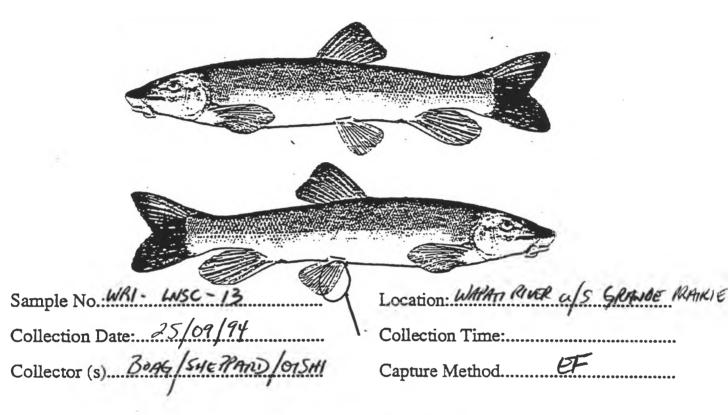
LONGNOSE SUCKER

	Tumor.
Tumpr	Tumor
Sample No.: WRI- LNSC- 9	Location: WAPATI RIVER W/S GRADE PRIMA
Collector (s). Borton / SHEPPARD / 61541	Collection Time: Capture Method.

- Growth (tumor) on right pectoral Fin

- Tumor at base of dorsal Fin Grear)

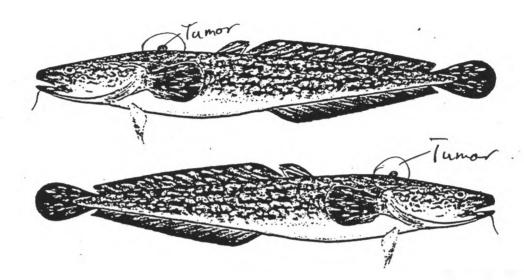
LONGNOSE SUCKER


Sample No. WRI- LNSC-10 Collection Date: 24/09/94 Collector (s) BOAG SHEPPAND /01SHI

Location: WAPATI RIVER US GRANDE PRAN Collection Time: Capture Method. - EF

- Tumor at Gase of dorsal fin

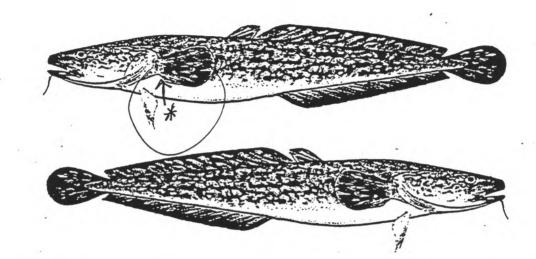
- Predator scar on either side of Candal Jedunck. Probably Eagle or Candal Jedunck. Probably Eagle or Osprey wound that have healed


LONGNOSE SUCKER

-Left pelvic fin is Frayed and split

- Liver was "granular" and spotted.

BURBOT



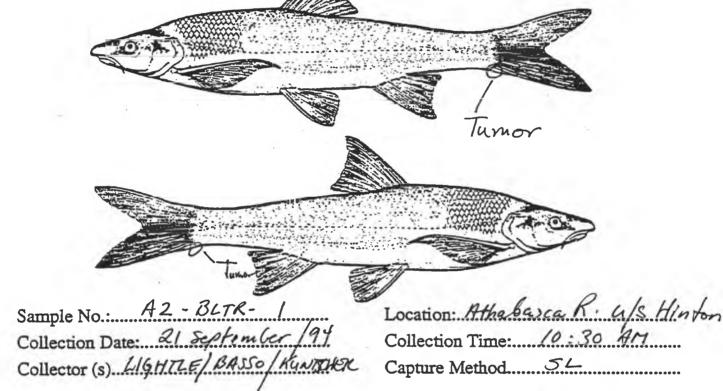
Sample No: WR2- Burb-10 Collector (s). SHEPMAN SCHMELTZER OISHI

Location: WAPATT RIVER u/s 644.38 PRAR Collection Time: Capture Method.

Tumor present posterior to skull on dorsal surface, anterior to dorsal for

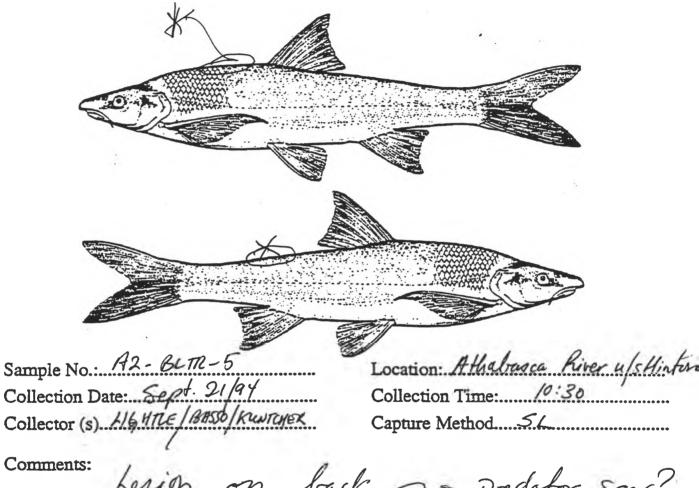
BURBOT

Sample No.: Al- BurB-1 Collection Date: September 13/94 Collector (s). 46HILE /BASSO /KUNTCHER

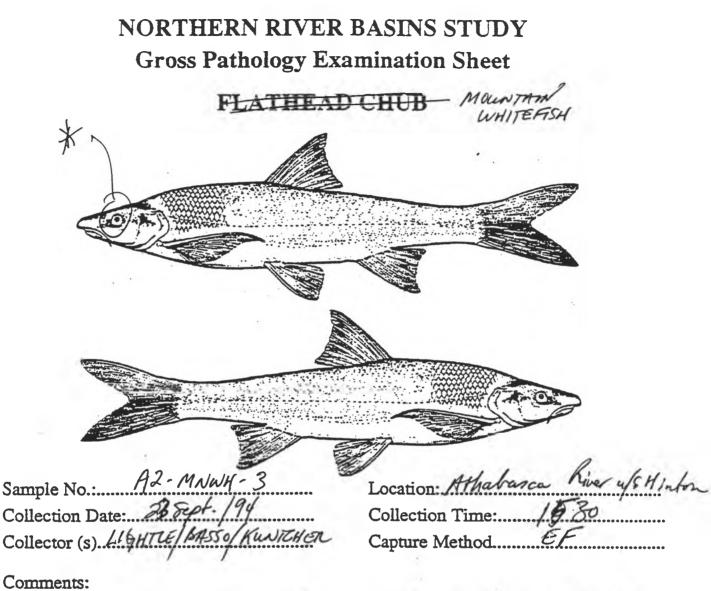

Location: Athabasca R. d/s UHITECOURT Collection Time: /60.2 Capture Method.

