

NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 94 INVESTIGATIONS OF STREAMBED OXYGEN DEMAND, ATHABASCA RIVER, OCTOBER, 1994, TO MARCH, 1995

TD 387 .A87 N913 1996

TD/387/.A87/N913/1996 Investigations of streambed Noton, Leigh R

167987

DATE DUE									
<u></u>									
BRODART	Cat. No. 23-221								

88019717

Prepared for the Northern River Basins Study under Project 2222-D1

by

Leigh R. Noton, Alberta Environmental Protection

NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 94 INVESTIGATIONS OF STREAMBED OXYGEN DEMAND, ATHABASCA RIVER, OCTOBER, 1994, TO MARCH, 1995

> Published by the Northern River Basins Study Edmonton, Alberta February, 1996

A	THABASCA UNIVERSITY
	NOV 14 1996
	LIBRARY

CANADIAN CATALOGUING IN PUBLICATION DATA

Noton, L. R.

Investigations of streambed oxygen demand, Athabasca River, October, 1994, to March, 1995

(Northern River Basins Study project report, ISSN 1192-3571 ; no. 94) Includes bibliographical references. ISBN 0-662-24441-9 Cat. no. R71-49/3-94E

- 1. Water -- Dissolved oxygen.
- 2. Water quality -- Alberta -- Athabasca River.
- I. Northern River Basins Study (Canada)
- II. Title.
- III. Series.

TD387.A83N67 1996 553.7'8'097123 C96-980153-X

Copyright © 1996 by the Northern River Basins Study.

All rights reserved. Permission is granted to reproduce all or any portion of this publication provided the reproduction includes a proper acknowledgement of the Study and a proper credit to the authors. The reproduction must be presented within its proper context and must not be used for profit. The views expressed in this publication are solely those of the authors.

PREFACE:

The Northern River Basins Study was initiated through the "Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies" which was signed September 27, 1991. The purpose of the Study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies.

This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release.

It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material.

NORTHERN RIVER BASINS STUDY PROJECT REPORT RELEASE FORM

This publication may be cited as:

Noton, Leigh R. 1996. Northern River Basins Study Project Report No. 94. Investigations of Streambed Oxygen Demand, Athabasca River, October, 1994, to March, 1995, Northern River Basins Study, Edmonton, Alberta.

Whereas the above publication is the result of a project conducted under the Northern River Basins Study and the terms of reference for that project are deemed to be fulfilled. IT IS THEREFORE REQUESTED BY THE STUDY OFFICE THAT;

this publication be subjected to proper and responsible review and be considered for release to the

public.

(Dr. Fred Wrona, Science Director)

4 Fak 96 (Date)

Whereas it is an explicit term of reference of the Science Advisory Committee "to review, for scientific content, material for publication by the Board",

IT IS HERE ADVISED BY THE SCIENCE ADVISORY COMMITTEE THAT;

this publication has been reviewed for scientific content and that the scientific practices represented in the report are acceptable given the specific purposes of the project and subject to the field conditions encountered.

SUPPLEMENTAL COMMENTARY HAS BEEN ADDED TO THIS PUBLICATION: [] Yes [] No

action

(Dr. P. A. Larkin, Ph.D., Chair)

1<u>4</u> 4 - 6 - 96 (Date)

Whereas the Study Board is satisfied that this publication has been reviewed for scientific content and for immediate health implications,

IT IS HERE APPROVED BY THE BOARD OF DIRECTORS THAT;

this publication be released to the public, and that this publication be designated for: [] STANDARD AVAILABILITY [] EXPANDED AVAILABILITY

(Lucille Partington, Co-chai (Robert McLeod, Co-chair)

23 Feb / 96 (Date) 22 Feb / 96

INVESTIGATIONS OF STREAMBED OXYGEN DEMAND, ATHABASCA RIVER, OCTOBER, 1994, TO MARCH, 1995

STUDY PERSPECTIVE

Recent concern has focused on the role of natural versus man-made factors in contributing to the decrease in dissolved oxygen in the Athabasca River during winter. Computer modelling of dissolved oxygen in the Athabasca River is being used to assess the potential impacts of increased industrial development, particularly pulp and paper mill effluents, on water quality. The oxvaen consumption of bacteria, fungi, aquatic plants and invertebrates found on the bed of rivers and streams is referred to scientifically as streambed oxygen demand (SOD). SOD is an important variable in the oxvoen balance of rivers, in particular during winter under low flow conditions and extensive ice cover. Previous studies have measured SOD levels in the Athabasca River, but a number of questions remained unanswered. The purpose of this project is to determine (1) if SOD rates are consistently higher downstream of effluent inputs during winter. (2) how the trend varies throughout the winter, and (3) whether SOD is influenced directly by nutrient loads from effluents.

The objective of this project was addressed by obtaining a series of SOD measurements from the Athabasca River, upstream of Hinton and downstream to the Calling River using stainless steel *in situ* chambers. This sampling regime was designed to investigate SOD rates over time and distance along the river at key sites from fall through winter in both ice-free and ice-covered areas.

SOD measurements were obtained at 13 locations

Related Study Questions

- 2) What is the current state of water quality in the Peace, Athabasca and Slave river basins, including the Peace-Athabasca Delta?
- 5) Are the substances added to the rivers by natural and man-made discharges likely to cause deterioration of the water quality?
- 7) What concentrations of dissolved oxygen are required seasonally to protect the various life stages of fish, and what factors control dissolved oxygen in the rivers?
- 13b) What are the cumulative effects of manmade discharges on the water and aquatic environment?
- 14) What long term monitoring programs and predictive models are required to provide an ongoing assessment of the state of the aquatic ecosystems? These programs must ensure that all stakeholders have the opportunity for input.

over mainly coarse substrates (pebble, cobble and boulder). Higher SOD tended to occur downstream of Hinton and downstream of Whitecourt, as compared to sites upstream of these locations. SOD was also notably higher in ice-free locations, and tended to increase later in the winter. However, this apparent increase is likely an artifact of the method, as an increased growth of benthic algae at these locations contributed to the net oxygen demand within the chambers. Overall, SOD declined slightly during the winter at sites with typical winter ice and snow cover. Nonetheless, at ice-covered sites SOD remained greater immediately downstream of Hinton and Whitecourt, likely a result of high nutrient inputs from effluents, and these SOD levels tended to increase at these sites as winter progressed. Nutrient inputs from tributaries such as the McLeod, Pembina and Lesser Slave rivers may also contribute to winter SOD.

This study was designed to address questions and deficiencies raised in the past about SOD. Measurements of SOD have been obtained in the Athabasca River during most winters in the last seven years. The methods used have been well validated, and these data will make an additional contribution to our understanding of winter oxygen levels in this river system. SOD measurements provide a useful link in biomonitoring studies, and data over several years will be valuable in the efforts to model winter dissolved oxygen in the Athabasca River.

REPORT SUMMARY

Streambed oxygen demand (SOD) was sampled in the Athabasca River from October 1994 to March 1995 with the objectives of obtaining a series of measurements from upstream of Hinton to the Calling River area, and investigating temporal change in SOD at key sites. As in previous surveys, SOD was measured with closed chambers, deployed in the river for about 24 hours. Measurements were also made of other pertinent variables including benthic chlorophyll, depth, and velocity.

Thirteen locations on the river were sampled a total of 45 times. The substrates involved were mainly coarse, with pebble, cobble, and boulder predominating. Mean SOD rates ranged from 0.024 to 0.91 $gO_2/m^2/d$. Higher SOD tended to occur downstream of Hinton and downstream of Whitecourt, as compared to sites upstream.

In ice-free locations, SOD appeared to increase after December, but this was probably an artifact of the method. Benthic algae were growing in those areas and when enclosed in the opaque chambers, contributed to oxygen consumption. The oxygen consumption measured in ice-free areas should be considered gross benthic respiration rather than net oxygen flux. At sites with typical winter ice and snow cover, SOD appeared to decline slightly during the winter.

SOD was distinctly related to epilithic chlorophyll *a* in open-water areas, for the reason noted above. SOD was more weakly related to chlorophyll at ice-covered sites, and to water velocity at all sites. The apparent temporal increase in SOD in open-water areas during winter in this survey and in January-March of 1994 was probably due to the growth of benthic algae during the increasing light of late winter. Nonetheless, at ice-covered sites SOD was greater downstream of Hinton and Whitecourt, compared to sites upstream. This is probably due to a general fertilization effect of effluents and possibly also tributary inflows.

ACKNOWLEDGEMENTS

Field work and data compilation were carried out by Chris Ware and Randy Sweeny, funded by the Northern River Basins Study, Nutrients Component. Equipment and facilities were provided by the Surface Water Monitoring Branch, AEP, and D. LeClair, J. Willis, and D. Allan of SWMB provided supervision and assistance during the field work. Epilithic chlorophyll *a* analyses were done by M. Hussey of SWMB. B. Halbig compiled data and prepared graphs.

Helpful review comments on a draft of this report were provided by R. Chabaylo, P. Larkin, D. Schindler, and two anonymous reviewers, through the NRBS.

TABLE OF CONTENTS

REPO	<u>DRT SU</u>	<u>MMARY</u>
ACK	NOWLI	ii ii
TABI	LE OF C	iii iii
LIST	OF TA	<u>BLES</u> iv
<u>LIST</u>	OF FIG	<u>URES</u> iv
1.0	INTRO	DDUCTION 1
2.0	METH	<u>IODS</u>
3.0	<u>RESU</u>	LTS AND DISCUSSION
	3.1	GENERAL FINDINGS
	3.2	LONGITUDINAL AND TEMPORAL TRENDS
	3.3	CONTROLLING FACTORS
	3.4	GENERAL DISCUSSION
4.0	LITE	EATURE CITED
APPE	ENDIX A	Terms of reference.
APPE	ENDIX H	Detailed site maps.
APPE	ENDIX (Substrate descriptions for SOD sampling sites, 1994-95.
<u>APPE</u>	ENDIX I	Detailed site data.
APPE	ENDIX H	Effect of incubation time on expressed SOD.
APPE	ENDIX H	SOD and associated data, Athabasca River, January-March, 1994.
		Figures a to f: SOD graphs, Athabasca River, 1994.

LIST OF TABLES

Table 1.	Summary of SOD rates, Athabasca River (fall/winter 1994-95)
Table 2.	Chlorophyll, depth, and velocity at SOD sites, Athabasca River, 1994-957

LIST OF FIGURES

SOD sampling sites on the Athabasca River, fall-winter, 1994-95
Streambed oxygen demand chamber
Mean SOD in the Athabasca River - all dates, fall-winter, 1994-95
SOD in the Hinton area, 1994-959
SOD in the Whitecourt reach, Athabasca River - all dates, fall-winter, 1994-95 11
SOD in the Whitecourt area, 1994-95 12
SOD vs chlorophyll - open water sites, 1994-95 14
SOD vs chlorophyll - ice+snow cover sites, 1994-95 14
SOD vs velocity, all sites, 1994-95 14

. Э

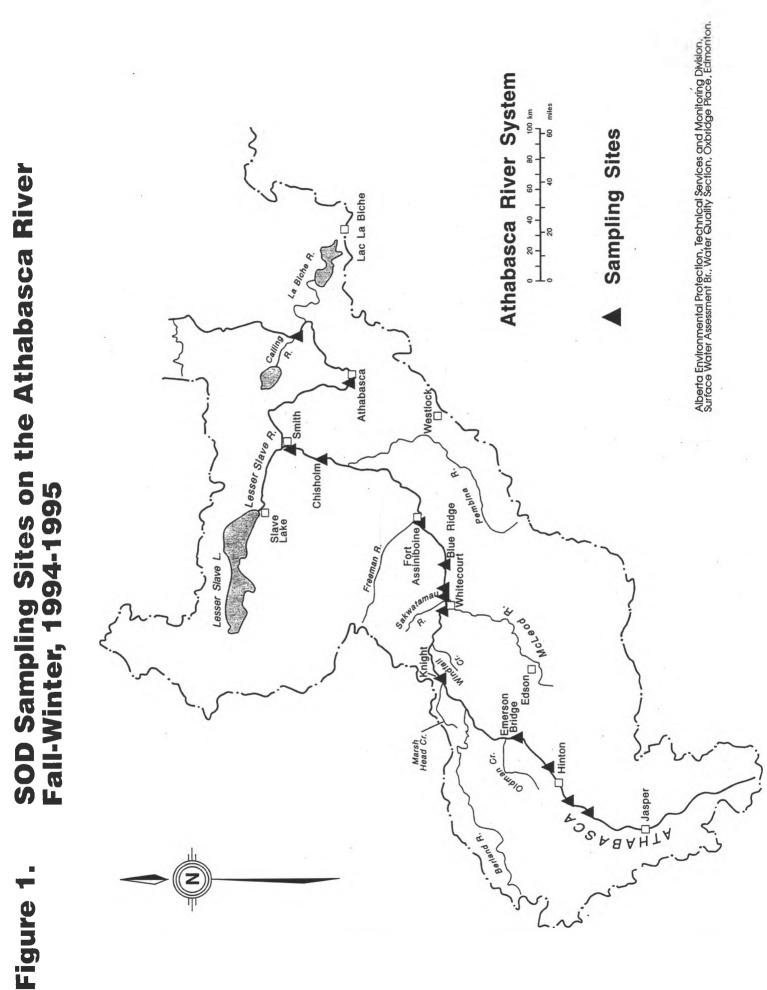
1.0 INTRODUCTION

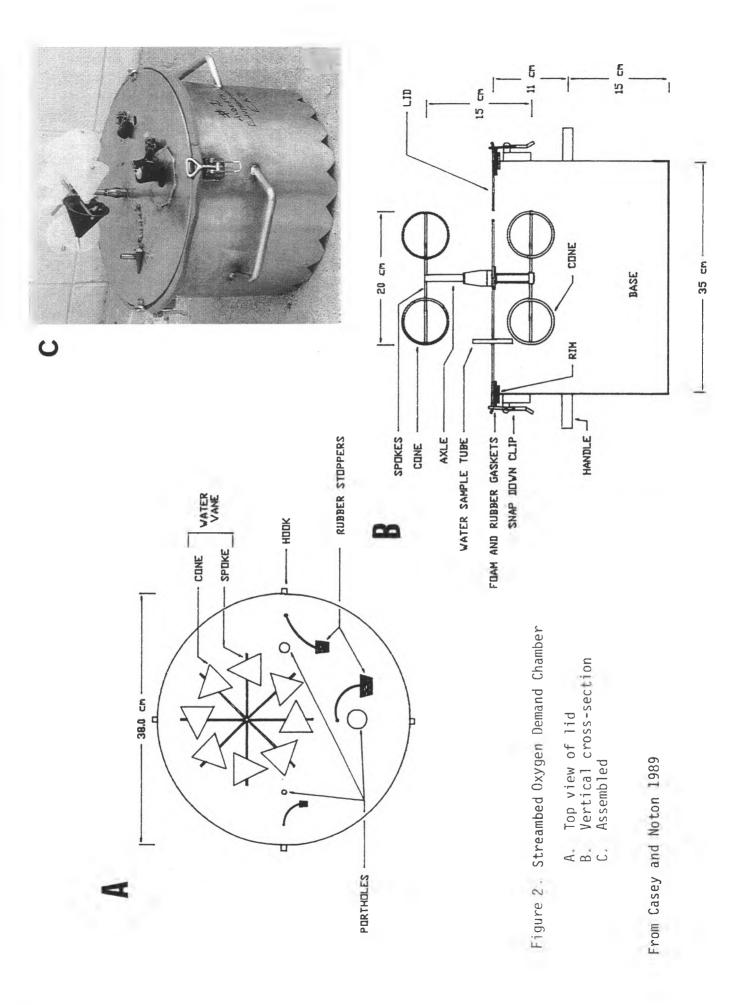
The bed of rivers and streams contains bacteria, fungi, algae, higher aquatic plants, and invertebrates, all of which respire and consume oxygen. This oxygen consumption is termed sediment or streambed oxygen demand and can be a major factor in the oxygen balance of a river. Streambed oxygen demand (SOD) is thought to account for a significant fraction of the total oxygen demand in the Athabasca River in the winter (Macdonald and Radermacher 1993). Investigation of SOD in the river began in 1989 (Casey and Noton 1989) and SOD measurements have been made in most winters since then (Casey 1990b; Monenco 1992; HBT Agra 1993; HBT Agra 1994). The main method used has been to enclose stream substrate in stainless steel chambers *in situ*, and measure the decline in dissolved oxygen (DO) in the overlying chamber water during deployment. Some additional measurements have been done by incubating sediment cores in field facilities (Monenco 1992). Note that in this report the term 'streambed' oxygen demand is used in preference to the term 'sediment' oxygen demand although the latter is the common term in the scientific literature. The former is preferred here because much of the bed of the Athabasca River that has been sampled in this and previous investigations is relatively coarse gravel-cobble material, not sediment.

Although data have been collected in the previous five years, several questions remained concerning SOD and factors controlling it. These have arisen in connection with oxygen modelling and nutrient dynamics, and include the question of whether SOD accumulates downstream of effluent inputs during winter, and whether SOD is influenced by nutrient loads from effluents. In addition, there is a general need to have regular monitoring of SOD. The objectives of this project (Appendix A) were to address these questions and needs, specifically:

- to obtain a series of SOD measurements from upstream of Hinton downstream to the Calling River area,
- to investigate temporal change in SOD at key sites from fall through winter in both ice-free and ice-covered areas.

This was a joint project of the Northern River Basins Study (NRBS), which funded the field work, and Alberta Environmental Protection (AEP), which provided project management, equipment, and facilities. As well as the above, work was carried out to further develop and assess the sediment-core method of measuring SOD. That work was reported in a separate manuscript since no actual data for the Athabasca River arose from it.


2.0 <u>METHODS</u>


SOD measurements were made at a series of sites from upstream of Hinton to near Calling River (Figure 1). Detailed site locations are mapped in Appendix B. Measurements began in late October, 1994, and were carried out regularly until mid-March, 1995. Most sites were sampled 3-4 times.

The basic method used to measure SOD was that developed by Casey and Noton (1989; Casey 1990a), wherein river substrate is enclosed in stainless steel chambers and 'incubated' *in situ* to determine the consumption of dissolved oxygen (DO) by the substrate. Closed-bottom chambers were used in all cases in this survey (Figure 2). River substrate was loaded into the chambers in as near as possible the same position as it occurred on the river bed. As much substrate as possible was added without impinging on the water vane. The chambers were then set on the river bottom to allow silty water to clear from the chamber, the lids were sealed to the chambers, and the chambers were incubated for about 24 hours. The current-driven water vane on each chamber provided internal circulation (Figure 2). Compared to previous years, vanes were fitted with better washers to improve stirring. Four replicate chambers were normally installed this way along with one 'blank' chamber with only river water. Start and finish DO measurements were taken in duplicate with the azide-Winkler method. The starting DO sample was collected from river water beside the chambers, just prior to sealing the lids. The final DO samples were siphoned via the chamber's sampling tube into 300 ml BOD bottles.

SOD was calculated from the observed DO consumption (corrected for the blank), the measured volume of water in the chamber, and the length of incubation, and expressed as $gO_2/m^2/d$. On repeat visits to sites, a new spot was sampled so as to avoid substrates and ice cover disturbed by previous sampling. One site was sampled with 8 replicates which were extracted at regular intervals up to 48 hours, in order to check the effect that length of incubation might have on the SOD rate.

At the chambers at each sampling site, measurements were taken of velocity and water depth, and substrate particle size composition was visually estimated. Velocity was measured at the chamber tops with a Price AA meter. A sample of epilithic algae was collected from the rocks within each SOD chamber by scraping a measured area of the rock surface. These samples were preserved and analysed for chlorophyll a by the regular procedures of the Technical Services and Monitoring Division of AEP (NAQUADAT analytical code 06722). Data were compiled and graphed with spreadsheets, and difference testing was done with single-factor analysis of variance.

-

3.0 RESULTS AND DISCUSSION

3.1 GENERAL FINDINGS

Thirteen locations on the Athabasca River were sampled a total of 45 times, with 175 replicate SOD measurements collected (Table 1). Epilithic chlorophyll *a* measurements also were obtained for most occasions, as were mean ambient water velocity and depth (Table 2). Substrate descriptions are compiled in Appendix C and detailed site data in Appendix D. Mainly coarse, 'erosional' substrates were sampled, with pebble (8-64 mm) and cobble (64-256 mm) the most common particles. These were the predominant substrates encountered by the field crews at the sampling sites. All locations were ice-free in October and early November, but all except three were ice-covered after mid-November (Table 1). Freeze-up was accompanied by ice jamming and water level increases at some sites, which caused multiple ice layers and frozen substrate, and complicated sampling in some cases (discussed further below). As winter progressed it became more and more difficult to find spots that could be sampled with standard wading methods because ice became thicker and the channel more restricted. This made sampling impractical later in the winter at Emerson bridge and Blue Ridge (Table 1).

Mean SOD per sampling occasion ranged from a low of $0.024 \text{ gO}_2/\text{m}^2/\text{d}$ at Knight in December to a high of 0.91 gO₂/m²/d 2 km downstream of the McLeod River confluence in March (Table 1). The latter value and several other high values at that site in February-March (noted in Table 1) may be underestimates of oxygen consumption because DO in the chambers fell to low concentrations during the incubations (Appendix D) and may have limited the consumption rate. At other sites, however, this did not occur and the normal incubation length appeared to be appropriate (Appendix E). The high rates 2 km downstream of the McLeod River and the rates measured at other ice or snow-free sites may represent only total respiration of the benthic community, rather than net oxygen flux, because the opaque chambers used for the incubations prevent photosynthesis. Photosynthesis may be significant at these locations because light penetration is not prevented by ice or snow. This is discussed further below. At ice and snow covered sites in general, SOD rates appeared to be slightly higher than in some previous years although they were of similar magnitude (approximately 0.05 - 0.3 gO₂/m²/d).

3.2 LONGITUDINAL AND TEMPORAL TRENDS

The mean SOD per site and occasion is plotted against river distance in Figure 3. As in previous years higher SOD tended to occur downstream of Hinton and downstream of Whitecourt, as compared to the sites immediately upstream of these locations. Prior to this survey, no measurements had been made upstream of Hinton. The SOD values obtained there in this survey were generally lower than those from downstream of Hinton, although both fluctuated in time (Figure 4), and comparisons are complicated by the growth of algae (discussed below). However, SOD farther downstream at Emerson Bridge was greater than SOD upstream of Hinton, on December 6-7 (p = 0.003) and on January 4-5 (compared to February 1-2: p = 0.006).

LOCATION	DATE	Rep 1	Rep 2	Rep 3	Rep 4	Mean	Std Error	CV
u/s Hinton								
at Entrance	Dec 6-7		0.058	0.045	0.047	0.050	0.006	14
d/s Brule Lk (ice free)	Feb 1-2	0.102	0.123	0.056	0.096	0.094	0.024	30
	Feb 21-22	0.257	0.156	0.178	0.130	0.180	0.047	30
J/s Maskuta Ck.	Feb 22-23	0.147	0.081	0.175	0.097	0.125	0.038	35
			0.407	0.000	0.407	0.400	0.045	
d/s Hinton (all ice free)	Nov 3-4	0.249	0.167	0.203	0.127	0.186	0.045	28
	Dec 5-6	0.244	0.159	0.177	-	0.194	0.037	23
	Jan 4-5	0.466	0.255	0.394	0.307	0.356	0.081	26
	Feb 1-2	0.376	0.534	0.540	0.784	0.559	0.146	30
	Feb 22-23	0.417	0.468	0.468	0.257	0.403	0.086	25
Emerson Bridge	Dec 6-7	0.145	0.213	0.202		0.187	0.030	20
	Jan 4-5	0.157	0.168	0.141	0.180	0.162	0.014	10
	- Carl 4-5	0.107	0.100	0.141	0.100	0.102	0.014	
Knight	Dec 12-13	0.012	0.027	0.034	0.023	0.024	0.008	38
	Jan 10-11	0.059	0.063	0.088	0.079	0.072	0.012	19
	Feb 2-3	0.034	0.037	0.069	0.057	0.049	0.014	34
/s McLeod River								
B, d/s Hwy.43 at pumphouse	Dec 12-13	0.075	0.120	0.036	0.082	0.078	0.030	44
.B, u/s Sakwatamau R.	Jan 19-20	0.124	0.092	0.142	0.107	0.117	0.019	19
.B, u/s Sakwatamau R.	Feb 6-7	0.024	0.114	0.120	0.086	0.086	0.038	51
RB, d/s Sakwatamau R.	Mar 7-9	0.301	0.322	0.448	0.309	0.345	0.060	20
km d/s McLeod River	Oct 25-26	0.581	0.367	0.438	0.608	0.499	0.100	23
(ice covered)	Dec 14-15	0.287	0.356	0.252	0.171	0.266	0.067	29
(ice free)	Jan 10-11	0.456	0.824	0.539	0.904	0.681	0.188	32
(ice free)	Feb 7-8	0.833	*0.928	*1.186	0.624	*0.893	0.202	26
(ice free)	Mar 9-10	*0.876	0.512	*1.127	*1.109	*0.906	0.248	32
3-4 km d/s McLeod River	Oct 20-21	0.187	0.144	0.197	0.202	0.182	0.023	14
	Nov 30-Dec 1	0.036	0.081	0.091	0.065	0.068	0.021	35
	Jan 12-13	0.286	0.226	0.240	0.236	0.247	0.023	11
	Feb 7-8	0.216	0.272	0.300	0.164	0.238	0.052	25
- <u>-</u>	Mar 7-9	0.111	0.106	0.099	0.237	0.138	0.057	48
	indi / o							
Blue Ridge	Oct 26-27	0.143	0.111	0.144	0.150	0.137	0.015	13
	Dec 20-21	0.133	0.195	0.149	0.210	0.172	0.032	21
	**Jan 17-19	0.101	0.117	-	0.107	0.108	0.007	8
	Feb 8-9	0.110	0.111	0.162	0.140	0.131	0.022	19
Fort Assiniboine	Dec 19-20	0.170	0.241	0.227	0.224	0.215	0.027	14
	Jan 17-18	0.111	0.169	0.182	0.233	0.174	0.043	29
	Feb 9-10	0.090	0.084	0.079	0.046	0.075	0.017	26
Chisholm	Mar 14-15	0.059	0.059	0.037	0.051	0.052	0.009	20
	Mai 14-13	0.000	0.000	0.007	0.001	0.002	0.000	20
Smith	Jan 23-24	0.362	0.298	0.222	0.224	0.276	0.058	24
· · · · · · · · · · · · · · · · · · ·	Feb 14-15	0.225	0.262	0.225	0.200	0.228	0.022	11
	Mar 14-15	0.133	0.082	0.194	0.133	0.136	0.039	- 34
Athabasca	Jan 24-25	0.134	0.173	0.182	0.145	0.159	0.020	14
	Feb15-16	0.127	0.169	0.125	0.152	0.143	0.018	15
	Mar 16-17	0.145	0.143	0.142	0.143	0.143	0.001	1
				0.454	0.001			
Calling River	Jan 30-31	0.088	0.097	0.121	0.091	0.099	0.013	15
	Feb 16-17	0.104	0.119	0.103	0.119	0.111	0.008	8
	Mar 15-16	0.068	0.056	0.091	0.101	0.079	0.018	26

Results as gO₂/m²/d * = low DO may have limited SOD rates ** = "48 hr" SOD rates CV = coefficient of variation, = s (not shown) as % of the mean

LOCATION	RIVER	DATE	EPILI	THIC CH	LOROPH	YLL a - n	na/m²			Mean	Mean
LOCATION	km	DATE	Rep 1	Rep 2	Rep 3	Rep 4	Mean	Std Error	CV	Depth	Velocity
u/s Hinton	Kill									cm	cm/s
at Entrance	1254.5	Dec 6-7	67.0	29.3	112.2	23.3	58.0	35.5	71	66	0
d/s Brule Lk (ice free)	1264.2	Feb 1-2	13.2	23.5	11.3	33.9	20.5	9.0	51	56	12
	1264.2	Feb 21-22	12.4	43.3	54.5	74.1	46.1	22.3	56	46	25
u/s Maskuta Ck.	1249.1	Feb 22-23	9.3	9.5	23.6	21.3	15.9	6.6	48	64	13
d/s Hinton (all ice free)	1240.4	Nov 3-4	n/a	n/a	n/a	n/a				53	62
		Dec 5-6	11.9	19.4	11.4		14.2	3.7	32	45	85
		Jan 4-5	87.8	12.7	25.9	0.4	31.7	33.6	122	49	94
		Feb 1-2	61.6	75.1	66.7	44.3	61.9	11.3	21	51	64
		Feb 22-23	18.2	9.6	10.1	15.1	13.2	3.6	31	44	62
				10.0							
Emerson Bridge	1193	Dec 6-7	58.8	42.8	118.7		73.5	32.6	54	84	8
		Jan 4-5	13.3	53.2	43.6	121.0	57.8	39.3	79	100	8
Mut-ha	4440.05	Dec 40.40			10	10			-100	50	
Knight	1116.05	Dec 12-13	0.2	6.4	1.0	1.2	2.2	2.5	129	52	42
		Jan 10-11	18.2	20.1	30.7	21.8	22.7	4.8 14.8	24 80	92 84	20
w/a Mal and Diver		Feb 2-3	2.0	25.5	42.6	15.5	21.4	14.8	00	04	20
u/s McLeod River	1033.4	Dec 12-13	31.8	15.5	9.7	30.1	21.7	9.4	50	78	25
LB, d/s Hwy.43 at pumphouse LB, u/s Sakwatamau R.	1033.4	Jan 19-20	121.2	138.3	9.7 29.7	70.9	90.0	42.8	55	72	45
LB, u/s Sakwatamau R.	1033.4	Feb 6-7	97.6	89.1	103.8	144.4	108.7	21.2	23	90	12
RB, d/s Sakwatamau R.	1033.4	Mar 7-9	146.5	111.1	92.5	170.1	130.0	30.2	27	94	23
HD, US Sakwalamad H.	1002.0	IVICI 7.5	140.0		02.0		100.0	00.2		0.1	
2 km d/s McLeod River	1030.9	Oct 25-26	151	201.6	51.1	227.4	157.8	67.4	49	52	52
(ice covered)		Dec 14-15	124.5	65.6	136.4	107.9	108.6	26.8	28	60	41
(ice free)		Jan 10-11	72.4	157.5	138.5	127.0	123.8	31.6	30	52	47
(ice free)		Feb 7-8	298.3	538.9	494.6	332.0	416.0	102.7	29	60	48
(ice free)		Mar 9-10	449.5	548.8	600.8	470.3	517.3	60.8	14	50	69
(
3-4 km d/s McLeod River	1029.8	Oct 20-21	12.4	4.2	7.7	4.1	7.1	3.4	55	па	
	1029.8	Nov 30-Dec 1	19	19.1	12.1	18.9	17.3	3.0	20	84	31
	1029	Jan 12-13	70.8	92.2	128.3	75.8	91.8	22.5	28	91	27
	1029	Feb 7-8	36.5	41.5	79.9	95.3	63.3	25.0	46	88	20
	1029	Mar 7-9	70.6	84.3	38.8	70.3	66.0	16.7	29	79	11
Blue Ridge	1007.2	Oct 26-27	52.7	27.8	69.4	42.4	48.1	15.2	36	na	
		Dec 20-21	68.3	51.7	59.3	49.5	57.2	7.4	15	90	21
		Jan 17-19	52.7	60.0	28.3	24.5	41.4	15.2	43	61	56
		Feb 8-9	65.3	10.7	44.2	60.3	45.1	21.4	55	76	23
	005.4	Dec (0.00	45.7	440.4	100 5	100.4	100.0	07.4	40	00	
Fort Assiniboine	935.4	Dec 19-20	45.7	118.1	139.5	133.4	109.2	37.4	40	82	23
		Jan 17-18 Feb 9-10	20.0 143.4	6.3 43.3	50.0 77.7	20.4	24.2 93.6	16.0 37.2	76 46	<u>74</u> 74	11 3
		Feb 9-10	143.4	40.0	11.1	109.9	93.0	31.2	40	/4	3
Chicholm	827.9	Mar 14-15	18.2	25.4	20.2	56.8	30.2	15.6	60	80	9
Chisholm	041.3	IVICI 14-13	10.2	20.4	LV.L	50.0	30.2	10.0	00	00	3
Smith	805	Jan 23-24	133.7	136.0	13.5	39.7	80.7	54.9	79	85	18
Vinitu	000	Feb 14-15	6.5	38.2	15.6	29.1	22.3	12.2	63	82	18
		Mar 14-15	69.1	24.5	64.2	11.4	42.3	24.9	68	82	12
Athabasca	687	Jan 24-25	8.2	50.8	26.1	5.6	22.7	18.1	92	62	9
		Feb15-16	44.4	25.4	17.8	5.7	23.3	14.1	70	76	6
		Mar 16-17	10.3	36.6	60.6	97.1	51.2	31.9	72	62	17
Calling River	610.2	Jan 30-31	17.0	35.5	33.7	11.3	24.4	10.4	49	88	5
		Feb 16-17	8.5	23.6	8.6	45.0	21.4	14.9	80	88	4
0		Mar 15-16	34.3	9.2	10.4	2.7	14.2	12.0	98	88	3
		1			1	1					

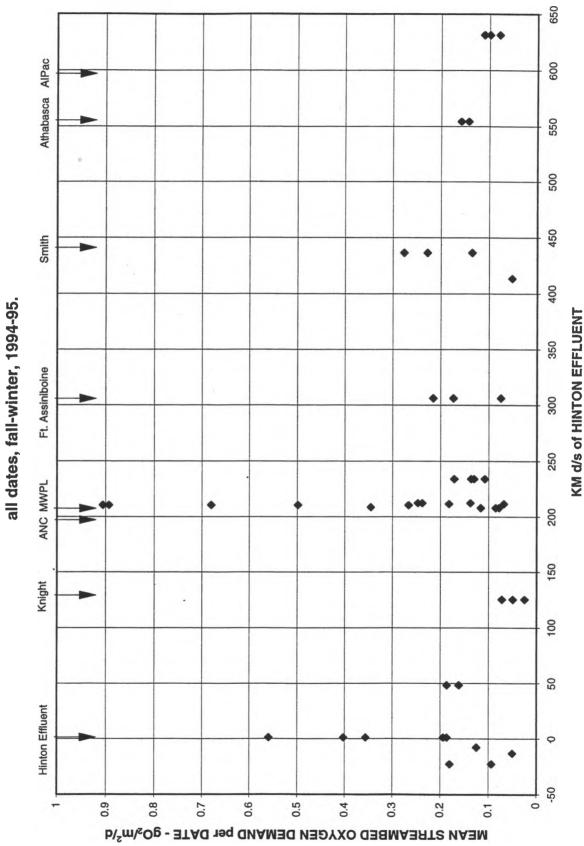
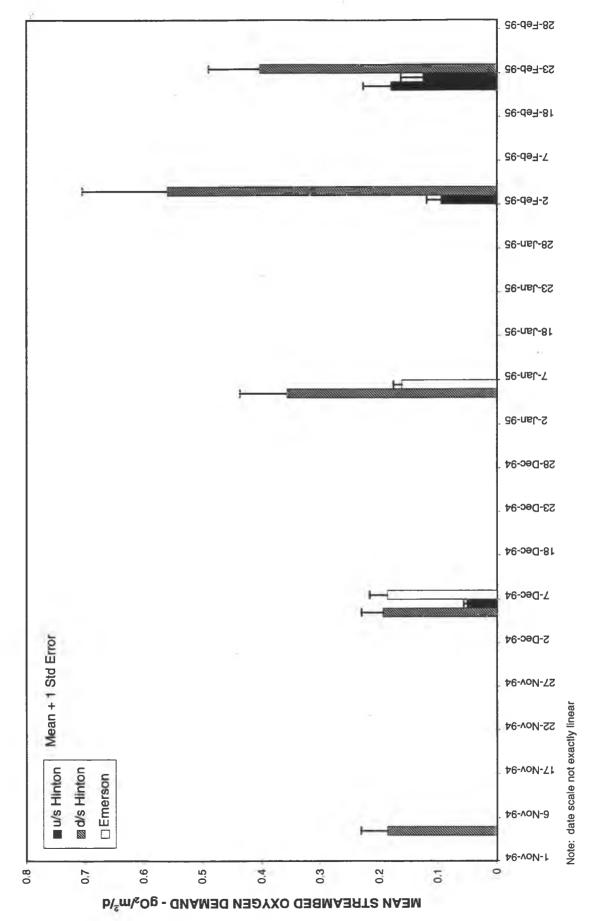
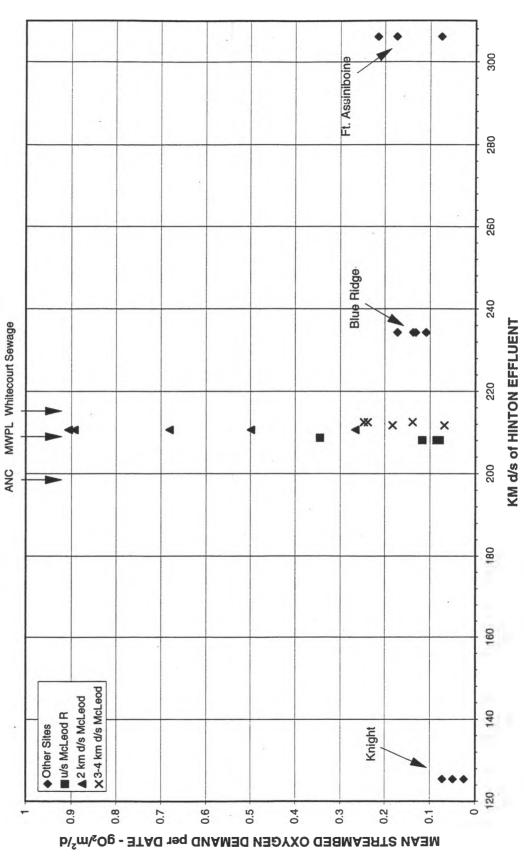



Figure 3. Mean SOD in the Athabasca River -


SOD downstream of Hinton generally increased during the fall-winter period, particularly after December (Figure 4) (p = 0.01). This site was ice-free and a possible reason for this increase is the growth of benthic algae in this area with increasing day length and sun angle after December. Epilithic chlorophyll a at this site generally increased as well during this period (Table 2), suggesting that algal metabolism and biomass were increasing. This would increase the respiration rate, and although photosynthesis would also be increasing, only respiration is measured by the SOD technique used here, because the chambers are opaque. Therefore, the apparent SOD in such a situation may be an artifact of the method and is really a measure of gross benthic respiration. In these circumstances the method can not measure the net flux of oxygen. Under a typical winter ice and snow cover on the Athabasca River, light penetration and photosynthesis are negligible (Noton and Allan 1994) and the opaque SOD chambers are probably satisfactory in measuring the net flux of oxygen.