Smal kerion behind left pectoral fin

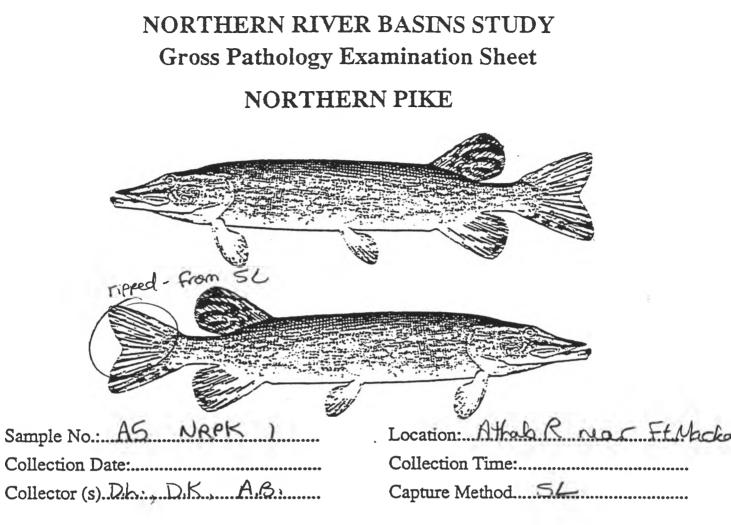
Sample No.: Al - WHSC - I Collector (s). Alfertrue / Masso / Krwitcher

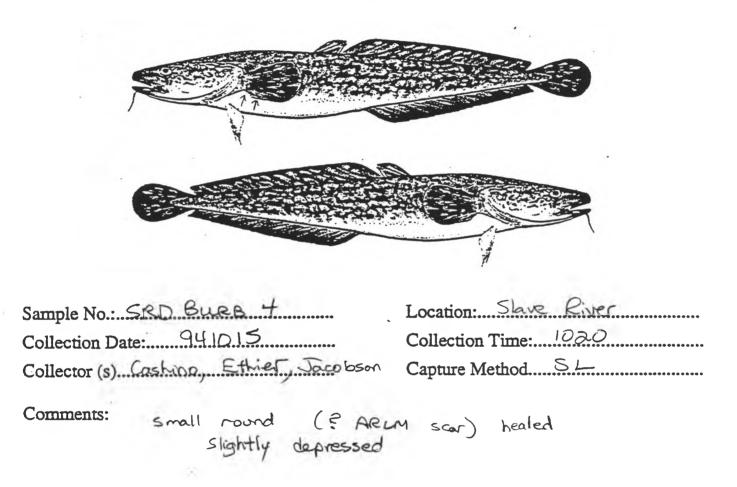

Uluroupperion on left side, below lateral line (No records hept for this fish - oversight).

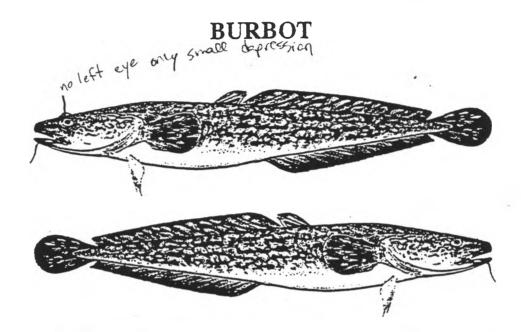
FLATHEAD CHUB BULL TROUT



Tumor present at base of candal fin


FLATHEAD CHUB


Lesion on back a predator scar?



Left. Bye is haemorrhagic & exophalmic

BURBOT

Sample No: SRDBURG 17 Collection Date: 941016 Collector (s). T. Ethier, R. Kashino T. Jacobson

Comments:

Location: <u>S. Eve Rive</u> Collection Time: 1200 Capture Method. <u>SL</u>

APPENDIX F. STOMACH CONTENTS OF FISH SAMPLED.

			Stomach							
Site	Species	No.	fullness	Bait	Fish	Ν	Invertebrates	Ν	Unidentified	Other
PR1	BURB	2	20							rock
PR1	BURB	3	0						~	
PR1	BURB	4	100						Chyme	
PR1	BURB	5	0							
PR1	BURB	6	10		spp.?					
PR1	BURB	7	50		spp.?					
PR1	BURB	8	0							
PRI	FLCH	1	0						Chuma	
PR1	LNSC	1	5						Chyme	
PR1	LNSC	2	0						Chyme	
PR1 PR1	LNSC LNSC	3 4	10 8						Chyme	
PR1	LNSC	5	0						Chyme	
PR1	LNSC	6	8				Corixids		Chyme	
PR1	LNSC	7	0				COTINIDS		Chyme	
PR1	LNSC	8	5				Corixids			
PR1	LNSC	9	Ő				Commed			
PR1	LNSC	10	5						Chyme	
PR1	LNSC	11	Õ							
PR1	LNSC	12	100				Corixids		Chyme	
PR1	LNSC	13	10						Chyme	
PR1	LNSC	14	5						Chyme	
PR1	LNSC	15	50				Corixids	200		
PR1	LNSC	16	10				Corixids		Chyme	
PR1	LNSC	17	20				Corixids			
PR1	NRPK	1	0							
PR1	NRPK	2	0							
PR1	NRPK	3	100		WHSC	1				
PR1	NRPK	4	100		sucker					
PR2	BURB	1	0							
PR2	BURB	2	0							
PR2	BURB	3	0							
PR2	BURB	4	10		spp?					
PR2	BURB	5	10		minnow					
PR2	BURB	6	25							fluid
PR2	BURB	7	25		minnow					
PR2	BURB	8	5		spp.?					
PR2	BURB	9	0							
PR2	BURB	10	20		minnow	1				
PR2	FLCH	2	10				corixids			
PR2	FLCH	3	0						Chrome	
PR2 PR2	LNSC LNSC	1 2	10 15						Chyme Chyme	
PR2 PR2	LNSC	2 3	5	-					Chyme	
PR2 PR2	LNSC	3 4	2						Chyme	
PR2	LNSC	5	20						Chyme	
PR2	LNSC	6	0						Chyme	
PR2	LNSC	7	100						Chyme	
PR2	LNSC	8	50						Chyme	
PR2	NRPK	1	15		spp.?	1			;	
PR2	NRPK	2	0		* F · · ·					
PR2	NRPK	3	0							
PR3	BURB	2	0							
PR3	BURB	4	5		spp.?					
PR3	BURB	5	20		minnow	4				
PR3	BURB	6	40		GOLD	2				2 cyprinids
PR3	LNSC	1	5						Chyme	
PR3	LNSC	2	10						Chyme	
EnviDer	urea Concu	lting I	*đ							