Compared to the open-water site downstream of Hinton, no change in SOD through time was apparent farther downstream at Emerson Bridge (Figure 4) (p = 0.27), where there was a typical winter ice and snow cover. Upstream of Hinton, SOD appeared to increase during winter, however, this also may have been for the reason discussed above because the sampling sites downstream of Brule Lake were ice-free and the site near Maskuta Creek had no snow cover on the ice. At the site downstream of Brule Lake, chlorophyll was higher on the second date, consistent with a possible increase in algal biomass.

In the Whitecourt area, SOD was low at Knight but higher just upstream of the McLeod River, which is downstream of the Alberta Newsprint Co. effluent (Table 1 and Figure 5). SOD was significantly greater at the latter site on two of the three occasions sampled (p = 0.02; 0.01; and 0.17) At the upstream McLeod location, SOD was fairly stable along the left bank, but higher at the spot sampled on the right bank in March (Table 1). It is not known whether the higher rates at the latter reflect temporal or spatial variability or a combination. At the ice-free site 2 km downstream of the McLeod, which is downstream of the Millar Western Pulp Ltd. effluent, apparent SOD was probably influenced by the growth of benthic algae as discussed above for ice-free sites in the Hinton area. SOD increased significantly (p = 0.004) after December (Figure 6), but epilithic chlorophyll *a* also increased (Table 2) and the SOD increase may be an artifact, as discussed above. Slightly downstream, at the ice and snow covered site 3-4 km downstream of the McLeod, no increase in SOD was apparent after December nor was one apparent at Blue Ridge (Figure 6). These sites had significantly greater SOD (p < 0.01) than Knight, during sampling in January and February at the 3-4 km site, and during sampling in December, January, and February at Blue Ridge.

Farther downstream, mean SOD ranged from 0.052 $gO_2/m^2/d$ at Chisholm in March, to 0.276 $gO_2/m^2/d$ upstream of Smith in January (Table 1 and Figure 3). No increase in SOD during winter was evident at these sites, and if anything, SOD appeared to decline (Table 1).

Figure 5. SOD in the Whitecourt reach, Athabasca River - all dates, fall-winter, 1994-95.

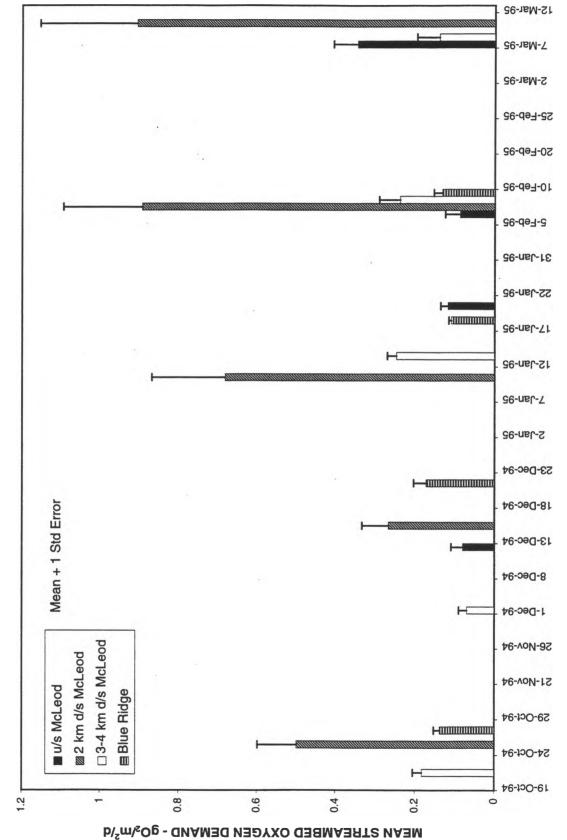
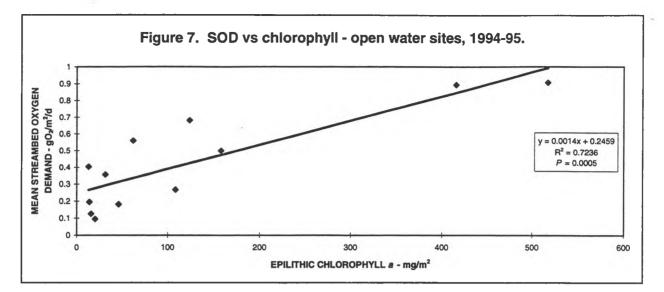
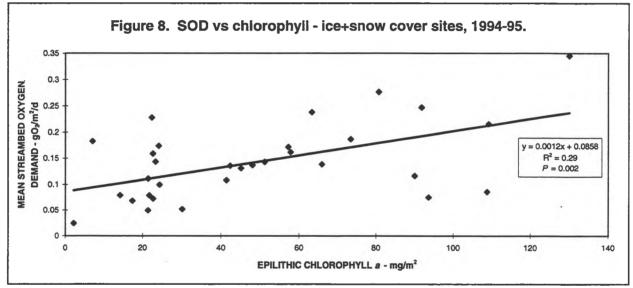


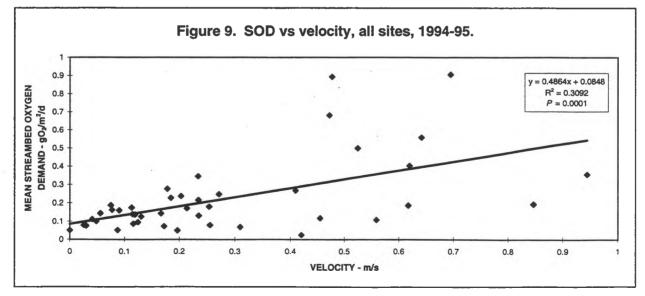
Figure 6. SOD in the Whitecourt area, 1994-95.

Note date scale not exactly linear

3.3 CONTROLLING FACTORS


The relationship of SOD to algal growth and biomass in open water locations was discussed above. At those sites SOD was positively related to epilithic chlorophyll *a* (Figure 7) as would be expected if the apparent SOD was being influenced by the growth and accumulation of algal biomass as winter progressed. As discussed, the apparent SOD was actually a measure of gross benthic respiration at those sites and the net consumption or production of oxygen is not known. In the open-water area downstream of Whitecourt in February-March of the previous year (1994), SOD also increased over time (HBT Agra 1994), possibly for the same reasons. Farther downstream under ice and snow cover at Ft. Assiniboine, SOD did not increase during the winter that year (Appendix F, Figure b).


At sampling sites with typical ice and snow cover, there was also a positive relationship between SOD and chlorophyll in 1995 (Figure 8), although it was much weaker than at open water sites. The r^2 of 0.29 implies that algal biomass accounted for less than a third of the variance in SOD at these sites. Other factors that might affect SOD at all sites include current velocity, proximity to effluent and other sources of organic material, and organic content of the substrate. The latter was not measured since substrates were mainly pebble-cobble (Appendix C). SOD was positively related to velocity (Figure 9) although this factor also appeared to account for less than a third of the variance in SOD. Velocity influences the rate of oxygen consumption by affecting the mixing within the chambers and therefore the rate of replenishment of oxygen in the water-substrate interface. However, it did not seem to override the effect of location, because Knight had the lowest SOD but moderate velocity while Emerson Bridge had moderate SOD but low velocity (Tables 1 and 2). As well, substrate particle size (Appendix C) did not seem to be a major factor controlling SOD since, for example, the upstream Hinton, Knight, and upstream McLeod River locations had similar substrates but a wide range in SOD.


In January through March, 1994, SOD was measured by HBT Agra Ltd. (1994), under contract to AEP. They collected samples of epilithic 'biofilm' and of bottom sediment for subsequent analysis by AEP and by the NRBS (Appendix F). The data obtained for epilithic chlorophyll *a* do not show any relationship to SOD, although only a few sites were sampled (Figure c in Appendix F). Biofilm plus sediment were also collected from the cobbles at the sampling sites and analyzed for total organic carbon (TOC). There is some indication that the organic content of this material influenced SOD (Figure d in Appendix F), although the sample size was only 10. However, for SOD measurements made on sediment (sand, silt, clay), SOD was not related to TOC of the sediment (Figure e in Appendix F). Unlike 1995, SOD did not appear to be related to water velocity over the range of all sites (Figure f in Appendix F).

3.4 GENERAL DISCUSSION

Temporal change in SOD in the Athabasca River was first investigated by Casey (1990), who found that SOD increased during the January-March period in the open water downstream of the Millar Western pulp mill at Whitecourt, but did not change much under ice and snow cover upstream at Windfall. An increase through winter was again observed at the Whitecourt site in 1992 (Monenco

1992) and in 1994 (HBT Agra 1994). These increases were generally attributed to a combination of growth of algae during the lengthening days as winter progressed, and accumulation of settleable organic materials from the pulp mill effluents. In 1994, the ice-covered location at Ft. Assiniboine was sampled three times to see if this phenomenon extended that far downstream of Whitecourt. No increase through winter was observed there (HBT Agra 1994 and Appendix F). This survey's results from an ice-covered site immediately downstream (3-4 km downstream of McLeod R.) and one at Blue Ridge now strongly indicate that the winter increase in SOD only occurs at open-water sites. This was further supported by the findings from the Hinton area (Section 3.2). Therefore it appears that, at least in 1994 and 1995, the temporal increase in SOD during winter is probably not due to accumulation of settleable organic material from effluent, but to the growth of benthic algae during the increasing light of late winter.

As a corollary to this, the apparent SOD measured at open-water sites should be considered as gross benthic respiration, rather than net oxygen flux. If algae are growing and their biomass is increasing in these open-water areas, as the 1995 epilithic chlorophyll *a* data indicate, then the benthic community is probably a net producer of oxygen during the January-March period in such locations. Note that in the February-March period of 1993, snow cover was low to nil on much of the river, light penetration through the ice was high, and under-ice photosynthesis raised DO significantly during late winter (Noton and Allan 1994). This indicates that when light can penetrate, photosynthesis can exceed respiration during this time of year. However, it is not known whether production in open-water areas is significant to the overall oxygen balance of the river in a typical winter. The open-water reach downstream of Hinton fluctuates between about 5 and 15 km in length during winter while the one downstream of Whitecourt is about 2 km long. Open-water leads of 2-4 km also occur downstream of the Alberta Newsprint and Al Pac effluents. Short open leads averaging perhaps 100 m in length occur periodically in the river in winter, down to the vicinity of Vega Ferry.

The apparent SOD (gross benthic respiration) in open water areas is positively related to the benthic chlorophyll concentration (Section 3.3). However, strong relationships between SOD and other variables at ice-covered locations have not emerged, except that SOD is generally greater downstream of Hinton and Whitecourt than at sites immediately upstream of these locations. In 1994 and earlier, a quantitative relationship between SOD and epilithic chlorophyll *a* was not found. In the data presented in this report, some relationship between these two variables is apparent, perhaps as a result of a more intensive investigation and larger sample size. Similarly, no relationship between current velocity and SOD had been found in the past, but some relationship was apparent in this survey. It seems reasonable to expect that SOD would be at least partly related to the biomass of benthic algae (as measured by chlorophyll), and also the current velocity (e.g., Nakamura and Stefan 1994). Another variable that intuitively should be related to SOD is organic content of the sediment. However, no relationship has been observed in the data collected to date from the Athabasca River (sediment was not obtainable from the rocky substrates sampled in this survey). Other researchers have also noted that organic content is not necessarily well correlated to SOD (e.g., Rolley and Owens 1967; Edberg and Hofsten 1973).

In view of this lack of a strong relationship of SOD to other variables, and the relationship of apparent SOD in open-water areas to algal growth, it is appropriate to ask whether or not SOD really is influenced by effluent inputs. The answer is probably yes because measurements over several years have consistently found the lowest SOD rates at Knight and Windfall, upstream of the inputs at Whitecourt. As well, this survey found higher rates upstream of Knight at an ice-covered site closer to the Hinton effluent (Emerson Bridge). Also, rates at that location were higher than rates in an open-water site upstream of Hinton (Figure 3 and 4). The actual mechanism of action of effluents on SOD may be through general fertilization of the river, and effluent inputs will not be the only factor contributing to this. Organic and inorganic nutrient inputs from tributaries such as the McLeod, Pembina and Lesser Slave rivers may also be important in contributing to winter SOD. Further sampling under ice and snow cover upstream and downstream of Hinton where no major tributaries occur would help to clarify this question, as would sampling upstream and downstream of major tributaries.

4.0 LITERATURE CITED

- Casey, R.J. 1990a. Procedures for the use of sediment oxygen demand chambers in flowing waters. Internal report. Prep. for Alberta Environment, Edmonton, Alberta. 17 pp.
- Casey, R.J. 1990b. Sediment oxygen demand during the winter in the Athabasca River and the Wapiti-Smoky River system, 1990. Prep. for Alberta Environment, Edmonton, Alberta. 56 pp.
- Casey, R.J. and L.R. Noton. 1989. Method development and measurement of sediment oxygen demand during the winter on the Athabasca River. Environmental Assessment Division, Alberta Environment, Edmonton, Alberta. 51 pp.
- Edberg, N. and B.V. Hofsten. 1973. Oxygen uptake of bottom sediments studied *in situ* and in the laboratory. Water Research 7: 1285-1294.
- HBT AGRA Ltd. 1993. Sediment oxygen demand investigations on the Athabasca River during the winter of 1993. Prep. for Alberta Forest Products Assoc. Edmonton, Alberta. 44 pp.
- HBT AGRA Ltd. 1994. Athabasca River streambed oxygen demand investigations, winter 1994. Prep. for Alberta Environmental Protection, Edmonton, Alberta. 19 pp.
- Macdonald, G. and A. Radermacher. 1993. An evaluation of dissolved oxygen modelling of the Athabasca River and the Wapiti-Smoky River system. Report #25. Prep. for the Northern River Basins Study under Project 2231-B1, Edmonton, Alberta.
- Monenco Inc. 1992. Sediment oxygen demand investigations, Athabasca River January to March, 1992 Report #3. Prepared for the Northern River Basins Study, Edmonton, Alberta.
- Nakamura, Y. and H.G. Stefan. 1994. Effect of flow velocity on sediment oxygen demand: theory. Paper No. 5795 submitted to the Journal of Environmental Engineering, Vol. 120, No. 5, Sept/Oct.
- Noton, L.R. and D. Allan. 1994. Oxygen conditions in the Athabasca River system, with emphasis on winters 1990-93. Technical Services and Monitoring Division, Alberta Environmental Protection, Edmonton, Alberta. 57 pp.
- Rolley, H.S. and M. Owens. 1967. Oxygen consumption rates and some chemical properties of river muds. Water Research 1: 759:766.

<u>APPENDIX A</u>. Terms of Reference.

NORTHERN RIVER BASINS STUDY

SCHEDULE A - TERMS OF REFERENCE

2222-D1: Mapping Riverbed SOD in Fall and Winter 1994-95, Athabasca River

I. BACKGROUND & OBJECTIVES

The pulp and paper industry is expanding rapidly in Alberta's northern river systems. In the Athabasca River basin, a new pulp mill recently began production and others are undergoing expansion. NRBS is currently modelling the oxygen balance of the Athabasca River to assess the potential impact of expanding pulp mill development on water quality, and to set appropriate effluent standards for the mills. Sediment oxygen demand (SOD), the rate of consumption of dissolved oxygen from the water column by the substratum in aquatic systems, is an important variable in the oxygen balance of river systems. Several chemical , biological and physical factors influence SOD. These include indigenous bacterial, algal and invertebrate communities, the nature of the sediment and the presence of chemical reducing agents (i.e., bacterial by-products such as sulphide) (Monenco Inc. 1993). The temperature and dissolved oxygen concentration in the water also affect SOD.

Sediment oxygen demand is considered to account for a significant fraction of the total oxygen demand in the Athabasca River during winter, when ice cover prevents or significantly reduces atmospheric aeration. Measurements of SOD have been made during most winters in the last five years, including an NRBS study on the Athabasca River in the winter of 1992 (2221-A1). Nonetheless, a number of questions concerning SOD remain unanswered, particularly in connection to oxygen modelling. Whereas some of the oxygen modelling questions have been partly addressed by previous SOD research, there remains a general need to obtain regular SOD data for the Athabasca River, particularly in relation to changing effluent loads and the impact of these nutrients on benthic production and, consequently, SOD. In July of this year, a number of these questions were identified at a joint NRBS-Alberta Forestry Products Association-Alberta Environmental Protection meeting dealing with nutrient-SOD-oxygen interactions.

This study is designed to address the questions and deficiencies raised at the July meeting, and has the following specific objectives:

- 1. To obtain a series of SOD measurements from upstream of Hinton, downstream to the Calling River area,
- 2. To investigate temporal change in SOD at key sites from fall through winter, both in ice-covered and ice-free areas, and
- 3. To further develop and assess the sediment core method.

II. GENERAL REQUIREMENTS

The field techniques used will be those developed for winter work in northern Alberta and used in previous surveys by Alberta Environmental Protection (AEP); i.e., stainless steel *in situ* chambers and sediment core respirometers. AEP will measure the *in situ* rate of dissolved oxygen depletion over time in specially designed chambers either containing substrate or placed directly on top of the substrate (Casey and Noton 1989, Casey 1990, Monenco 1993, HBT AGRA 1994). In the case of the sediment core method, SOD will be measured by enclosing an area of sediment in a plexiglass tube of known volume and measuring the change in dissolved oxygen over time (after McLeod and Gannon 1986). For both methods, a correction for oxygen demand by the water column will be determined by using a control chamber or core tube (i.e., with no substrate) and measuring the change in dissolved oxygen over the test and control chambers will be expressed as estimates of SOD in grams $O_2/m^2/day$. For each site and time, AEP is required to take 3-5 replicate measurements.

Objective number 1 above will be addressed by sampling several sites along the river, as presented in Appendix 1. This will include a site upstream of Hinton, a location for which no previous data have been obtained. Objective number 2 (temporal change) will be addressed by sampling several sites on a 3 week or monthly interval from fall 1994 to March 1995 (Appendix 1). This method will be particularly useful in determining whether SOD 'accumulates' downstream of effluent discharges during the winter. The third objective will involve taking sediment core measurements paired with chamber measurements at two sites (perhaps downstream of Hinton and 3 km downstream of the mouth of the McLeod River), and subsequent lab experimentation to evaluate the effect that pumping velocity and other variables may have on SOD. In addition to these, sampling of a cross-channel transect will be attempted at one of the sites, likely using the sediment core method. This site will be determined in the field by local conditions. Selection of specific deployment sites at each study location will be governed by limitations of substrate, water depth, and velocity. **Substrates that appear representative of the general location are required.**

At every location where SOD is examined, the contractor will also measure the following associated variables:

- depth, current velocity, water temperature, dissolved oxygen
- a 'blank' SOD measurement (part of the method)
- substrate particle size description (texture % boulder, cobble, gravel, sand, fines)
- epilithic chlorophyll a/m^2 (where cobbles or larger are sampled)
- sediment (including silt on rock surfaces) organic carbon

III. REPORTING REQUIREMENTS

The Project Manager is required to produce a technical report similar to the format presented for the 1992 winter survey (Monenco 1993) to facilitate inter-year comparisons of SOD data. The following information is to be included in the report:

The <u>Materials and Methods</u> section should include a detailed description of: (1) sampling equipment and field measurements for each SOD method employed, (2) methodologies for other pertinent environmental variables recorded, and (3) the calculation of SOD.

. .

The <u>Results and Discussion</u> section should include a description of study site characteristics (both hydrological and substrate) and sediment oxygen demand rates. For both the closed chamber *in situ* method and sediment cores, SOD rates are to be presented as both mean values and ranges, using the coefficient of variation (CV) as a measure of the variability at the various sampling sites. Other requirements for this section include temporal changes in SOD rates, monthly longitudinal trend in SOD rate, and the influence of environmental variables on SOD.

The <u>Conclusions</u> section should include (1) discussion of spatial and temporal (crosssectional and longitudinal) variability in SOD during the 1994/95 winter, and (2) comparison of year-to-year variability in SOD.

<u>Appendices</u> to the report should include (1) any new details of sampling equipment used for SOD measurements, (2) water velocities and water depths associated with individual SOD sample replicates, (3) laboratory data for the percentage of organic matter and epilithic chlorophyll *a* associated with sediments, and (4) SOD rates and DO concentration decreases for individual chambers and sediment cores at all sample locations.

- 1. The Project Manager is required to submit a brief progress report to the Component Coordinator by **March 31, 1995**, containing SOD data for the study period.
- 2. Ten copies of the Draft Report along with an electronic disk copy are to be submitted to the Component Coordinator by May 30, 1995.
- 3. Three weeks after the receipt of review comments on the draft report, the Project Manager is to provide the Component Coordinator with two unbound, camera ready copies and ten cerlox bound copies of the final report along with an electronic version.
- 4. The Project Manager is to provide draft and final reports in the style and format outlined in the NRBS document, "A Guide for the Preparation of Reports," which will be supplied upon execution of the contract.

The final report is to include the following: an acknowledgement section that indicates any local involvement in the project, Report Summary, Table of Contents, List of Tables, List of Figures and an Appendix with the Terms of Reference for this project.

Text for the report should be set up in the following format:

1.00

- a) Times Roman 12 point (Pro) or Times New Roman (WPWIN60) font.
- b) Margins; are 1" at top and bottom, 7/8" on left and right.
- c) Headings; in the report body are labelled with hierarchical decimal Arabic numbers.
- d) Text; is presented with full justification; that is, the text aligns on both left and right margins.
- e) Page numbers; are Arabic numerals for the body of the report, centred at the bottom of each page and bold.
- If photographs are to be included in the report text they should be high contrast black and white.
- All tables and figures in the report should be clearly reproducible by a black and white photocopier.
- Along with copies of the final report, the Contractor is to supply an electronic version of the report in Word Perfect 5.1 or Word Perfect for Windows Version 6.0 format.

Electronic copies of tables, figures and data appendices in the report are also to be submitted to the Project Liaison Officer along with the final report. These should be submitted in a spreadsheet (Quattro Pro preferred, but also Excel or Lotus) or database (dBase IV) format. Where appropriate, data in tables, figures and appendices should be geo-referenced.

- 5. All figures and maps are to be delivered in both hard copy (paper) and digital formats. Acceptable formats include: DXF, uncompressed Eøø, VEC/VEH, Atlas and ISIF. All digital maps must be properly geo-referenced.
- 6. All sampling locations presented in report and electronic format should be geo-referenced. This is to include decimal latitudes and longitudes (to six decimal places) and UTM coordinates. The first field for decimal latitudes / longitudes should be latitudes (10 spaces wide). The second field should be longitude (11 spaces wide).
- 7. A presentation package of 35 mm slides is to comprise of one original and four duplicates of each slide.

IV. DELIVERABLES

- 1. A technical project report presenting and discussing the fall-winter SOD rates in the Athabasca River.
- 2. Ten to twenty-five 35 mm slides that can be used at public meetings to summarize the project, methods and key findings.

V. CONTRACT ADMINISTRATION

This project has been proposed by the Nutrients Component of the NRBS (Component Leader - Dr. Patricia Chambers, National Hydrology Research Institute, Saskatoon).

The Project Manager is:

Mr. Leigh Noton		
Biologist		
Surface Water Assessment Branch		
Alberta Environmental Protection		
6 th Floor, Oxbridge Place		
9820 - 106 Street	Phone:	427-6277
Edmonton, Alberta T5K 2J6	Fax:	422-6712

Questions of a technical nature should be directed to him. Technical questions could also be directed to the Scientific Authority for this project, Dr. Patricia Chambers, at the following address:

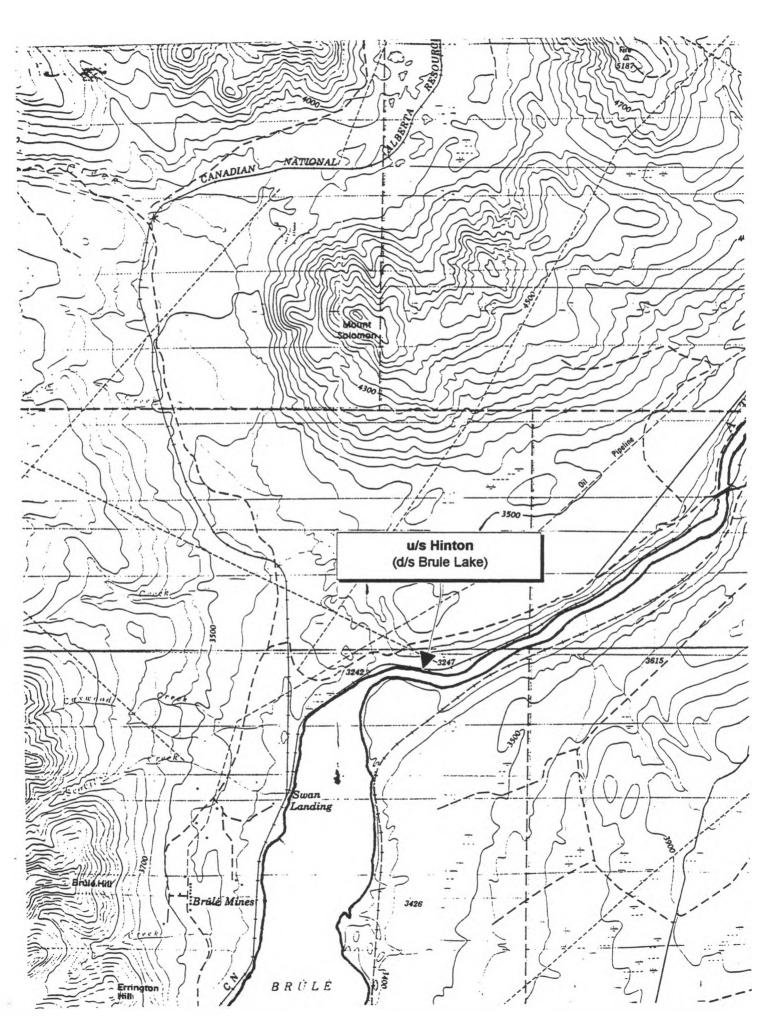
Environmental Research		
National Hydrology Research Institute		
11 Innovation Boulevard	Phone:	(306) 975-5592
Saskatoon, Saskatchewan S7N 3H5	Fax:	(306) 975-5143

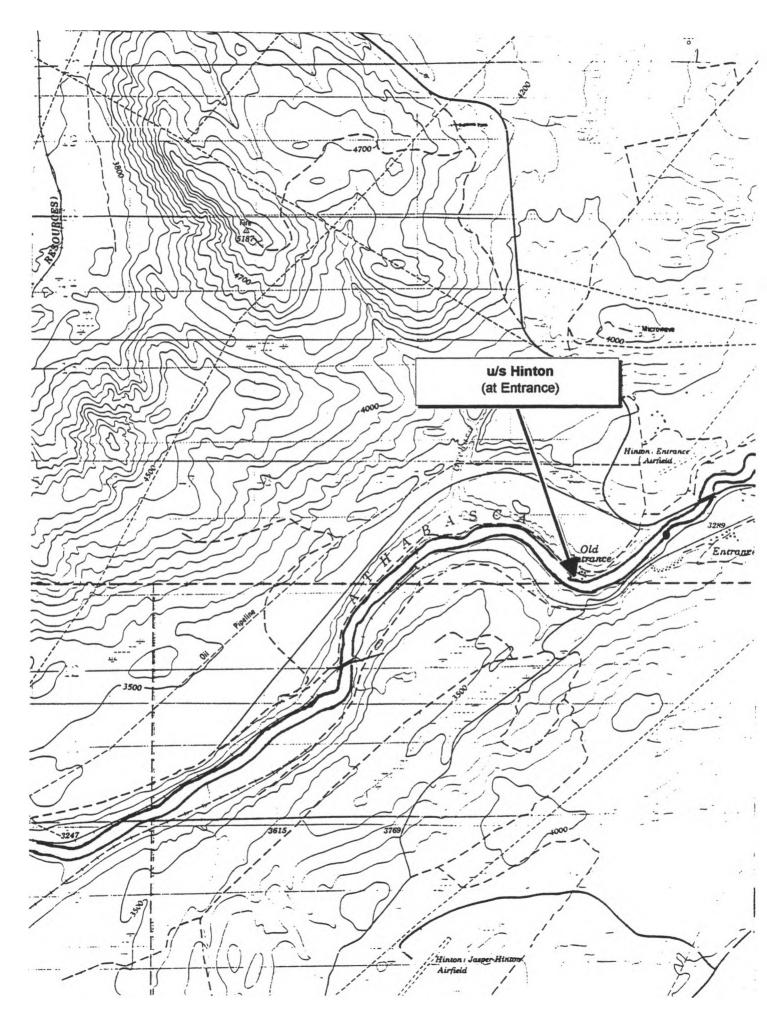
The Component Coordinator for this project is:

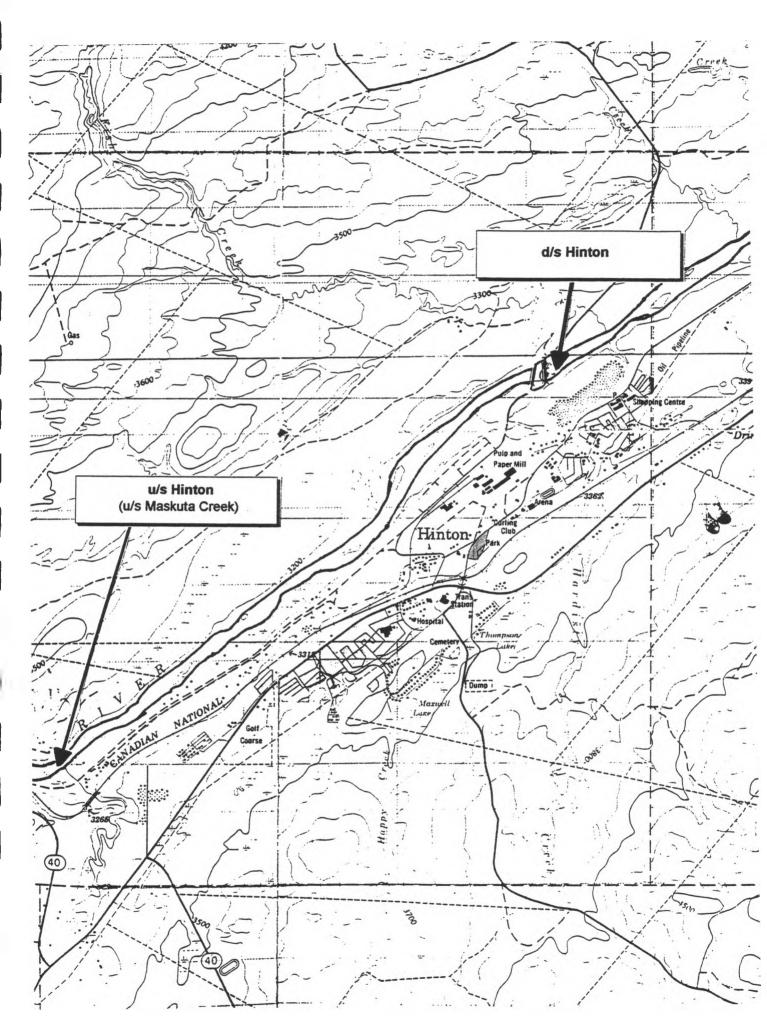
Richard Chabaylo		
Northern River Basins Study		
690 Standard Life Centre		
10405 Jasper Avenue	Phone:	427-1742
Edmonton, Alberta T5J 3N4	Fax:	422-3055

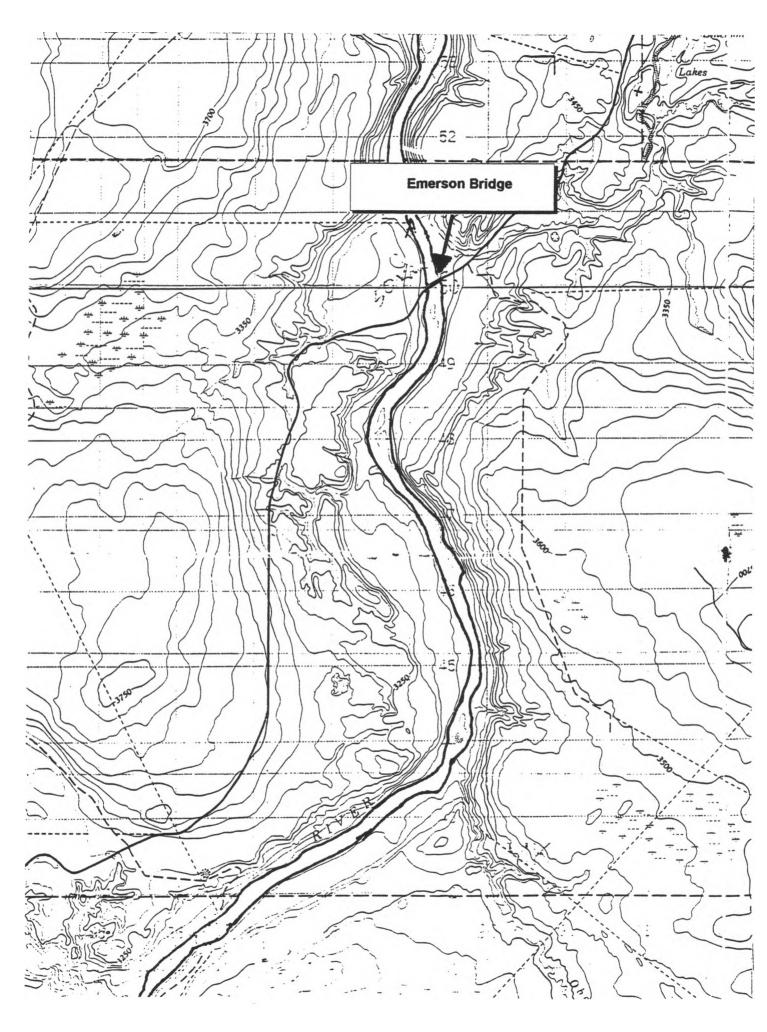
Questions of an administrative nature should be directed to him.