			Stomach							
Site	Species	No.	fullness	Bait	Fish	N	Invertebrates	Ν	Unidentified	Other
PR3	LNSC	3	5						Chyme	
PR3	LNSC	4	10						01	unknown
PR3	LNSC	5	20				corixid		Chyme Chyme	
PR3	LNSC	6	20 5				corixid		Clivine	
PR3 PR3	LNSC LNSC	7 8	20				corixid		Chyme	
PR3	LNSC	9	35				corixid		Chyme	
PR3	LNSC	10	10						Chyme	
PR3	LNSC	11	2						Chyme	
PR3	LNSC	12	10						Chyme	
PR3	LNSC	13	25				corixid		Churren	
PR3	LNSC	14	59				corixid corixid		Chyme Chyme	
PR3	LNSC	15	15				corixid		Chyme	
PR3	LNSC	16 17	5 10				corixid			
PR3 PR3	LNSC LNSC	17	20				corixid			
PR3	LNSC	19	. 5				corixid			
PR3	LNSC	20	20				corixid			
PR3	LNSC	21	20				corixid		Chyme	
PR3	LNSC	23	15				corixid		Chyme	
SR1	BURB	1	0							
SR1	BURB	2	15	smelt						
SR1	BURB	3	0	1.						
SR1	BURB	4	5	smelt						
SR1	BURB	5 6	10 0	smelt						
SR1 SR1	BURB BURB	0 7	0							
SR1	BURB	8	10	smelt						
SR1	BURB	9	10	0111011					chyme	
SR1	BURB	10	0						-	
SRI	BURB	11	0							
SR1	BURB	12	20						chyme	
SR1	BURB	13	0							
SR1	BURB	_14	0							
SR1	BURB	15	0							
SR1 SR1	BURB BURB	16 17	0 0							
SRI	BURB	18	0							
SR1	BURB	19	Õ							
SR1	BURB	20	0							
SR1	FLCH	1	0							
SR1	FLCH	2	20						Chyme	
SR1	FLCH	3	5	smelt						
SR1	FLCH	4	0							
SR1 SR1	FLCH FLCH	5 6	0 0							
SR1 SR1	FLCH	8	0							
SR1	FLCH	9	Ő							
SR1	FLCH	10	0							
SR1	FLCH	11	0							
SR1	FLCH	12	0							
SR1	LNSC	1	0							
SRI	LNSC	2	0				-		Chyme	
SR1 SR1	LNSC LNSC	4 5	10 0						Cityine	
SR1	LNSC	6	0							
SR1	LNSC	7	10						Chyme	
SR1	LNSC	8	100						Chyme	
	<u> </u>									

			Stomach							
Site	Species	No.	fullness	Bait	Fish	N	Invertebrates	Ν	Unidentified	Other
SR1	LNSC	9	0					• •		
SR1	LNSC	11	0							
SR1	LNSC	12	0							
SR1	NRPK	1	0							
SR1	NRPK	2	0							
SR1	NRPK	3	100		FLCH	1				
SR2	BURB	1	50				stoneflies			
SR2	LNSC	1	5				corixid		Chyme	
WRI	BURB	1	5		spp.?					
WR1	BURB BURB	2	0							
WR1		3	0			2				
WR1 WR1	BURB FLCH	4	40		spp.?	3				
WR1	FLCH	1 2	0 5				opp 9			
WR1	FLCH	23	0				spp.?			
WR1	FLCH	4	0							
WR1	FLCH	5	0							
WR1	LNSC	1	0							
WR1	LNSC	2	5				Corixids	6		
WRI	LNSC	3	0				Contrids	0		
WR1	LNSC	4	5				Corixids		Chyme	
WR1	LNSC	5	5				CONTRICTS		Chyme	
WR1	LNSC	6	30						Chyme	
WR1	LNSC	7	30				Corixids	150	Chyme	
WR1	LNSC	8	10				Corixids	30		
WR1	LNSC	9	0				Consids	50		
WR1	LNSC	10	õ							
WR1	LNSC	11	Õ							
WR1	LNSC	12	0							
WRI	LNSC	13	10				Corixid	20		
WR1	NRPK	1	20		GOLD	1				
WR1	NRPK	2	0							
WR1	NRPK	3	0							
WR1	NRPK	4	10		GOLD					
WR1	NRPK	5	0							
WR1	NRPK	6	0							
WR1	NRPK	7	80		FLCH	1				
WR1	NRPK	8	100		sucker	1				1 rodent
WR1	NRPK	9	0							
WR1	NRPK	10	5		spp.?					
WR1	NRPK	11	0							
WR1	NRPK	12	0		~					
WR2	BURB	1	5		spp.?					
WR2	BURB	2	10		spp.?					
WR2	BURB	3	10		spp.?					
WR2	BURB	4	0							
WR2	BURB	5	0							
WR2	BURB	6	0							
WR2 WR2	BURB BURB	7	0 0							
WR2 WR2	BURB	8 9	10		cnn 9					
WR2	BURB	9 10	0		spp.?					
WR2	BURB	11	0							
WR2	BURB	12	0							
WR2	BURB	13	0							
WR2	NRPK	1	5		spp.?					
	NRPK	1	õ		~r.h					
	WALL	3	100		LNSC	1				
EnviDece		ltin - T								

			Stomach						
Site	Species	No.	fuliness	Bait	Fish	Ν	Invertebrates N	Unidentified	l Other
LSR2		1	100		FLCH	1		······································	
	BURB	1	60				mayflies, caddisflies, stoneflies		
	FLCH	1	0						
	LNSC	1	0						
	LNSC	2	50					Chyme	
	LNSC	3	20					Chyme	
	LNSC	4	0						
	LNSC	5	0						
	LNSC	6	0						
WB1	BURB	1	35				stonefly nymph		
WB1	BURB	2	45				stonefly nymph		
WB1	BURB	3	10				stonefly nymph		
WB1	BURB	4	30				stonefly nymph		
WB1	BURB	5	25				stonefly nymph		
WB1 WB1	BURB	6	10				stonefly nymph		
WB1	BURB	7	0						
	BURB	8	30				stonefly nymph		
WB1	BURB	9	40		minnow		stonefly nymph		
WB1 A1	FLCH BURB	1	5 0					Chyme	
		1							
A1	BURB	2	0	1					
A1	BURB	6	100	bait					
Al	BURB	7	100	bait	1	1			
A1	BURB	8	100		sucker	1			
A1	BURB	9	0						
A1	BURB	10	0						
Al	BURB	11	0						
AI	LNSC	1	100					Chyme	
Al	NRPK	1	0						
Al	NRPK	2 3	0						
Al	NRPK	د 4	0						
Al	NRPK BLTR	4	0 25						
A2		4			WHSC	1			
A2 A2	BLTR	4	100 25		what	1			
A2 A2	BLTR	6 7	100	smelt			insects	,	
AZ A2	BLTR	8		smelt					
A2 A2	BLTR		100	smelt					
A2 A2	BURB BURB	1 2	100 0	smelt					
A2 A2	BURB	2 3	100	smelt	con 9				
A2 A2	BURB	3 4	0	2111011	spp.?				
A2 A2	BURB	5	25				stonefly		
A2	BURB	6	0				Sidicity		
A2	BURB	7	100		minnow	3			
A2	BURB	8	100		minnow			Chyme	
A2	LNSC	1	100		***************************************	2		Cityme	
A2	LNSC	2	100						
A2	LNSC	3	0						
A2	LNSC	4	Ő						
A2	LNSC	5	100					Chyme	
A2	MNWH	1	100					Julio	
A2	MNWH	2	100						pine needles
A2	MNWH	3	0						Pure mooding
A2	RNTR	1	100						
4 64	RNTR	2	100						
A2	ICI VIII III								
	RNTR	3	100						
A2		3 4	100 100						vole
A2 A2	RNTR				minnow	10			vole