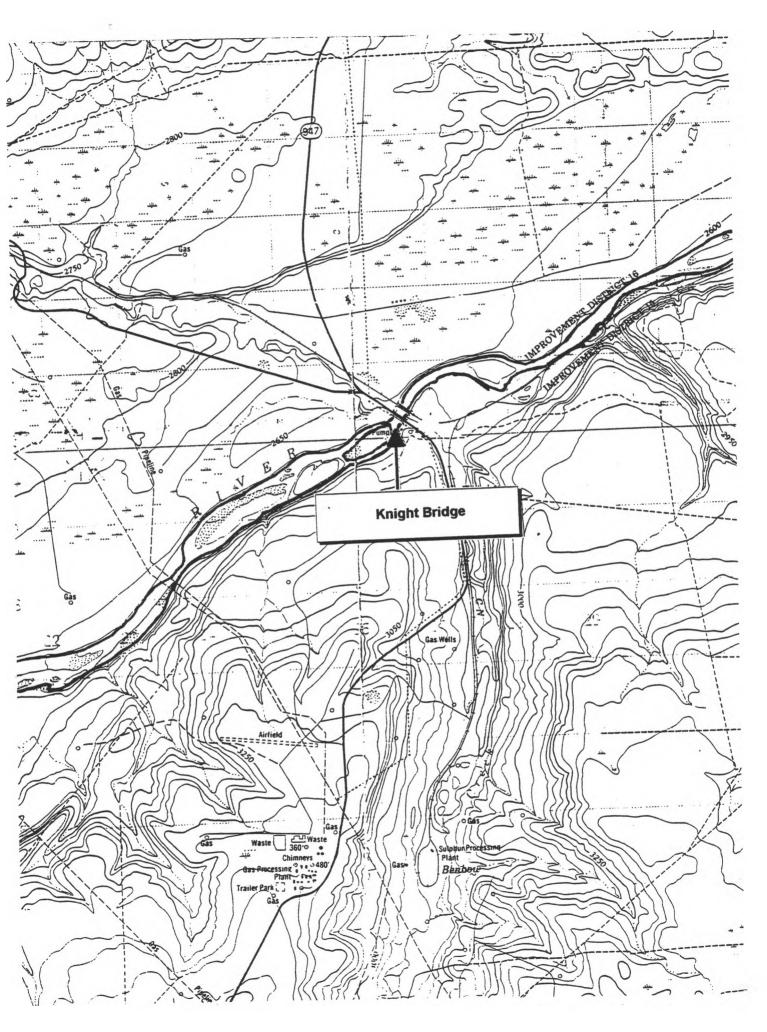
VI. LITERATURE CITED

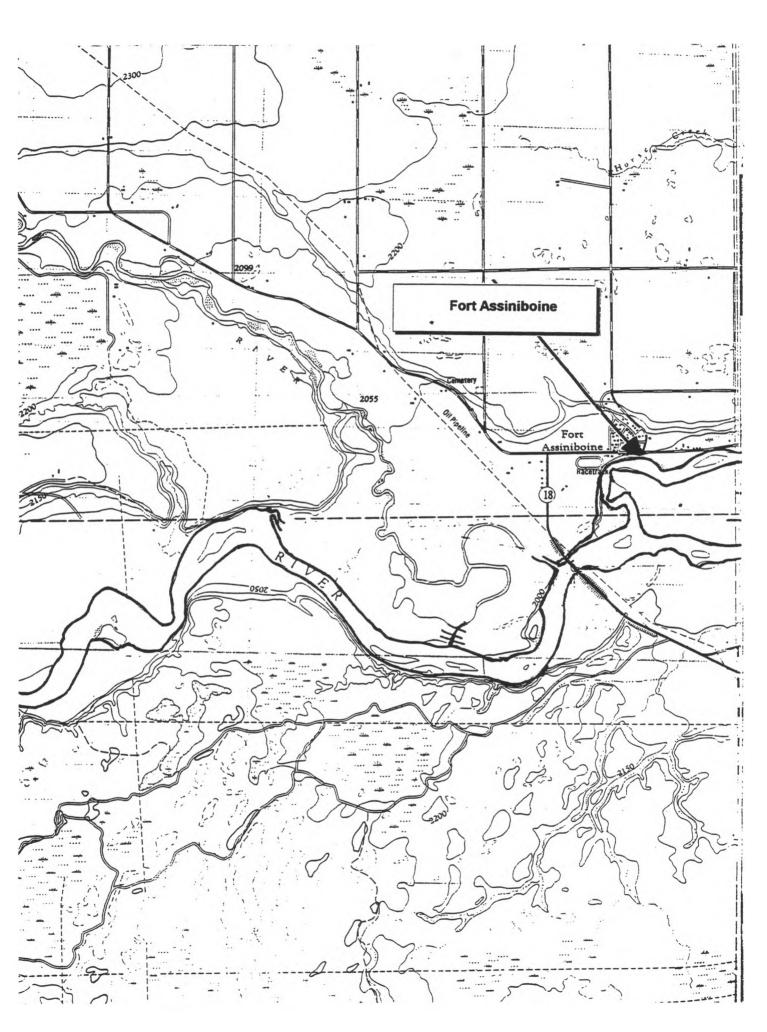

- Casey, R.J. 1990. Sediment oxygen demand during the winter in the Athabasca River and the Wapiti-Smoky River system. Report prepared for Alberta Environment, Standards and Approvals Division and Environmental Assessment Division, Edmonton. 49 pp.
- Casey, R.J., and L.R. Noton. 1989. Method development and measurement of sediment oxygen demand during the winter on the Athabasca River. Report prepared for Alberta Environment, Environmental Assessment Division, Environmental Quality Monitoring Branch, Edmonton. 43 pp.
- HBT AGRA Limited. 1994. Athabasca River streambed oxygen demand investigations, winter 1994. Report prepared for Alberta Environmental Protection, Environmental Regulatory Services, Edmonton. 16 pp.
- McLeod, M.D., and J.J. Gannon. 1986. BOD test of sediment micro-core as an indicator of the sediment oxygen demand rate. Pp. 389-407 In K.J. Hatcher [ed.], Sediment oxygen demand processes, modelling, and measurement. University of Georgia, Institute of Natural Resources. 447 pp.
- Monenco Inc. 1993. Sediment oxygen demand investigations: Athabasca River, January to March, 1992. Report prepared for Northern River Basins Study. Project Report No. 3.

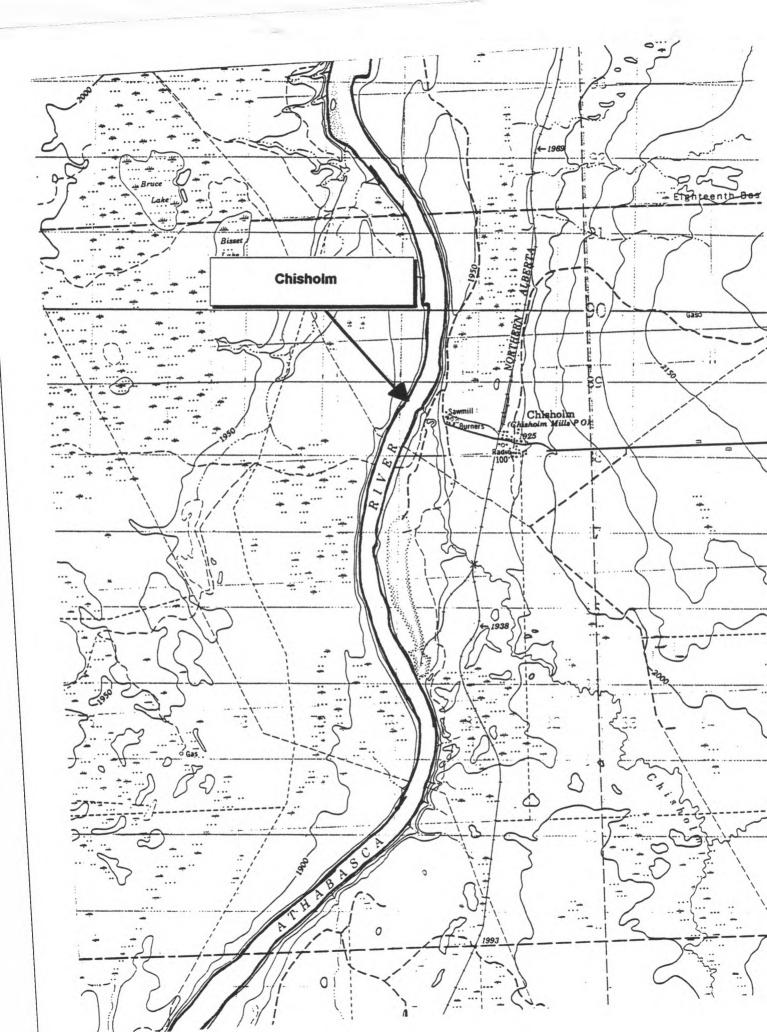

Location	Method	Starting Date	Interval or Time
u/s of Hinton	СС	October	O,D,J,F
d/s of Hinton (ice-free)	СС	October	3 week
Obed area	CC		O,D,J,F
Windfall	СС		O,D,J,F
u/s of McLeod River confluence	CC		O,D,J,F,M
d/s of McLeod River at Millar Western Pulp (ice-free)	CC	October	3 week
3 km d/s of McLeod River confluence	SC		O,D,J,F
	СС	October	3 week
Blue Ridge area	СС		O,D,J,F
Ft. Assiniboine area	СС		O,D,J,F
Chisholm			once only; J-M
u/s Smith	СС		J.F.M
Athabasca			J,F,M
LaBiche-Calling R. area	TBD		J,F,M

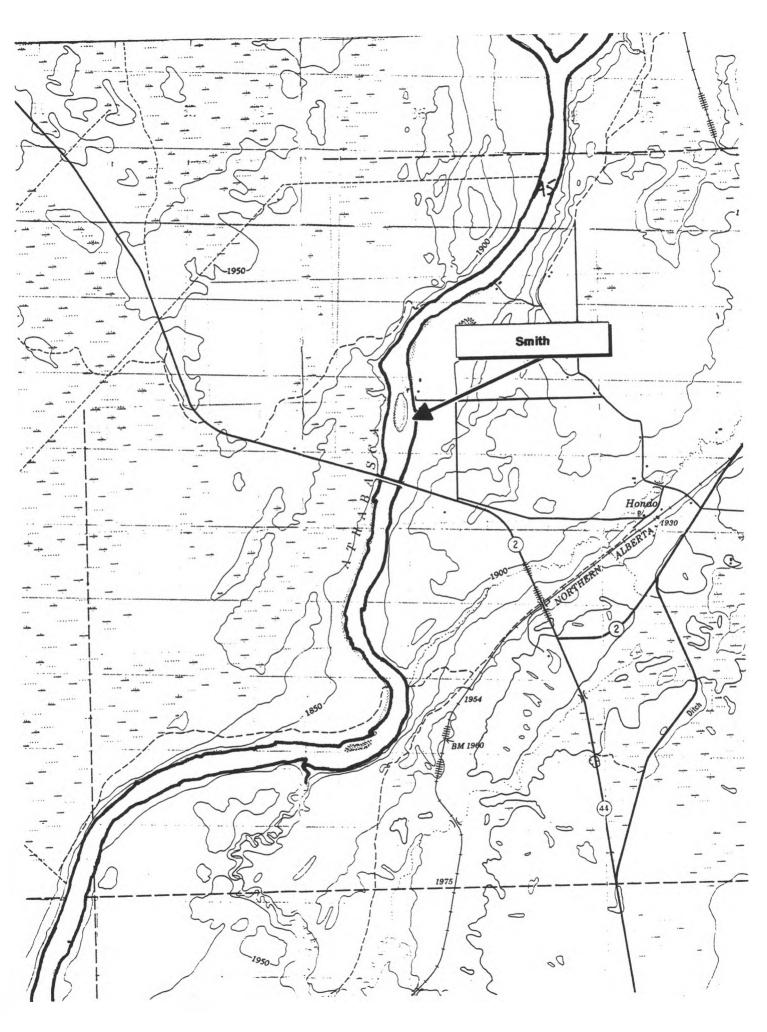

Appendix 1. Sampling sites, methodology and timing of SOD measurements in the fall and winter 1994-95, Athabasca River.

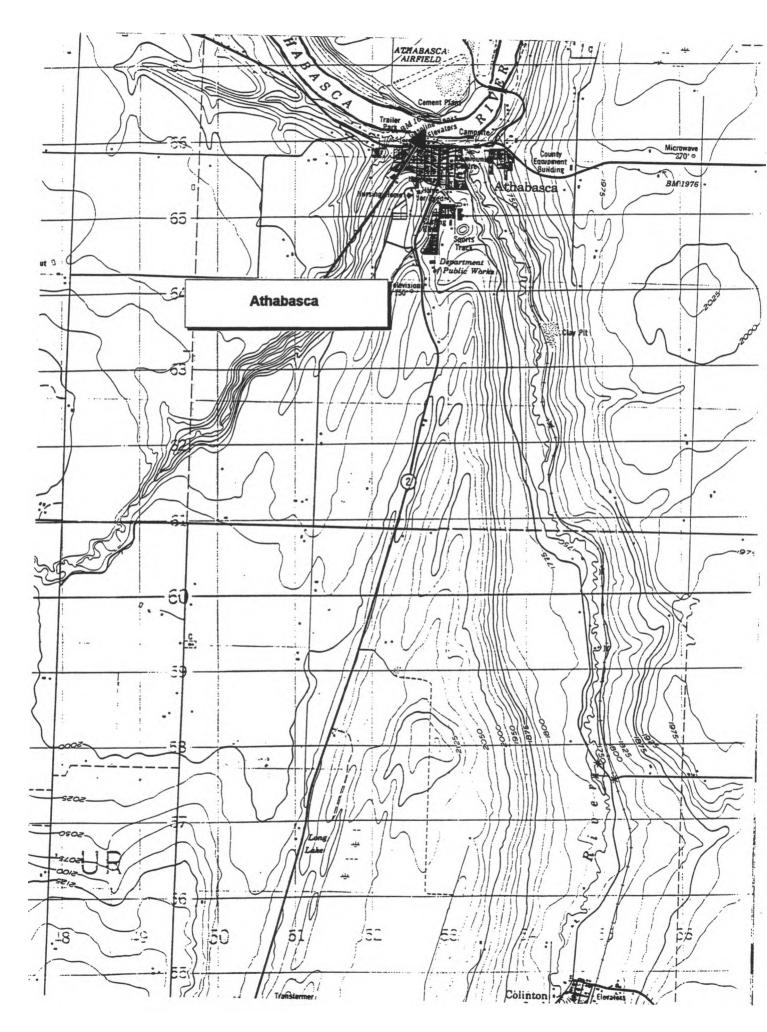

Note: **CC** - closed chamber; **SC** - sediment core; **TBD** - to be determined in the field. Cross-channel transect at one of the sites will also be determined in the field.

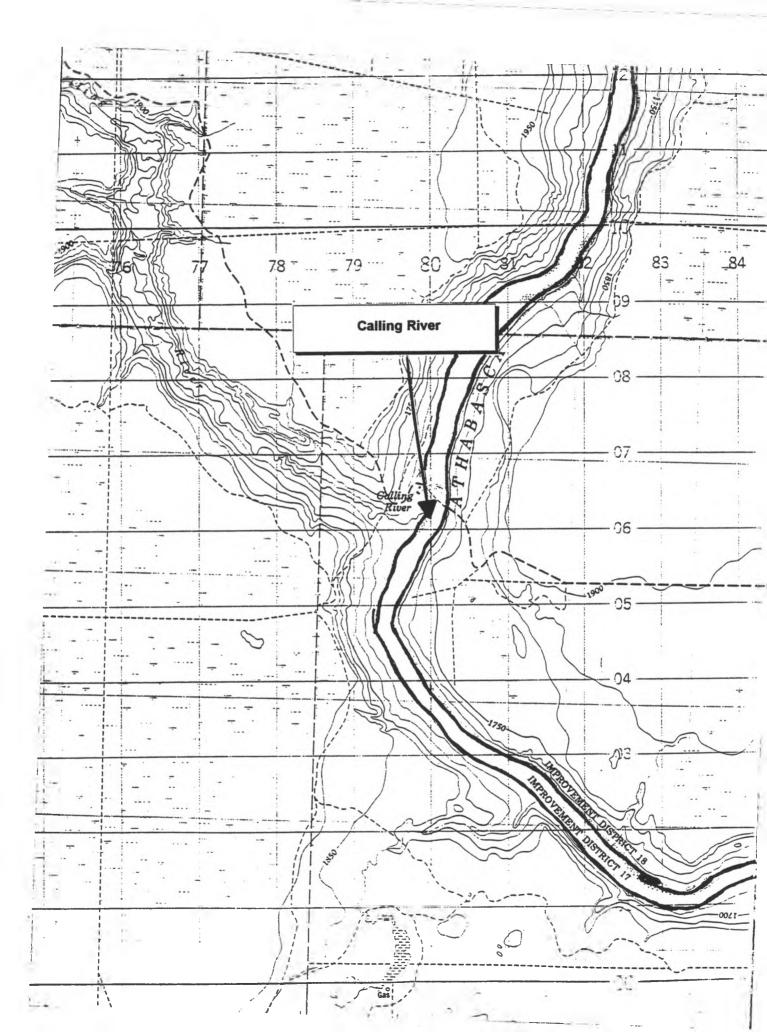

APPENDIX B. Detailed site maps. Scale approximately 1:50,000











		VICTIAL	VECTIMAT		RATE COMP	
LOCATION	DATE	SILT	SAND	PEBBLE	COBBLE	BOULDER
LOCATION	DATE	< 2 mm	2-8 mm	8-64 mm	64-256 mm	> 256 mm
u/s Hinton		< 2 11111	2-0 11111	0-04 11111	04-230 11111	230 mm
at Entrance	Dec 6-7	20	5	10	45	20
d/s Brule Lk (ice free)	Feb 1-2			20	20	60
d/s Brule Lk.(ice free)	Feb 21-22	20			30	50
u/s Maskuta Ck.	Feb 22-23	10	30	10	20	30
d/s Hinton	Nov 3-4	10	10	40	40	
(all ice free)	Dec 5-6	5	15	75	5	
	Jan 4-5	10	20	70	T	
	Feb 1-2		25	65	10	
	Feb 22-23		mainly	/ pebble/smal	cobble	
Emerson Bridge	Dec 6-7			10	90	
	Jan 4-5	10	5	10	75	
Knight	Dec 12-13	10	5	20	50	15
	Jan 10-11	5	<u> </u>	25	20	50
······································	Feb 2-3		10	10	40	40
u/s McLeod River						
LB, d/s Hwy.43 at pumphouse	Dec 12-13	5	10	15	60	10
LB, u/s Sakwatamau R.	Jan 19-20			15	25	60
LB, u/s Sakwatamau R.	Feb 6-7		5	10	55	30
RB, d/s Sakwatamau R.	Mar 7-9		5	35	60	
2 km d/s McLeod River	Oct 25-26	<2	<5	50	40	
(ice covered)	Dec 14-15		10	20	70	
(ice free)	Jan 10-11	10		30	60	
(ice free)	Feb 7-8		10	40	50	
(ice free)	Mar 9-10	5	5	30	60	
3-4 km d/s McLeod River	Oct 20-21		mainl	y cobble and	pebble	
	Nov 30-Dec 1	<5	30	50	15	
	Jan 12-13	5	25	30	40	
	Feb 7-8	5	15	25	50	5
	Mar 7-9	10	20	40	30	
Blue Ridge	Oct 26-27		predor	ninantly cobbl	e/nebble	
	Dec 20-21	5	5	10	70	10
	**Jan 17-19	5	5	25	50	15
	Feb 8-9		5	20	65	10
Fort Assiniboine	Dec 19-20	5	5	20	65	5
	Jan 17-18	10	5	15	50	20
· · · · · · · · · · · · · · · · · · ·	Feb 9-10	20		10	30	40
Chisholm	Mar 14-15		20	10	70	
Smith	Jan 23-24		10	20	70	
SHIMI	Feb 14-15		10	30	60	
	Mar 14-15		5	30	50	15
Athabasaa	lon 04 05		30	30	40	
Athabasca	Jan 24-25	10				E
	Feb15-16 Mar 16-17	10	40	15 20	<u> </u>	5 20
······································						
Calling River	Jan 30-31	25	10	40	25	
	Feb 16-17 Mar 15-16	10 10	40 20	30 40	20 30	

8.