SiteSpeciesNo.fullnessBaitFishNInvertebratesNUnidentifiedA2RNTR725A2RNTR8100A2RNTR90	Other insects
A2 RNTR 8 100 A2 RNTR 9 0	
A2 RNTR 9 0	1
	e
A3 BURB 1 0 A3 BURB 1 0	
A3 BURB 2 25 smelt	
A3 BURB 3 25 shield stonefly	
A3 BURB 4 0	
A3 BURB 6 0	
A3 BURB 7 0	
A3 BURB 8 100 smelt	
A3 BURB 9 0	
A3 BURB 10 0	
A3 BURB 11 25 minnow	
A3 BURB 12 25	insect
A3 BURB 13 100 A3 BURB 14 0	
A3 BURB 14 0 A3 BURB 15 100 spp.?	
A3 BURB 16 0	
A3 BURB 17 0	
A3 BURB 18 0	
A3 BURB 19 0	
A3 BURB 20 100 smelt	
A3 BURB 21 0	
A3 BURB 22 25	
A3 BURB 23 0	
A4 BURB 1 0	
A4 BURB 2 0	
A4 BURB 3 25 bait	
A4 BURB 4 0 A4 BURB 5 0	
A4 BURB 6 0	
A4 BURB 7 100 bait corrigonid	
A4 BURB 8 100 bait	rock
A4 BURB 9 0	
A4 BURB 10 100 stoneflies 4	
A4 BURB 11 100 stoneflies 6	
A4 BURB 12 0	
A4 BURB 13 0	
A4 BURB 14 0 A4 BURB 15 25 spp.?	
A4 BURB 15 25 spp.? A4 WALL 1 0	
A4 WALL 2 100	
A4 WALL 3 0	
A4 WALL 4 0	
A4 WALL 5 25 bait	
A4 WALL 6 0	
A4 WALL 7 0	
A4 WALL 8 0	
A4 WALL 9 0	
A5 BURB 1 0 A5 BURB 2 100 spp.?	
A5 BURB 2 100 spp.? A5 BURB 3 0	
A5 BURB 4 0	
A5 BURB 5 0	
A5 BURB 6 100 BRST 1	
A5 BURB 7 100 GOLD 1	1 BRST
A5 BURB 8 100 BRST 47	

Site	Species	No.	Stomach fullness	Bait	Fish	N	Invertebrates	N	Unidentified	Other
45	BURB	9 10	0 100		BRST	11				1 percid
45 45	BURB BURB	11	0		DRST					
A5	BURB	12	Õ							
15	BURB	13	100		minnow	8				
15	BURB	14	100				stonefly	1		1 mouse
5	BURB	15	100		spp.?	1				
5	BURB	16	0							
.5	BURB	17	0		0					
5	BURB	18	100		spp.?	1 2				
5	BURB	19	100		spp.?	2				
.5	BURB BURB	20 21	0 100	smelt						
.5 .5	GOLD	1	25	Smen						pebbles
.5	NRPK	1	100						Chyme	F
.5	WALL	1	0							
15	WALL	2	õ							
5	WALL	3	0							
5	WALL	4	0							
.5	WALL	5	0							
.5	WALL	6	0							1
5	WALL	7	25						insects	leaves
15	WALL	8	0							
.5	WALL	9	0							
5	WALL	10	0 100							
/R1 /R1	BURB LNSC	1 1	100							
ARI	NRPK	1	0							
AR1	NRPK	2	Ő							
AR1	NRPK	3	Ō							
/R1	NRPK	4	50	smelt						
/R2	BURB	1	90	liver	TRPR	1	caddisflies			
AR2	BURB	2	50	liver			dragonfly			
MR2	BURB	2 .	0				mayflies			
AR2		3	0	1	TDDD	1	and diaffing and an anomatom			
AR2	BURB	4	40	liver liver	TRPR	1	caddisflies, ephemeroptera			
AR2 AR2	BURB BURB	5 6	30 50	liver						
MR2	BURB	7	30	liver						
))	BURB	í	25	11101						
)	BURB	2	0							
>	BURB	3	100		spp.?					bivalve sp
2	BURB	4	0		••					
0	BURB	5	100				stoneflies			
2	BURB	6	100				stoneflies			
2	BURB	7							inconto	
>	NRPK	1	100						insects	
>	NRPK	2	0							
SV.	WALL BURB	1 1	0 0							
LSV	BURB	2	0							
LSV	BURB	3	0							
LSV	BURB	4	100	smelt						
LSV	BURB	5	100	smelt			stoneflies			bivalve sp
LSV	BURB	6	100		spp.?					
LSV	BURB	7	0							
LSV	BURB	8	0							
LSV	BURB	9	5	smelt						


Site Species No. fullness Bait Fish N Invertebrates N Unidentified	Other
	Other
LSV BURB 10 0	
LSV BURB 11 100 spp.?	
LSV BURB 12 0	
LSV BURB 13 25 smelt	
LSV BURB 14 100 smelt stoneflies	
LSV BURB 15 25 stoneflies	
LSV BURB 16 0 LSV BURB 17 100 stoneflies 2	
LSV BURB 17 100 stoneflies 2 LSV BURB 18 0	
LSV BURB 19 0	
LSV BURB 20 0	
LSV BURB 21 0	
LSV WALL 1 25	
CW BURB 1 100 stoneflies 4	
CW BURB 2 25 stoneflies	
	leech, rock
CW BURB 4 100 stoneflies 5	
CW BURB 5 100 stoneflies 10	
CW NRPK 1 100 spp.? 1	
CW WALL 1 0	
CW WALL 2 0	
CW WALL 3 0	
CW WALL 4 0	
CW WALL 5 0	
CW WALL 6 25 spp.? 1	
CW WALL 7 100 spp.? 1	
JV NRPK 1 0	
JV NRPK 2 0	
JV NRPK 4 0	
JV NRPK 5 0	
SRD1 BURB 1 50 minnow 1	
SRD1 BURB 2 0	
SRD1 BURB 3 10 bait minnow 1	
SRD1 BURB 4 0	
SRD2 BURB 5 0	
SRD2 BURB 6 0 SRD2 BURB 7 50	
SRD2 BURB 7 50 SRD2 BURB 8 0	
SRD2 BURB 9 0	
SRD2 BURB 10 0	
SRD2 BURB 11 0	
SRD2 BURB 12 0	
SRD2 BURB 13 0	
SRD2 BURB 14 0	
SRD2 BURB 15 0	
SRD2 BURB 16 10	
SRD2 BURB 17 0	
SRD2 BURB 18 0	
SRD2 BURB 19 0	
SRD2 BURB 20 50 BURB 1	
SRD2 BURB 21 1 unknown	
SRD2 NRPK 1 0	
SRD2 NRPK 2 5 unidentified	
SRD2 NRPK 3 50 BURB 1	