APPENDIX D. Detailed site data.

	GPS: DATES: Ambient DO (mg/L): Chamber #:	A HIABASCA U/S HIN LON (AL Emirance) N 53 22'00' W 117 43' 11' Dec 6.7, 1994 11.96 Control 1 13 12/04 0.65 10/6, 04 0.50	13' 11" (at Entrance 43' 11" 13 13 13	8) 10/16/04 0:45	11	4 4 10.05	SITE: GPS: DATES: Ambient DO (mg/L): Chamber #: Install Date/Time:	ATHABASCA U/S HINTON (d/s Brule Lake) N 53 20' 28' W 117 49' 56' Feb 21-22, 1995 11.04 Control 2/21/95 14:10 2/21/95 14:00 2/2	7 49' 56" 7 49' 56" 2/21/95 14:00	Lake) 2/21/9	8 5 14:05
3.16 3.31 0.01 <th< td=""><td>Instant Jacon Ime. Final DO (mg/L): Depths (cm) 12 req'd</td><td>12/19</td><td>127/194 9:10 158 158 158 22 22 23.8 22 23.8 22 22.9 22.9 22.9 22.9 22.9 22.9 22.9</td><td>127704 69.10 11.2 15.7 16.7 16.7 18.7 18.7 18.7 20.3 20.3 20.7 20.5 20.7 20.2 20.7 20.7 20.7 20.7 20.7 20.7</td><td>127794 9.05 11.25 13.5 13.5 14.5 16.5 16.5 16.9 17.9 17.9 20.9 24.5 24.5</td><td>12/704 8:15 115 115 16:9 17.7 17.7 17.9 16:9 16:9 16:9 18:6 18:8 19:8 19:8 19:8 19:8 19:8 19:8 19:8</td><td>Removal Date/Time. Final DO (mg/L): Depths (cm) 12 req'd</td><td>2/22/95 12:45</td><td>2/22/95 12:55 9.36 18 12:5 12:5 13:5 13:5 13:5 15:5 15:5 15:5 15:5 15</td><td>20295 12:40 10.04 17 17 13 5 13 5 13 5 14 5 14 5 14 5 14 5 14 5 13 5 13 5 13 5 13 5 13 5 13 5 13 5 13</td><td>12:40 11 17.5 135 135 14.5 14.5 14.5 14.5 14.5 14.5 135 135 135 135 135</td></th<>	Instant Jacon Ime. Final DO (mg/L): Depths (cm) 12 req'd	12/19	127/194 9:10 158 158 158 22 22 23.8 22 23.8 22 22.9 22.9 22.9 22.9 22.9 22.9 22.9	127704 69.10 11.2 15.7 16.7 16.7 18.7 18.7 18.7 20.3 20.3 20.7 20.5 20.7 20.2 20.7 20.7 20.7 20.7 20.7 20.7	127794 9.05 11.25 13.5 13.5 14.5 16.5 16.5 16.9 17.9 17.9 20.9 24.5 24.5	12/704 8:15 115 115 16:9 17.7 17.7 17.9 16:9 16:9 16:9 18:6 18:8 19:8 19:8 19:8 19:8 19:8 19:8 19:8	Removal Date/Time. Final DO (mg/L): Depths (cm) 12 req'd	2/22/95 12:45	2/22/95 12:55 9.36 18 12:5 12:5 13:5 13:5 13:5 15:5 15:5 15:5 15:5 15	20295 12:40 10.04 17 17 13 5 13 5 13 5 14 5 14 5 14 5 14 5 14 5 13 5 13 5 13 5 13 5 13 5 13 5 13 5 13	12:40 11 17.5 135 135 14.5 14.5 14.5 14.5 14.5 14.5 135 135 135 135 135
0.2105 0.1948 0.1782 Mean depth (m);	(hrs): e (mg/L/hr) e (mg/L/hr)		23.33 0.38 0.0163	23,42 0,76 0,0325	23.17 0.71 0.0306	23.17 0.72 0.0311	Run time (hrs): DO change (mg/L): DO change (mg/L/hr).	22.58 0.00 0.0000	22.58 1.66 0.0735	ď	22.58 1.00 0.0443
FILADASCA U/S HINTON (da Blue Lake) 0.046 0.045 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.045 112 438 <	th (m):):		0.2105	0.1948 18.22	0.1768 16.53	0.1782 16.66	Mean depth (m): Volume (L):		0,1454 13.60	o'	13.71
ATHANASCA UIS HINTON (dis Bruie Lake) STE: ATHANASCA UIS HINTON (dis Bruie Lake) N 132 OF 28* W 117 49 56* N 132 OF 26* W 17 49 56* N 132 OF 26* W 17 39 109* Feb 12, 195 1115 N 114 10 N 114 10 1115 21/195 11:00 21/195 11:00 21/195 11:10 21/195 11:10 21/195 11:10 21/195 11:00 21/195 11:00 21/195 11:10 21/195 11:10 21/195 11:10 21/195 11:00 21/195 11:00 21/195 11:10 21/195 11:10 21/195 11:10 21/195 11:00 21/195 11:00 21/195 11:00 21/195 11:10 21/195 11:10 21/195 11:00 21/195 11:05 21/195 11:05 21/195 11:10 22/195 10:00 21/195 11:10 21/195 11:00 21/195 11:05 21/195 11:10 21/195 12:00 22295 15:00 22295	(g/m2/day) (mg/m2):		67.028	0.056	0.045	23.32	SOU rate (g/m2/0ay): Epi Chloro (mg/m2):		12.438		43.32
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00 (mo/L):		IINTON (d/s Brule L 7 49' 56"	ake)			SITE: GPS: DATES: Ambient DO (mg/L):	ATHABASCA U/S H N 53 22' 50' W 11 Feb 22-23, 1995 11.16	HINTON (u/s Maski 17 39' ()8"	uta Ck.)	
21.67 21.50 21.57 21.57 21.57 21.58 Run time (hrs): 21.17 21.25 0.00 0.65 0.72 0.32 0.55 DO change (mg/L); 0.000 0.966 0.0000 0.0302 0.0148 0.0255 DO change (mg/L); 0.0000 0.0462 0.1404 0.1529 0.0148 0.0255 DO change (mg/L); 0.0000 0.0462 13.13 14.30 14.69 14.73 Volume (L): 12.70 0.102 0.123 0.056 0.096 SOD rate (g/m2/day) 0.147	() (mg/L); #: Data/Time: Data/Time: mg/L); mg/L); mg/L); mg/L); mg/L);	÷	11 2/1/95 11:00 2/2/95 8:30 2/2/95 8:30 10:54 12:55 12:55 13:55 13:55 13:55 13:55 14:55 14:55 14:55 14:55 13:55 14:555 14:555 14:555 14:555 14:555 14:555 14:555 14:5555 14:5555 14:5555114 14:5555114 14:5555114 14:5551141	13 2/1/95 11:00 2/2/95 8:30 2/2/95 8:30 10 10 16.5 16.5 18.5 18.5 14.5 14.5	2/1/95 11:05 2/295 8:45 11:27 11:27 17:5 17:5 17:5 14:5 14:5 14:5 14:5 14:5 14:5 14:5 14	2//195 11:05 2/2/95 8:40 11:06 24:55 11:15 14:5 14:5 14:55 1	Chamber #: Chamber #: Install Date/Time: Final DO (mg/L): Depths (cm) 12 req'd	Control 5 2/22/95 12:30 11.16	2/22/95 16:10 2/23/95 16:10 2/23/95 16:10 10.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	2/22/95	12.20 12.20 12.20 12.20 17.55 17.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 15.555
0.1529 0.1571 0.1575 Mean depth (m): 0.1358 14.30 14.73 Volume (L): 12.70 0.123 0.056 0.096 SOD rate (g/m2/day) 0.147	Run lime (hrs): DO change (mg/L): DO change (mg/L/hr		21.50 0.65 0.0302	21.50 0.72 0.0335		21.58 0.55 0.0255	Run time (hrs): DO change (mg/L): DO change (mg/L/hr);		0	0	21.17 0.46 0.0217
0.102 0.123 0.056 0.096 SOD rate (g/m2/day) 0.147	oth (m): L):		0.1404	0.1529	0.1571 14.69	0.1575	Mean depth (m): Volume (L):		0.1358	0	0,1550
	(g/m2/day		0.102	0.123	0.056	0.096	SOD rate (g/m2/day)		0.147		180.0

	1/6/95 12:35 1/6/95 12:35 1/6/95 12:35 16 16 15.1 15.1 15.1 15.1 15.1 15.1 16.9 14.7 14.8	24.00 2.30 0.0958	0.1491 13.94	0.307	0.388	u	2/1/95 12:45 2/2/95 10:30 5.96 13:5 13:5 13:5 14 12:5 14 12:5 14:5 14:5 14:5 14:5 13:5 13:5 13:5 13:5 13:5 13:5 13:5 13	21.75 5.34 0.2455	0.1346 12.58	0.784
	11 1/4/95 12:15 1/5/95 12:30 2.05 17 18.6 18.6 16.4 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13	24.25 2.51 0.1035	0.1753 16.39	0.394	25.888	-	2/1/95 12:45 2/2/95 10:25 7.49 11:5 11:5 13:5 13:5 13:5 13:5 14:5 14:5 14:5 14:5 14:5 14:5 14:5 14	21.67 3.81 0.1758	0.1300 12.16	0.540
	8 1/5/95 12:30 1/5/95 12:45 17.1 17.1 18.8 18.8 18.8 18.4 18.6 18.6 18.6 18.6 18.6 17.6 117.6 117.6 17.6	24.25 1.73 0.0713	0.1733 16.20	0.255	12.725	đ	2/1/95 12:45 2/2/95 10:35 7.5 11:5 11:5 11:5 11:5 11:5 13:5 13:5 13:	21.83 3.80 0.1740	0.1300 12.16	0.534
NTON 33' 34"	7 1/4/95 12:20 1/5/95 12:50 13.8 13.8 13.8 16.1 17.5 18.1 17.5 18.1 17.5 18.1 17.5 18.1 17.5 13.8 18.1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17	24.50 3.21 0.1310	0.1604	0.466	87.803 NTON 33' 34"	a	2/1/95 12:45 2/2/95 10:35 8.24 8.24 11:5 11:5 11:5 12:5 10:5 10:5 10:5 10:5 10:5 10:5 10:5 10	21.83 3.06 0.1402	0.1142 10.67	0.376
ATHABASCA D/S HINTON N 53 25' 77" W 117 33' 34" Jan 4-5, 1995	Control 11.79 Control 1 1/4/95 12:45 1/5/95 13:50	24.25 0.24 0.0099			ATHABASCA D/S HINTON N 53 25' 77" W 117 33' 34" Feb 1-2, 1995	11.3 Control	2/2/95 13:05	21.58 0.06 0.0028		
SITE: GPS: DATES:	Ambient DO (mg/L): Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	Run time (hrs): DO change (mg/L/hr): DO change (mg/L/hr):	Mean depth (m): Volume (L):	SOD rate (g/m2/day):	Epi Chloro (mg/m2): SITE: GPS: DATES:	Ambient DO (mg/L): Chamber #:	nstati Date/Time: Instati Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	Run time (hrs): DO change (mg/L): DO change (mg/L/hr):	Mean depth (m): Volume (L):	SOD rate (g/m2/day):
	9 11/3/94 11:10 11/4/94 9:45 11.78 23.5 23.4 23.4 21.5 23.4 21.5 23.4 21.5 21.5 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22	22.58 0.59 0.0261	0.2267 21.19	0.127	ца					
	7 11/3/94 11:00 11/4/94 9:35 22 23.6 23.6 23.6 23.6 21.9 21.9 21.9 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	22.58 0.91 0.0403	0.2251 21.05	0.203	n/a	o	12/5/94 11:50 12/6/94 12:45 11.38 23.2 23.2 23.2 23.2 23.2 23.2 23.2 2	24.92 1.06 0.0425	0.2215 20.71	0.177
	1 11/3/94 11/3/94 11/3/94 11/3/94 11/3/94 10.45 11/3/94 11/3/94 11/4/94 9.35 11/4/94 9.35 23.1 23.1 22.2 23.1 23.4 23.6 23.1 23.5 23.6 23.1 23.5 23.6 23.1 23.5 23.6 23.1 23.5 21.9 23.3 22.3 21.3 23.4 20.7 23.6 23.5 23.4 21.3 23.4 22.3 21.9 23.5 23.4 21.9 23.6 23.3 23.4 23.8 21.4 20.7 23.8 21.4 20.7 23.8 21.4 20.7 23.8 21.4 20.7 23.8 21.4 20.7 23.4 22.8 21.4 23.5 22.8 21.4 23.6 22.8 23.1	22.83 22.58 0.75 0.91 0.0328 0.0403	0.2303 0.2251 21.53 21.05	0.167 0.203	n/a n/a		12/5/94 11:35 12/5/94 11:35 12/5/94 12:50 12/5/94 12:45 11.44 11.48 11.48 21.5 22.2 22.2 22.2 22.3 22.3 22.3 21.8 22.3 21.8 22.3 21.5 22.3 23.2 23.2 23.2 23.2 23.2 23.2 23	25.25 24.92 1.00 1.06 0.0396 0.0425	0.2182 0.2215 20.40 20.71	0.159 0.177
NTON 33' 34"	1 0.45 9.35 11/3/94 1.62 23.1 1.62 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.	0	0		n/a	e		0.0		
ATHABASCA D/S HINTON N 53 25' 77" W 117 33' 34" Nov 3-4, 1994	11/3/94 10:45 11/4/94 9:35 11/4/94 9:35 11/4/94 23:1 23:1 23:1 23:1 23:1 23:1 23:1 23:4 23:4 23:4 23:4 23:4 23:4 23:4 23:4	22.83 0.75 0.0328 0	0.2303 0 21.53	0.167	nla	e	12/5/94 11:30 12/5/94 11:35 12/5/94 12:55 12/5/94 12:55 12/5/94 12:55 12/5/94 12:55 22:5 22:5 22:5 22:5 22:8 22:8 22:5 22:8 22:8	25.25 1.00 0.0396 0.0	0.2182 20.40	0.159

ATHABASCA D/S HINTON N 53 26' 77" W 117 33' 34" Feb 22-23, 1995	Ambient DO (mg/L): 11,24 Control	13 2/22/95 9:25 2/22/95 9:1 ma: 2/23/95 9 35 2/23/95 9:1	Final DO (mg/L): 11.24 B Depiha (cm) 12 ren'd: 11.5		13.5	1.05	41	0.2	15	11.5	24.17 23.92	DO change (mg/L): 0.00 3.24 0.00 change (mg/Lhn): 0.0000 0.1355 0.	Mean depth (m): 0.1283 0. Volume (L): 12.00	SOD rate (g/m2/day):	Epi Chloro (mg/m2): 18.195	SITE: ATHABASCA AT EMERSON BRIDGE GPS: N 53 42' 03' W 117 09' 44' DATES: Dec 6-7, 1994	Ambient DO (mg/L): 11.96	Control 7 7 12/6/94 16:15 12/7/94 14:40 12/7/94 14:73		26.5	21.8 18 5	240.0	20.1	19.1 14.8	Run time (hrs): 22.42 22.33 DO change (mg/U): 0.23 0.89 DO change (mg/Uhr): 0.0103 0.0399 0	Mean depth (m): 0.2035 0 Volume (L): 19.03	SOD rate (g/m2/day): 0.145
		3 11 95 9:15 2/22/95 9:20 95 9:30 2/23/95 9:20		13.5 12.5			13.5 13.5	14.5 10.5		11.5 12.5	24.25 24.00	3.66 3.58 0.1509 0.1492	0.1292 0.1308 12.08 12.23	0.468 0.468	9.579 10.083			9 12/6/94 16:10 4 16:05 12/6/94 16:10 4 14:25 12/7/94 14:35 10.72 10.76				15.4 16.5 17.5 15.6			22.33 22.42 1.24 1.20 0.0555 0.0535	0.1962 0.1945 18.34 18.19	0.213 0.202
000	<.		12.5 D	12	14.5	13.5	13	13.5	12.5	9	23.92 R		0.1308 12.23	0.257 S	15.089 E		×									27	03
SITE: GPS: DATES:	Ambient DO (mg/L):	Chamber #: Install Date/Time: Removal Date/Time:	Pental UO (mg/c): Depths (cm) 12 req'd:								Run time (hrs):	DO change (mg/L/hr): DO change (mg/L/hr):	Mean depth (m): Volume (L):	SOD rate (g/m2/day):	Epi Chloro (mg/m2):	SITE: GPS: DATES:	Ambient DO (mg/L):	Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Doothe (/m) 13 rooth							Run time (hrs): DO change (mg/L/hr); DO change (mg/L/hr);	Mean depih (m): Volume (L):	SOD rate (g/m2/day):
ATHABASCA AT EMERSON BRIDGE N 53 42' 03" W 117 09' 44" Jan 4-5, 1995	11.49 Control	13 1/4/95 16:20 1/5/95 15:15	1711								22.92	0.22				ATHABASCA AT KNIGHT BRIDGE N 54 09' 04" W 116 35' 58" Dec 12-13, 1994	11.92 Control	13 3:40 2:40 1.78							23.00 0.14 0.0061		
IERSON BRIDGE 09' 44"		5 1/4/95 16:00 1/5/95 15:10	15.6	16.7	13	11.5	11	13	14.8	16.6	23.17	0.0527	0.1518 14.19	0.157	13.335	IIGHT BRIDGE 35'58"		11 12/12/94 13:05 12/13/94 12:20 11.72	15.7	22.2	204	19.1	19.4	18.5	23.25 0.20 0.0086	0.201	0.0.12
		4 1/4/95 16:05 1/5/95 15:00	9.6	13.1	16.6	101	4.4	14.4	11.5	12.6	22.92	0.0615	0 1348	0.168	53.188			12/12/94 13:15 12/13/94 12:30 12/13/94 12:30	13	1.91	18.9	18.8	13.3	14.2	23,25 0.30 0.0129	0 1665	0.027
		9 1/4/95 16:10 1/5/95 14:55	16.7	17.5	15.3	17.8	99	17	16.7	17.2	22 75	0.0440	0.1711	0.141	43,648	-		4 12/12/94 13:25 12/13/94 12:45 11.6			26 16.1		13.3	10.0	23.33 0.32 0.0137	0.1868	0.034
		1/4/95 16:15 1/5/95 14:45	12.5	15.1	20.9	20.5	10.5	13	116	13.8	22.50	0.0578	0,1558	0.180	121.0.16			7 12/12/94 13:35 12/13/94 12:55 11.66	20.5	16.7	26 18.1	20.4	15.6	15.5	23.33 0.26 0.0111	0.1903	0.023

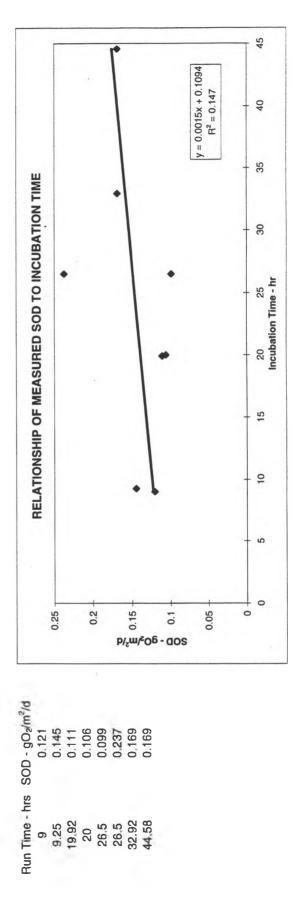
GPS: DATES:	N 54 09' 42' W 115 40' 33" Jan 10-11, 1995	5 40' 33"				GPS: DATES:	N 54 09' 42" W 115 40' 33" Mar 9-10, 1995	15 40' 33"	-		
Ambient DO (mg/L):	9,25 Control		8	2		Ambient DO (mg/L):	9.55 Control				
Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	7 1/10/95 15:35 1/11/95 16:25 9.25	9 1/10/95 15:15 1/11/95 15:50 5.14 10	11 1/10/95 15:30 1/11/95 16:00 3.63 12:5	1/10/95 15:25 1/11/95 16:20 5.59 14.5	13 1/10/95 15:20 1/11/95 16:10 3.55 13	Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L); Depths (cm) 12 req'd:	a/9/95 10:40 3/10/95 13:05 9.52	3/9/95 10:30 3/10/95 13:00 3/10/95 13:00 9.5	9 3/9/95 10:35 3/10/95 12:55 4.25	3/10/95 10:30 3/10/95 12:45 0.1	3/9/95 10:35 3/10/95 12:50 0.14
		9.5 2.5	15	16.5	13.5			8.8 6	1.41	13.5	15.5
		11.5	971	41	14.5			14 12	11	10.5	11
		10.5	16	14	20			11	10	13.5	14.5
		15	14.5	12	15			9 OF	E	13.5	13.01
		12.5	16	19.5 16	15.5 18			8 0	11	18	11.
		I	14	20	14.5				10	Ŧ	11
Run time (hrs): DO change (mg/L)r; DO change (mg/L/hr);	24.83 0.00 0.0000	24.58 4.11 0.1672	24.50 5.62 0.2294	24.92 3.66 0.1469	24.83 5.70 0.2295	Run time (hrs): DO change (mg/L): DO change (mg/L/hr):	26.42 0.03 0.0011	26.50 9.35 0.3528	26.33 5.30 0.2013	26.25 9.45 0.3600	26.25 9.41 0.3585
Mean depth (m): Volume (L):		0.1138	0.1496	0.1529 14.30	0.1642	Mean depth (m): Volume (L):		0.1038 9.70	0.1067 9.97	0.1308	0.1292 12.08
SOD rate (g/m2/day):		0.456	0.824	0.539	0.904	SOD rate (g/m2/day):		*0.876	0.512	1.127	1.109
Epi Chloro (mg/m2): Suspected leakage in	Epi Chloro (mg/m2): 5upbected (eakage in chamber #12, possibly #9. (Will check at lab)	72.36 72.36 (Will check at	157.451 (lab)	138.51	127.033	Epi Chloro (mg/m2):		449.475	548.8	600.794	470.321
SITE: GPS: DATES:	ATHABASCA 2 KM D/S McLEOD (Ice Free) N 54 09'42' W 115 40'33' Feb 7.8, 1995	D/S McLEOD (Ice I 5 40' 33*	Free)			SITE: GPS: DATES:	ATHABASCA 3 KM D/S McLEOD N 54 09' 95" W 115 40' 02" Oct 20-21, 1994	A D/S McLEOD 5 40' 02"			
Ambient DO (mg/L):	8.99 Control					Ambient DO (mg/L):	12.47 Control				
Chamber #: Install Date Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 reg'd:	4 2/7/95 9:30 2/8/95 8:35 8.99	13 2/7/95 9:20 2/8/95 8:20 3,44 14	7 2/7/95 9:20 2/8/95 8:25 15.5 15.5	8 2/7/95 9:25 2/8/95 8:30 0.84 13	5 2/7/95 9:25 2/8/95 8:30 4.73 12 5	Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	1 10/20/94 12:35 10/21/94 13:05 12.19	10/20/94 11:10 10/21/94 12:20 11.16 11.18	4 10/20/94 11:37 10/21/94 12:40 11.4 15	13 10/20/94 12:00 10/21/94 12:50 11.08 17.5	3 10/20/94 12:15 10/21/94 13:00 11.06 11.06
		2221	14.5 15 12.5	14.5 13.5 13	13.5			22.5 20 18	22.6 23 18	18.1	17.3
		11	13.5 13.5 13	11 14.5 13.5	13.5 13.5 15.5			11.5	20	19.3 17.3 21.8	9 9 F
		14 17 15	17.5 15.5 13.5	14 19.5 13.5 15	17.5 18 11 12			13.5 20 23.5 25.5	20.1 20.1 18.4	14.9 19 19.5 18	20 16.4 20.6
Run time (hrs): DO change (mg/L): DO change (mg/L/hr):	23.08 0.00	23.00 5.55 0.2413	23.08 6.32 0.2738	23.08 8.15 0.3531	23.08 4.26 0.1845	Run time (hrs): DO change (mg/L): DO change (mg/L/hr):	24.50 0.28 0.01	25.17 1.29 0.05	25.05 1.07 0.04	24.83 1.41 0.06	24.75
Mean depth (m): Volume (L):		0,1438	0.1413	0.1400 13.09	0.1408	Mean depth (m): Volume (L):		0.1954	0.1919	0,1609	0.1849 17.29
SOD rate (g/m2/day):		0.833	•0.928	1.186	0.624	SOD rate (g/m2/day):		0.187	0.144	0.197	0.202
Epi Chioro (mg/m2):	Epi Chłoro (mg/m2):	298.308	538.902	494.614	332.032	Epi Chlaro (mg/m2):		12.4	4.2	11	1.1

SITE: ATHABASCA 3 GPS: N 54 09' 95° W' DATES: Nov 30 - Dec 1,	Ambient DO (mg/L): 12.26 Control	11/30/94 12:5 12/1/94 12:3	Depths (cm) 12 req'd:						Run time (hrs): 23.67	DO change (mg/L/h() 0.0000	Mean depth (m): Volume (L):	SOD rate (g/m2/day):	Epi Chloro (mg/m2):		Ambient DO (mg/L): 8.73 Control	Chamber #: 4 Install Date/Time: 1/12/95 12:40 Removal Date/Time: 1/13/95 12:05										DO change (mg/L/hr): 0.0000	Mean depth (m): Volume (L):	
ATHABASCA 3 KM D/S McLEOD N 54 09' 95' W115 40' 02' Nov 30 - Dec 1, 1994		13 11/30/94 12:15 12/1/94 11:30 12.07	13.6 15.7 19.6	21.8 19	19.6	20.7	13.2	20.8	37 23.25 0.10	ö	0.1814 16.96	0.036	19	KM D/S McL 115 39' 26"	73	4 7 40 1/12/95 12:20 05 1/13/95 11:30		121	4 C	11.5	6	11.5	12 16.5	H	3.42 23.17	ö	0.1321	990.0
		12 11/30/94 12:25 12/1/94 11:30	24.3 17.9 25	18.8 25.3	23.1	24.3	24	17.3	23.08	0.0152	0.2233 20.87	0.081	19.12			1/12/95 12:25	7.91	10.5	15	11.5	3.5	17.5	15	12.5	33.25	0.0783	0.1204	
		11/30/94 1	24.8 25.5 22.2	23.1	21.8	20.20	22.5	26.6 21.3	23.00	0 0 161	0.2344	0.091	12.09			9 1/12/95 12:30 1/13/95 11:50	8.03	10.5	5	19	1	81	12	17.5	23.33	0.0729	0.1371	0.040
		9 11/30/94 12:50 12/1/94 11:30 11.97	21.4 24.5 19	23.4	20.8	24 18.7	19.4	21.2	22.67 0.29	0.0128	0.2120 19.82	0.065	18.934			3 1/12/95 12:35 1/13/95 12:00	8.23 18	13.5	13.5	15.5	16.5	16.5	20	15	23.42	0.0641	0.1533	
SITE: GPS: DATES:	Ambient DO (mg/L):	Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L):	Depths (cm) 12 req a:						Run time (hrs): DO change (mg/1):	DO change (mg/L/hr)	Mean depth (m): Volume (L):	SOD rate (g/m2/day):	Epi Chloro (mg/m2):	SITE: GPS: DATES:	Ambient DO (mg/L):	Chamber #: Install Date/Time: Removal Date/Time:	Final DO (mg/L): Depths (cm) 12 red'd:								Run time (hrs): DO chance (mc/l)·	DO change (mg/L/hi)	Mean depth (m): Volume (L):	And the following
ATHABASCA 3 KM D/S McLEOD N 54 09' 47" W 115 39' 26' Feb 7-8, 1995	10.41 Control	3 2/7/95 15:20 2/8/95 13:15							21.92	00000				ATHABASCA 3 KM D/S McLEOD N 54 09' 47" W 115 39' 26" Mar 7-9, 1995	10.33 Control	3/7/95 12:50 3/7/95 12:50 3/8/95 15:30	10.33								26.67	0.0000		
D/S McLEOD 39' 26"		2/7/95 15:00 2/8/95 13:10 9.02	1 4 6	14 15.5	13	15.5	16	10.5	22.17 1.39	0.0627	0.1433	0.216	36.524	D/S McLEOD	4	3/7/95 12:35 3/8/95 8:30	9.62	15.5	9	14	13	2 2 3	9.5	14	19.92	0.0356	0.1292	0.111
		12 2/7/95 15:05 2/8/95 13:00 8.7	19.5 19.5	12 15.5	20,5	15.5	13.5	13 12	21.92	0.0780	0.1450 13.56	0.272	41.54			3/7/95 12:40 3/8/95 8:40	9.74 16.5	12	, the second	16	15.5 14.6	17.5	14	15.5	20,00	0.0295	0.1496	0 106
		1 2/7/95 15:10 2/8/95 13:00 8.88	1 8 9	21.5 14	14.5	15.5	18.5	12.5	21.83	0.0792	0.1579	0.300	79.868			3/7/95 12:30 3/8/95 15:00	9.46	11.5	1	14	11.5	13.5	12.5	13	26.50	0.0328	0.1258	0.099
		2/7/95 15:15 2/8/95 13:05 2/8/95 13:05 9.37	12.5	13.5	15.0	16.5	13.5	15 12.5	21.83	0.0476	0.1433	0.164	95.329			3/7/95 12:45 3/8/95 15:15	8.34 11.5	14.5	i – 1		6	0	6.11 11	#	1 99	0.0751	0.1317	0.237

		11 12/20/94 11:55 12/21/94 10:45 9.19 17.8	14.8	22.8	14.5	14.8	13.2	16.3	16.5	22.83	0.0543	0.1622 15.16	0.210	49.495			1117/06 14:55	1/19/95 11:00	7.98	11.5	13.5	C.11 2 41	14	13.5	14.5	12	11.5	44.08	1.47	0.0333	0.1333 12.47	0.107	24.488
		4 12/20/94 11:45 12/21/94 10:30 9.54 16.7	13.3	12.7	15.8	14.2	17.8	15	21.3	22.75	0.0391	0.1601 14.97	0.149	59.338		Chamber Leak	8 1/17/05 14:50	1/19/95 11:05	9.48	20	10.5	101	20.5	17.5	41 14	16.5	13.5	44.25	-0.03	-0.0007	0.1479 13.83		28.338
Ш		3 12/20/94 11:40 12/21/94 10:40 9.09 10.2	13 15.8	12.8	18.2	15.3	13.3	14.6	11.8	23.00	0.0583	0.1404	0.195	51.711	w		5 1/17/06 14.45	1/19/95 10:50	8.02	14	15.5	16.5	16.5	12.5	12	17	16.5	44.08	1.43	0.0324	0.1500 14.03	0.117	60.008
.UE RIDGE BRIDG 23' 24"		1 12/20/94 11:50 12/21/94 10:35 9.58 14.5	17.3	14.8	14.5	13.5	15	14	17.9	22.75	0.0374	0.1499 14.02	0.133	68.31	.UE RIDGE BRIDG 23' 24"		9 1/17/05 14:40	1/19/95 10:45	15.5	19.5	13.5	15	13	14.5	15	14.5	13.5	44.08	1.25	0.0284	0.1479 13.83	0.101	52.675
ATHABASCA AT BLUE RIDGE BRIDGE N 54 09' 29' W 115 23' 24" Dec 20-21, 1994	10.43 Control	8 12/20/94 12:00 12/21/94 11:55 10.42								23.92	0.0004				ATHABASCA AT BLUE RIDGE BRIDGE N 54 09' 29" W 115 23' 24" Jan 17-19, 1995	9.45 Control	11 117/05 15:00	1/19/95 11:05	9.45						•			44.08	0.00	0.0000			
SITE: GPS: DATES:	Ambient DO (mg/L):	Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 red'd:								Run time (hrs): DO change (mo/l):	DO change (mg/L/hr):	Mean depth (m): Volume (L):	SOD rate (g/m2/day):	Epi Chloro (mg/m2):	SITE: GPS: DATES:	Ambient DO (mg/L):	Chamber #:	Removal Date/Time:	Final DO (mg/L): Depths (cm) 12 ren'd:									Run time (hrs):	DO change (mg/L):	DO change (mg/L/hr):	Mean depth (m): Volume (L):	SOD rate (g/m2/day):	Epi Chloro (mg/m2):
					10 (0.10	10 1	0 4	5	8 6	, o						3	55	36	3	2 0	ρα	16	2	0. 1.	3		_		_	e -	0	<u> </u>
		5 3/7/95 12:40 3/9/95 9:15 8.29 12.5	13	19.5	12.	16.5	19.	41	16.5	44.58	0.0460	0.1529	0.169	119.813			30/06/04 12:25	10/27/94 14:25	11.36	20.3	CN C	22.0 18.8	-	22.7	16.7	22.3	22.8	24.83	0.78	0.03	0.2043	0.150	42.4
		3/7/95 1 3/9/95		17 19.5		16.1			-	32.92 44.5 1 60 2 0	0.0	0.1450 0.152 13.56 14.30	0.169 0.16	35.84 119.81					11.4 11.3	Ñ				15.5 22			17.4 22.8	24.33 24.83		0.03 0.03	0.2020 0.204 19.1	0.144 0.15	69.4 42.4
		3/7/95 1 3/9/95	18.5 10.5		13	6.21 16	15.5	10.0	14.5		0.0486 0.	0			u		10106/04 13:30	13:35 10/27/94 13:50	11.4	22.4 2	18.4		21	15.5	22	17			0.74		2020 0.		
J/S McLEOD 39' 26'		9 8 8 212:45 3/7/95 12:35 3/7/95 1 21:45 3/8/95 21:30 3/9/95 9.37 8.74 3/9/95 1 10.5 15.5	11 18.5 11.5 10.5	175	11 13	12.5 12.5 12.5 16	14.5 15.5	10.0	12.5 14.5 1	32.92 1 60	0.0411 0.0486 0.0	0.1450 0 13.56	0.169	35.84	ue ridge bridge 40'02'		10 10/06/04 13:30 10/06/04 13:30	10/27/94 13:35 10/27/94 13:50	11.4	21 22.4 2	23.5 18.4	19.5	20.2 21	15.5	18 22	21 17	22.7 17.4	24.33	0.54 0.74	0.03	0.2020 0	0.144	69.4
ATHABASCA 3 KM D/S McLEOD N 54 09' 47" W 115 39' 26' Mar 7-9,1995	10.34 Control	12 1 9 8 8 8 17/95 12:30 377/95 12:45 377/95 12:35 377/95 1 9:20 377/95 21:45 377/95 12:45 317/95 12:30 3/9/95 0.34 9.9 9.97 0.74 0.79 10.5 10.5 15.5	11 18.5 11.5 10.5	11.5 17 13 17.5	11 13	12.5 12.5 12.5 16	14.5 15.5	12.5 10.	12.5 14.5 1	9.00 32.92 0.37 1.60	0.0476 0.0411 0.0486 0.	0.1229 0.1450 0 11.49 13.56	0.121 0.169	28.38 35.84	ATHABASCA AT BLUE RIDGE BRIDGE N 54 09' 95' W 115 40' 02' Oci 26-27, 1994	12.14 Control	4 13 10 10 10 10 10 10 10 10 10 10 10 10 10	10/27/94 14:10 10/27/94 13:35 10/27/94 13:50	11.6 11.4 23 22	21 22.4 2	23.5 18.4	22.2 23.5 23.5	20.2 21	20 15.5	18 22	21 17	20.3 22.7 23.5 17.4	24.25 24.33	0.75 0.54 0.74	0.02 0.03	0.2157 0.2020 0. 20.16 18.89	0.111 0.144	27.8 69.4