APPENDIX G. SAMPLING SITES.

Table 18. Site locations used for fall and winter 1994 fish collections.

	Upstream	cam	Downstream	tream		NOT TWI COM	ITUILIALES UL DIUCH	U I MI COOPULATES OF BIOCK INCOPPORTING SILES	ics.
Site	Latitude	Longitude	Latitude	Longitude	Zone	Upstrear	Upstream Corner	Downstream (NE) Corner	NE) Corner
PR1	56.288778	119.122778	56.287083	119.118472	11	368602.5785	6240032,1968	368863 2644	6239835.3775
PR2	57.282722	117.090722	57.285389	117.112028	11	494470.1994	6348649.7231	493246.4660	6348948,4503
PR3	58,407556	116.154806	58.406139	116.125055	11	549390,9106	6474196.5205	551131.4731	6474050,9878
SR1	55.714166	117.625139	55.716805	117,623305	11	460723 0378	6174230.4592	460840.9049	6174523.1192
SR2	53 890499	119.164972	53.950361	119.153472	11	357720.2118	5973294.2009	358678,2371	5979929,9916
SR3	54.840167	118.595833	54.840167	118.595833	11	397512.2949	6077957.0886	397512.2949	6077957.0886
WR1	55.042194	119.210167	55,050194	1 i 9. 1 1 4 2 7 8	11	358774.2004	6101504.3662	364927.2948	6102204,8406
WR2	55.070778	118.803778	55,156083	118.801556	11	384820.5702	6103938,9924	385207.3230	6113426.6530
LSRI	55.597806	117.387167	55.601472	117.390472	11	475602.2594	6161171.4480	475396.2867	6161580,6049
LSR2	55 583347	117.429167	55.583347	117.429167	11	472945 6574	6159577 8618	472945.6574	6159577.8618
WB	57.873472	115.391111	57.875444	155.388583	(11)	595433,5263	6415547.5116	595578.2313	6415770.5913
Ala	54.137499	166.641667	54,146417	116.604917	11	523411,8731	5998663.0715	525807.3967	5999668.1122
Alb	54.007778	116.841111	54.016111	116.841111	IL	510413.5233	5984182.2894	510411.4429	5985109,4324
A2	53.363889	117.775000	53.388889	117.661111	II	448426,4553	5912814 2548	456031.0222	5915519.2244
A3	54.307778	114.866389	54.317499	114.784999	11	638818.2535	6019649 5551	644078.9004	6020894.1896
A4	55.096333	112.881167	55.088833	112.881667	12	762775.3676	6113047.7679	762792.7256	6112212.0156
A5	57.091249	111.550000	55.109222	111.593111	12	830073.1097	6340526.3606	844765.7444	6120090.1897
MRI	54.095972	115.820833	54.098111	115,804417	11	577116.9947	5994626.1035	578186,5226	5994882,1030
MR2	53.554167	116.572167	53.554167	116.572167	11	528343.9675	5933788.1585	528343 9675	5933788.1585
Ρ	54.457499	113.985833	54,455556	113.994444	12	695382,3194	6038392 5685	694833.5414	6038152.5933
LSV	55 266667	114.374999	55.266667	114.302778	11	666787.5346	6127392.3378	671375.1456	6127567.5696
CW	56.696667	111.290361	56.697389	111.291999	12	849448.1447	6297979 8042	849341.3258	6298051.6470
JV 1	58 432233	110.911767	58 432233	110.911767	12	855234.3721	6492727.9851	855234.3721	6492727.9851
JV 2	58.447583	111.054017	58.446617	111.047283	12	846796.8162	6493688 7395	847198.4645	6493616.2677
JVI - GN	58.409017	110.923267	58.409017	110.923267	12	854798.3585	6490088 8360	854798.3585	6490088.8360
SRD 1	61.254167	113.483	61.254167	113.483	12	692681.5198	6796193.1149	692681.5198	6796193.1149
SRD 2	61 255417	113.510950	61 255417	113.510950	12	687136.2760	6796031.7867	687136.2760	6796031.7867

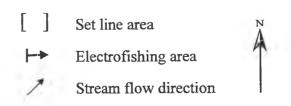
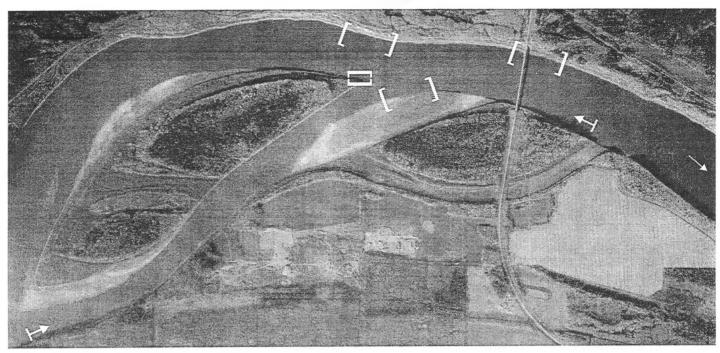



Figure 15. Peace River Site PR1 set line and electrofishing locations near Many Islands.

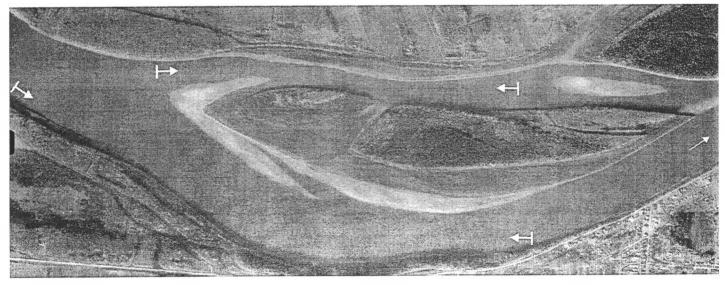
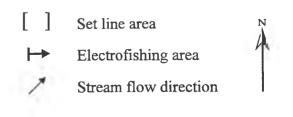
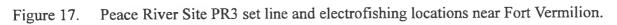
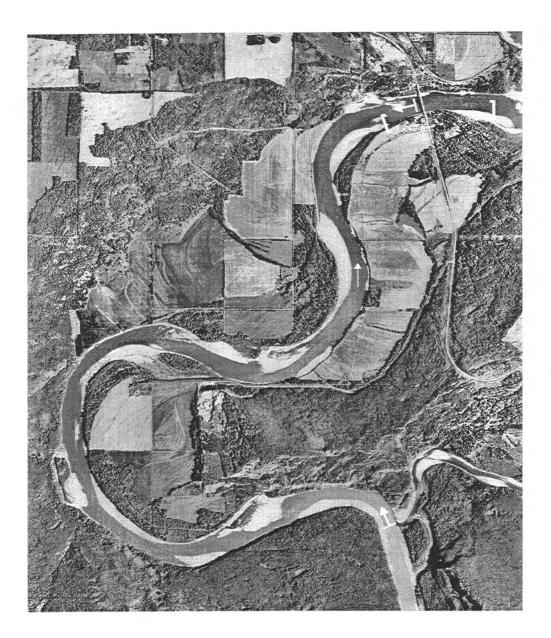


Figure 16. Peace River Site PR2 set line and electrofishing locations near Notikewin River confluence.


N




Upstream from Highway 88 bridge

Downstream from Highway 88 bridge

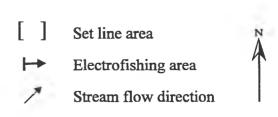
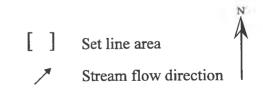
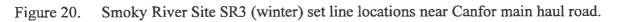
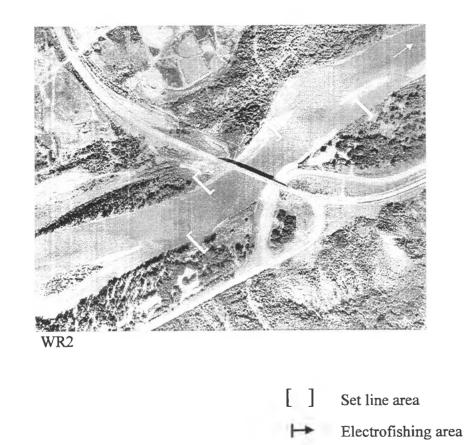


Figure 18. Smoky River Site SR1 set line and electrofishing locations downstream from Wapiti River confluence.


Figure 19. Smoky River Site SR2 set line locations near Grande Cache.

WR1

N

Stream flow direction

Figure 21. Wapiti River Site WR1 set line and electrofishing locations near Pipestone Creek and Site WR2 set line locations near O'Brian Creek Provincial Park.

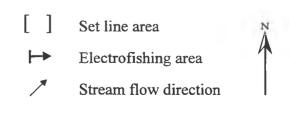
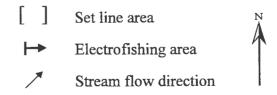
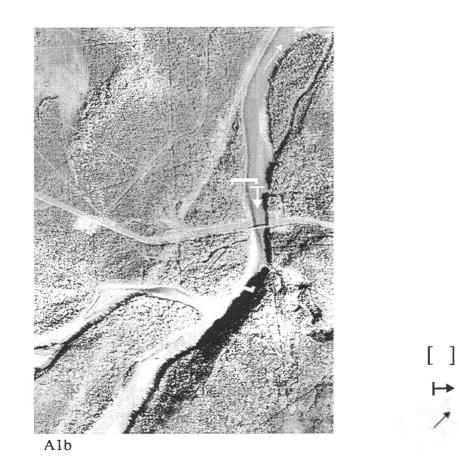
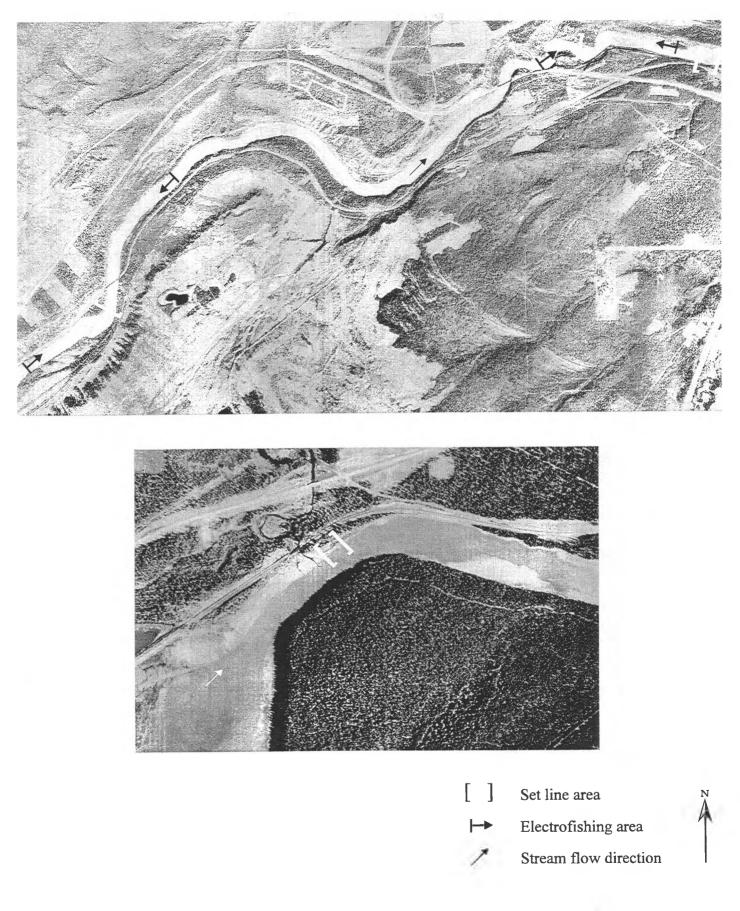
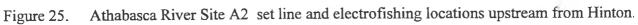



Figure 22. Little Smoky River Site LSR1 fall set line and fall electrofishing locations and Site LSR2 winter set line locations near HWY 744 crossing.

Ala


Figure 24. Athabasca River Site A1a set line and electrofishing locations near HWY 947 crossing. Athabasca River Site A1b set line and electrofishing locations near Berland River confluence.

Set line area

Electrofishing area

Stream flow direction

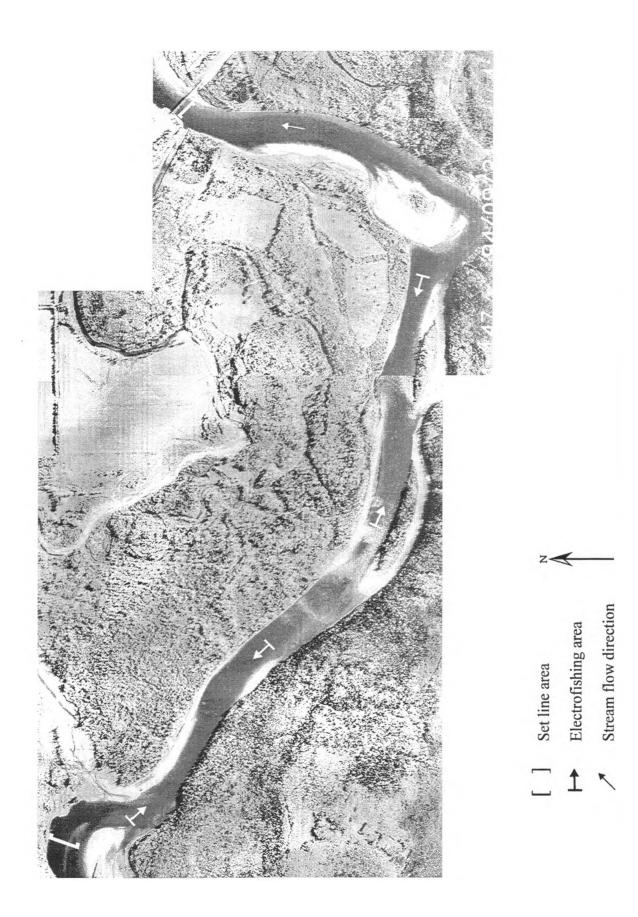


Figure 26. Athabasca River Site A3 set line and electrofishing locations near Fort Assiniboine.

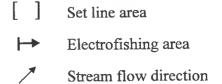
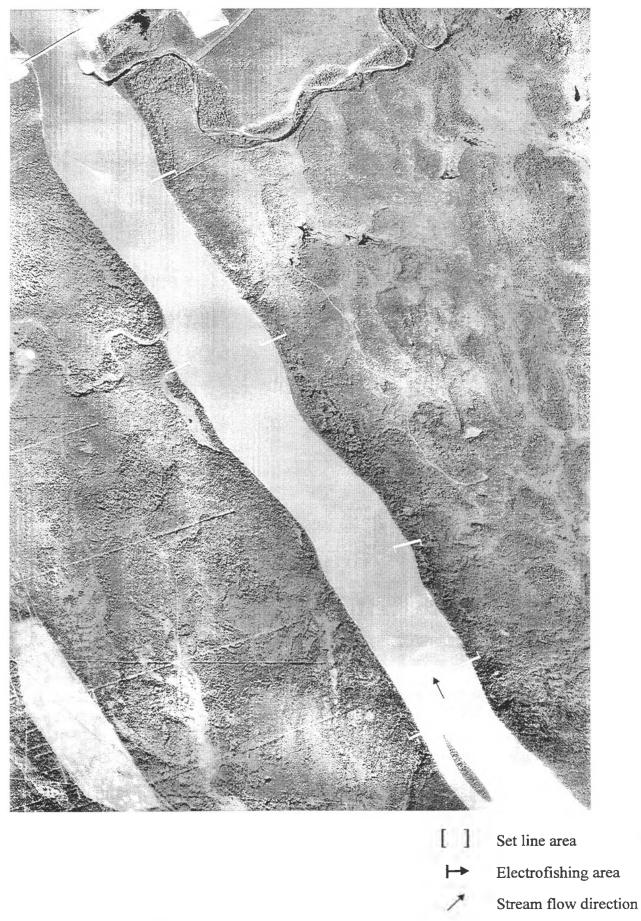
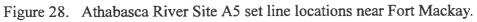
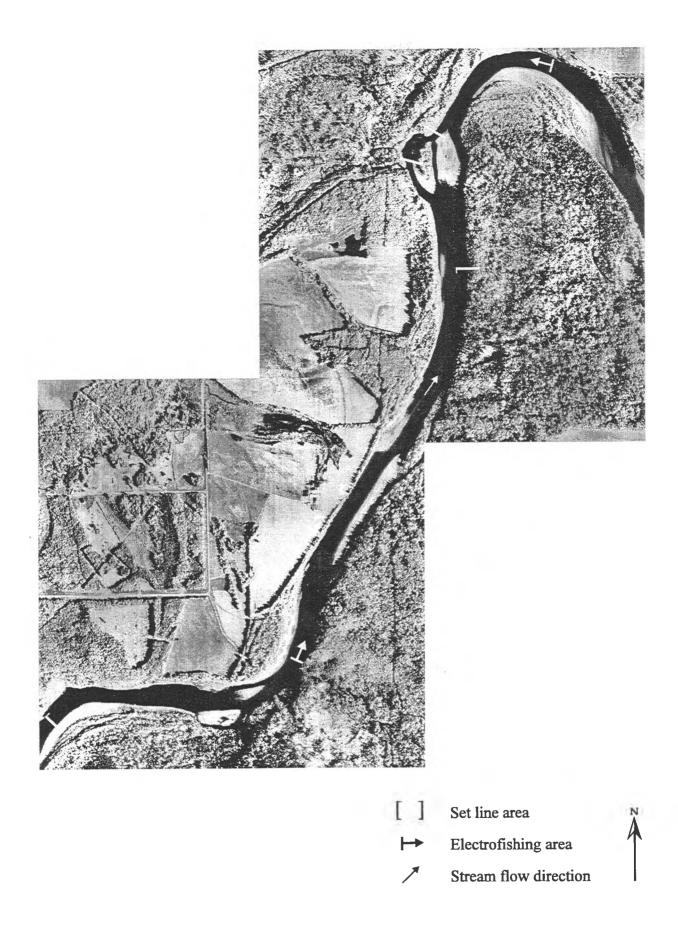
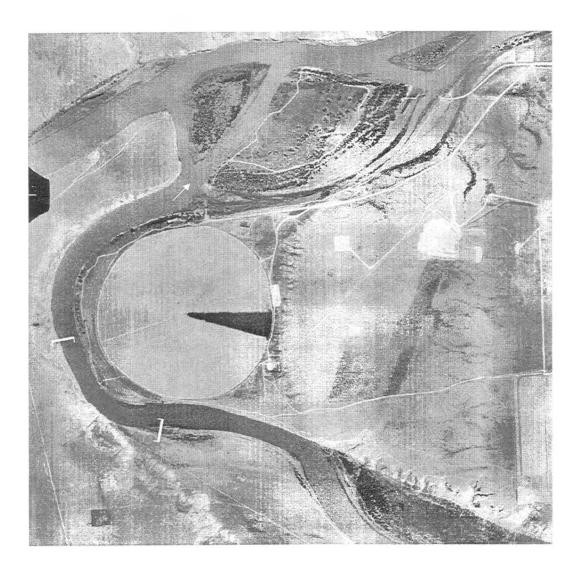
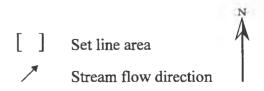
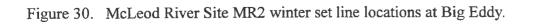
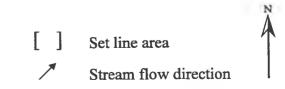




Figure 27. Athabasca River Site A4 set line locations downstream from AlPac near Calling River confluence.


Figure 29. McLeod River Site MR1 set line and electrofishing locations near Eagle Campground.

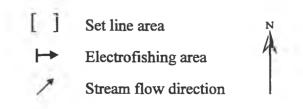


Figure 32. Lesser Slave River Site LSV set line and electrofishing locations downstream of Slave Lake Pulp.

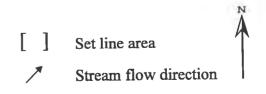
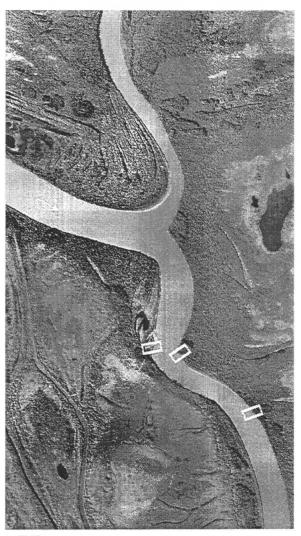



Figure 33. Clearwater River Site CW set line locations upstream from Fort McMurray.

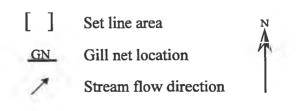
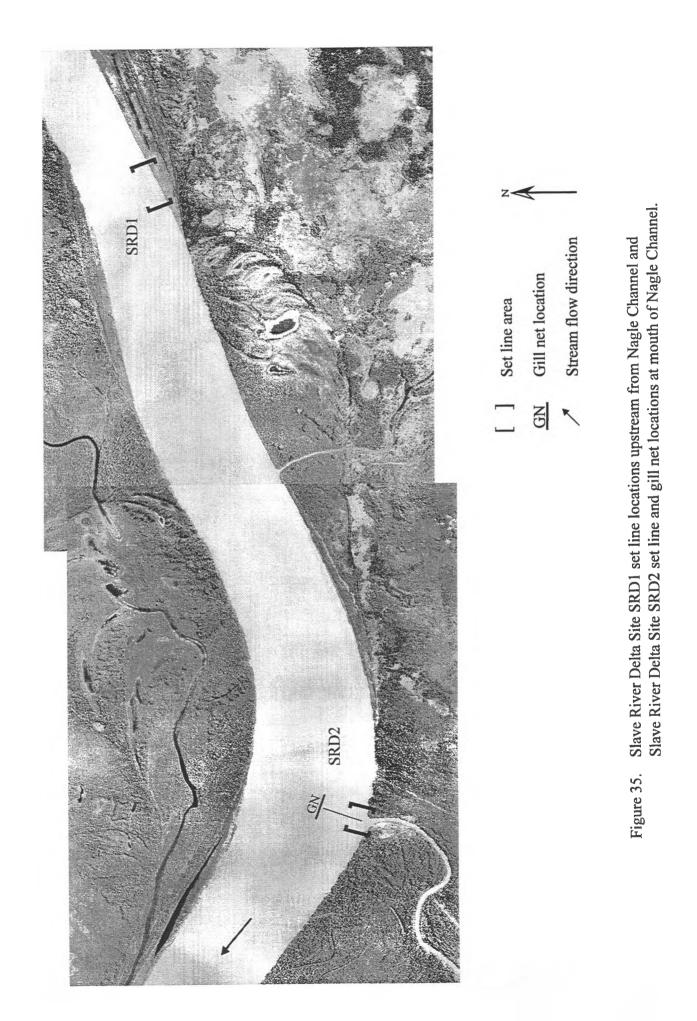
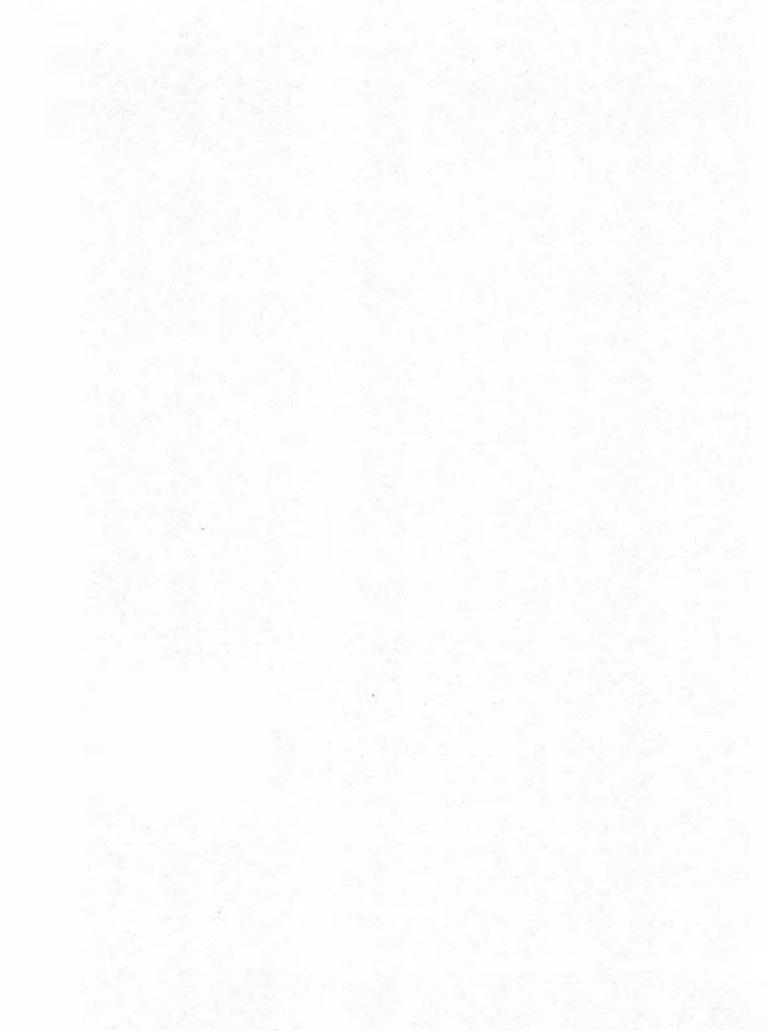




Figure 34. Peace-Athabasca Delta Site JV1 set line and gill net locations near Jackfish Village. Peace-Athabasca Delta Site JV2 set line location near Big Eddy Bend.

3 1510 00168 6162