Ambient DO (mg/L): Control 5 29955 (2:05) 29955 (1:45) Final DO (mg/L): 2/3955 (2:05) 2/3955 (2:05) 2/3955 (2:05) 2/3955 (2:05) 2/3 Removal Date/Time: 2/3955 (2:05) 2/3955 (2:05) 2/3955 (2:05) 2/3 11 Final DO (mg/L): 2/3955 (2:05) 2/3955 (2:05) 2/3955 (2:05) 2/3 11 Final DO (mg/L): 2/315 11 <	13 2/8/95 11:50			DATES:	Jan 17-18, 1995				
ii C C C				Ambient DO (mg/L):	9.2 Control				
τ̈́ c c τ		8	4	Chamber #:	7	13	3	12	4 147/06 11-10
τ̈́ c c τ		2/8/95 12:35	2/9/95 12:35	Install Date/Time: Removal Date/Time:	1/18/95 10:05	1/18/95 9:50	1/18/95 9:45	00:01 26/81/1	1/18/95 9:55
		8.91	9.12	Final DO (mg/L):	9.1	8,23	7.86	7.86	
me (hirs): ange (mg/L/hr); ange (mg/L/hr); ale (g/mg/day); ale (g/mg/L); s (mg/L); s (cm) 12 red d: s (cm) 12 red d: s (cm) 12 red d:	-	13.5	14.5	Depths (cm) 12 req'd:		12.5	13	13.5	
me (hrs); ange (mg/L); ange (mg/L)r); e (h); e (h); hioro (mg/L); ber #: ber #: Daterfime; vel Daterfime; s (cm) 12 red d: s (cm) 12 red d: ber #:	11 13	13	16.5			13.5	51	7	
me (htrs): aange (mg/L)tr); depth (m): e (L): alle (g/m2/day); hiloro (mg/L); ber #: ber #: Dater (fime) to (mg/L); is (cm) 12 req d: is (cm) 12 req d:		12	4			N		4 4	
me (his): ange (mg/Lhir): depth (m): e (L): e (L): s (L): hitoro (mg/L): s (mg/L): s (cm) 12 ieq'd: ber #: Cama (ms/L): s (cm) 12 ieq'd: s (cm) 12 ieq'd:	11 11	0.01	0.11			1	13	16	
me (hrs): ange (mg/L/hr); ange (mg/L/hr); e (L): e (L): s (cm/hr2); s (cm/h2); s (cm/h2)		13.5	202			t ₽	18.5	12.5	
me (hrs); ange (mg/L/hr); ange (mg/L/hr); depth (m): ale (g/m2/day); ale (g/m2/day); s (m/L); s (m/L); ber #: ber #: s (cm) 12 req d: s (cm) 12 req d:		15	16.5			12	13.5	11	
me (hrs): ange (mg/L)t depth (m): ie (L): ie (L): ie (L): in DO (mg/L): s (m) 12 req d: s (cm) 12 req d: s (cm) 12 req d:		16.5	18			10.5	6	11.5	
me (hrs): ange (mg/L); ange (mg/L); e (L): e (L): hioro (mp/m2); s (mg/L); ber #: Date/fime: vel Date/fime: s (cm) 12 red/d: s (cm) 12 red/d: ber #:		15	17			=	10.5	14	
me (hirs): ange (mg/L)rir); depth (m): e (L): all (g/m2/day); hioro (mp/m2); s (m/L): ber #: ber #: Came (mg/L); is (cm) 12 req d: is (cm) 12 req d: anne (hirs);	16 13.5	15.5	Ħ			13.5	8.5	9.71	
me (hrs): ange (mg/L)r/); ange (mg/L)r/); e (L): alle (g/m2/day); alle (g/m2/day); s (m/)12: s (m/)12: leq d: s (cm) 12: leq d: s (cm) 12: leq d: s (cm) 12: leq d:		18.5	13.5				N. C.	0.21	
me (hts); ange (mg/L/ht); ange (mg/L/ht); ale (J/m2/day); ale (J/m2/day); s (m/ht); s (m/ht); s (cm) 12 req (d: s (cm) 1	15 13	11.5	13.5			011	6.01	0'21	
ange (mg/L/hr); ange (mg/L/hr); ale (J.): ale (J.): S. S. S. Dane/Time: val Date/Time: val Date/Time: s (cm) 12 red d: s (cm) 12 red d:	1.58 24.67	24.58	24.58	Run time (hrs):	22,83	22.83	22.58	22.92	
ange (mg/L/m); depth (m); e (L); alle (p/m2/day); hioro (mp/L); and DO (mg/L); ber fr: Laterfirme; val Daterfirme; val Daterfirme; s (cm) 12 reqd; s (cm) 12 reqd;		1.15	0.94	DO change (mg/L):	0,10	0.97	46.1	1.34	
depth (m): alle (p/m2/day); alle (p/m2/cay); sint DO (mp/L); ber #: Date/fime: val Date/fime: val Date/fime; s (cm) 12 req d: s (cm) 12 req d:	0	0.0468	0,0382	DO change (mg/L/hr)	0.0044	0.0425	0.0593	0.0585	
e (L): alle (y/m2/day) hioro (mp/m2): and DO (mp/L): ber #: Date/filme: value (ms/L): s (cm) 12 req d: s (cm) 12 req d:	271 0.1342	0.1446	0.1521	Mean depth (m):		0.1213	0.1279	0.1404	
ale (g/m2/day); S: S: and DO (mg/L); ber #: Date/fime; val Date/fime; s (cm) 12 req'd: s (cm) 12 req'd: s (cm) 12 req'd:		13.52	14.22	Volume (L):		11.34	11.96	13.13	
nioro (mu/m2); S: ber #: DaterTime: vel DaterTime: s (cm) 12 teq'd: s (cm) 12 teq'd: s (cm) 12 teq'd:	0.110 0.111	0.162	0.140	SOD rate (g/m2/day):		0.111	0.169	0.182	
s: S: Der #: Date filme: val Date filme: val Date filme: s (cm) 12 req d: s (cm) 12 req d: s (cm) 12 req d:		Contract of the second s					1000		
S: and DO (mg/L); ber #: Date/fime: val Date/fime: com/12: leq/d: s (cm) 12: leq/d: s (cm) 12: leq/d: s (cm) 12: leq/d:	331 10.663	44.205	60.278	Epi Chloro (mg/m2):		19.908	9.201	43,388	
10.31 Control 12 12/19/94 15:55 12/19/94 1 12/20/94 13:50 12/20/94 1 10.31 21.92 2	INIBOINE			SITE: GPS: DATES:	ATHABASCA NEAR FORT ASSIMIBOINE N 54 19'57" W 115 46' 14" Fab 9-10, 1995	R FORT ASSINIBO 5 46' 14"	INE		
12/19/94 15:55 12/19/94 1 12/20/94 13:50 12/20/94 1 10.31 10.31 2/20/94 1 21.92 2				Ambient DO (mg/L):	9,66 Control				
12/19/94 15:55 12/19/94 1 12/20/94 15:50 12/20/94 1 10.31 10.31 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 20 21.90 20 21.90 20 20 20 20 20 20 20 20 20 20 20 20 20	7 9	5	13	Chamber #:	12	11	3		
12/20194 13:50 12/20194 1 10:31 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.93 22.93 22.93 22.93 20.9			12/19/94 15:50	Install Date/Time:	2/9/95 11:30	2/9/95 11:20	2/9/95 11:20	2/9/95 11:25	2/9/95 11:25
10.01 29.15 0.00	12/20/94 1	12/20/94 13:35	12/20/94 13:40	Removal Date/Time:	2/10/95 11:00	2/10/95 10:30	2/10/95 10:50	2/10/95 10:35	2/10/95 10:40
21.92 0.00 2	9.26 8.96	9"02	8.97	Final DO (mg/L):	8748	0.62	8	8.94	
21.92 0.00		18	16.2	Depths (cm) 12 req'd:		11.5	14.5	9.6	
21.92		19,5	14			14	15.5	14.5	
21.92 0.00		16.7	15.3			13.5	16	12	
21.92 21.92	12 13	20.7	16.8			12.5	14	12	
21.92		16.3	12			13.5	14.5	16.5	
21.92 0.00		185	13.8			13.5	16.5	13	
21.92 0.00		14.6	16			11.5	12.5	16.5	
21.92	141	1R.O	15.1			13.5	18	14.5	
21.92 0.00		17	12.0			13.5	13	12.5	
21.92	10.1	13				12.5	10	17.5	
21.92		145				15.5	14	12.5	
21.92		0.01	0			11.5	11.5	18.5	
21.92			2						
000	21.50 21.83	22.08	21.83	Run time (hrs):	23.50	23.17	23.50	23.17	
22.5		1 26	1.34	DO change (mg/L):	0.18	0.84	0.76	0.72	
(): O.	M79 0.0618	0.0571	0.0614	DO change (mg/L/hr)	0.0077	0.0363	0.0323	0.0311	
Mean depth (m): 0.1479	479 0.1621	0.1658	0.1518	Mean depth (m):		0.1304	0.1417	0.1413	
	13,83 15.15	15.50	14.20	Volume (L):		12.19	13.25	13.21	
SOD rate (g/m2/day)	0.170 0.241	0.227	0.224	SOD rate (g/m2/day)		0.090	0.084	0.079	
7-1 Oktoor (1-1-0)	741 110 000	120 455	133 376	Enl Chloro (mo/m2)		143.385	43.304	77.678	

SITE: GPS: DATES:	ATHABASCA AT CHISHOLM N 54 54'50" W 114 11'26' Mar 14-15,1995	HISHOLM 111'26'				SITE: GPS: DATES:	ATHABASCA U/S SMITH N 54 43' 21" W 113 16' 57' Feb 14-15, 1995	3MITH 3 16' 57'			
Amble.nf DO (mg/L): Chamber #: Instal Date/Time: Removal Date/Time: Final DO (ng/L): Depths (cm) 12 reg/d:	9.08 Control 5 3/15/95 10:05 3/15/95 10:05 9.08	3/14/95 10.30 3/15/95 10.30 3/15/95 10.05 14 12.5 12.5 12.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 11.5 11	3/14/05 10:35 3/15/05 10:35 8.55 8.55 8.5 11.5 11.5 11.5 11.5 11.5	3/14/95 10:40 3/15/95 9:55 3/15/95 9:55 12:5 10:5 11:5 11:5 11:5 11:5 11:5 11:5 11	3/14/95 10:45 3/15/95 9:50 3/15/95 9:50 11:5 11:5 11:5 11:5 11:5 11:5 11:5 1	Ambiant DO (mg/L): Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req d: Depths (cm) 22 req d:	7.9 Control 2/14/95 12:05 2/15/95 13:40 7.9	2/14/95 12:00 2/15/95 13:15 6.15 14.5 10.5 9.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17	2/14/95 12:00 2/15/95 13:25 5.92 13:5 13:5 13:5 13:5 13:5 13:5 13:5 13:5	2/14/95 12:05 2/15/95 13:25 6.32 14.5 14.5 15.5 15.5 15.5 15.5 15.5 15.5	2/14/95 12:05 2/15/95 12:05 6.33 13.5 14.5 14.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12
Run time (hrs): DO change (mg/L)n; DO change (mg/L/hr): Mean depth (m): Volume (L):	23.25 0.00 0.0000	23.58 0.42 0.0178 0.1379 12.90	23.42 0.49 0.0209 0.1183 11.06	23.25 0.30 0.0129 0.11208 11.30	23.08 0.40 0.0173 0.0173 11.38	Run time (hrs): DO change (mg/L): DO change (mg/Lhr): Mean depth (m): Volume (L):	25.58 0.00 0.0000	25.25 1.75 0.0693 0.1350 12.62	25.42 1.98 0.0779 0.1400 13.09	25.33 1.58 0.0624 0.1504 14.06	25.42 1.57 0.0618 0.1346 12.58
SOU rate (g/m2/day): Epi Chloro (mg/m2):		0.059	0.059	20.2	0.051 56.76	SOU rate (g/m2/day): Epi Chloro (mg/m2):		0.225 6.482	0.262 38.162	0.225	0.200 29.105
SITE: GPS: DATES: Ambient DO (mg/L):	ATHABASCA U/S SMITH N 54 43' 21' W 113 16' 57' Jan 23-24, 1995 7.59	MITH 3 16' 57"				SITE: GPS: DATES: Ambient DO (mg/L):	ATHABASCA U/S SMITH N 54 43' 21" W 113 16' 57" Mar 14-15, 1995 8.3	SMITH 3 16' 57"			
Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	Control 1 1/23/95 16:00 1/24/95 15:30 7.57	1/23/95 15:40 1/24/95 15:00 1/24/95 15:00 12.5 12.5 12.5 10.5 11.5 11.5 11.5 11.5 11.5 11.5 12.5 12	7 1/23/95 15:45 1/24/95 15:10 5.63 14.5 14.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	1/23/95 15:50 1/24/95 15:15 6.04 17.5 17.5 12.5 12.5 12.5 12.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	1/23/95 15:55 1/24/95 15:25 6.02 12:5 13:5 15:5 15:5 15:5 11:5 11:5 13:5 13	Chamber #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd: Depths (cm) 12 req'd:	Control 1 3/15/95 12:25 3/15/95 11:25 8.3	3/14/95 12:25 3/15/95 11:25 7.39 13:5 14:5 14:5 13:5 14:5 15:5 15:5 14:5 15:5 15:5 15:5 15	3/14/95 12:00 3/15/95 12:00 7.69 15 15 14.5 11.5 11.5 11.5 11.5 11.5 11.	3/15/95 12:20 3/15/95 12:20 7 20.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	3/14/95 12:15 3/15/95 12:15 7.28 12:5 12:5 13:5 13:5 13:5 13:5 13:5 11:5 11:5
Run time (hrs): DO change (mg/L): DO change (mg/L/hr):	23.50 0.02 0.0009	23.33 2.99 0.1281	23.42 1.96 0.0837	23.42 1.55 0.0662	23.50 1,57 0,0668	Run time (hrs): DO change (mg/L): DO change (mg/L/h [*]):	23.00 0.00 0.0000	23.00 0.91 0.0396	23.00 0.61 0.0265	23.00 1.30 0.0565	23.00 1.07 0.0465
Mean depth (m): Volume (L):		0.1183	0.1500	0.1413	0.1417 13.25	Mean depth (m): Volume (L):		0.1400	0.1296 12.12	0.1429	0.1192
SOD rate (g/m2/day): Epi Chloro (mg/m2):		0.362	0.298	0.222	0.224	SOD rate (g/m2/day): Epi Chloro (mg/m2):		0.133	0.082	0.194	0,133 11,408


DATES:	N 54 43' U2' W 113 17' 21' Jan 24-25, 1995	17 11				DATES:	Mar 16-17, 1995	Mar 16-17, 1995			
Ambient DO (mg/L):	8.6 Control					Ambient DO (mg/L):	9.18 Control				
Chambar #.	Control	13	æ		5	Chamber #:	13	6	4	7	
Install Date/Time:	1/24/95 13:25	1/24/95 13:05	1/24/95 13:10	1/24/95 13:15	1/24/95 13:20	Install Date/Time:	3/16/95 12:00	3/16/95 11:45	3/16/95 11:50	3/16/95 11:45	3/16/95 11:50
Removal Date/Time:	1/25/95 15:05	1/25/95 14:40	1/25/95 14:50	1/25/95 14:55	1/25/95 15:00	Removal Date/Time:	3/17/95 11:20	3/17/95 11:00	3/17/95 11:10	3/17/95 11:05	3/17/95 11:
Final DO (mg/L):	8.6	17.1	7.45	11.7	7.56	Final DO (mg/L):	9.18	8.06	8.05	8.21	1.0
Depths (cm) 12 req'd:		1	11	13.5	2.71	Depuis (ciii) 12 red u.		11.5	11.5	13	17
		18.5	13	14	15.5			11.5	12	13.5	1
		16	15.5	12.5	17.5			10	9.5	12.5	12.5
		16	15.5	13.5	12.5			18	12.5	14.5	
		17	16	13.5	13.5			15	12	14.5	-
		17	14.5	13	15.5			0.11	13.5	31	
		9.71	0.11	0.01	41			201		195	
		31	18.5	14	15			10.5	14.5	10.5	9.5
		16.5	17.5	12.5	14.5			11	10	19	
		14.5	18	13	12.5			16	14.5	11	11.5
Constinue (head)	75.67	26 58	25.67	25.67	25.67	Run time (hrs):	23.33	23.25	23.33	23.33	23.42
Hun time (nrs): DO change (mg/L):		0.89	1.15	1.49	1.04	DO change (mg/L):	00.00	1.12	1.13	0.97	1.08
DO change (mg/L/hr):	0.0000	0.0348	0.0448	0.0581	0.0405	DO change (mg/L/hr):	0.0000	0.0482	0.0484	0.0416	0.0461
Mean depth (m):		0.1604	0.1613	0.1308	0.1492	Mean depth (m):		0.1250	0.1229	0.1425	0.1288
Volume (L):		15.00	15.08	12.23	CR.51	Volume (L):		60.11	Ct.11	20.01	2
SOD rate (g/m2/day):		0.134	0.173	0.182	0.145	SOD rate (g/m2/day):		0.145	0.143	0.142	0.143
Eni Chloro (mo/m2).		8.202	50.811	26.087	5.587	Epi Chloro (mg/m2):		10.313	36.585	60.631	97.082
SITE: GPS: DATES:	ATHABASCA AT TOWN OF ATHABASCA N 54 43' 02' W 113 17' 21" Feb 15-16, 1995	WN OF ATHABA				SITE: GPS: DATES:	ATHABASCA U/S CALLING RIVER N 55 05 40° W 112 52' 85° Jan 30-31, 1995	ALLING RIVER 2 52' 85"			
Ambient DO (mg/L):	8.3 Control					Ambient DO (mg/L):	8.34 Control				
Chamber #	3	5	11	12	13	Chamber #:	13	4	6	7	
Criamoer #: Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	2/15/95 11:20 2/16/95 15:40 8.3	2/15/95 11:10 2/16/95 15:15 7.25 11.5	2/15/95 11:15 2/16/95 15:25 6.92 15.5	2/15/95 11:15 2/16/95 15:30 7.32 13.5	2/15/95 11:10 2/16/95 15:35 7.12 13.5	Install Date/Time: Removal Date/Time: Final DO (mg/L): Depths (cm) 12 req'd:	1/30/95 15:20 1/31/95 13:55 8.32	1/30/95 15:00 1/31/95 13:30 7.68	1/30/95 15:05 1/31/95 13:45 7.68 15.5	1/30/95 15:10 1/31/95 13:40 7.59 13.5	1/30/95 15:15 1/31/95 13:20 7.71 17
		10.5	15.5	15	13.5			12.5	13.5	16	
		16	11.5	13	13			12.5	12	16	
		14.5	15	13	17			15	13.5	20.5	
		15	15	15	14			10.5	14.5	15.5	11.5
		15.5	15.5	16	13			16	18	14	
		14	15.5	14.5	15			14	6.11 01	14	C.21
		14	12	16	24			0.2	115	2115	
		12.5	14.5	15.5	15			11 12	41	17.5	11.5
	66 60	00 00	70 17	30.90	CA RC	Run time (hrs).	22.58	22.50	22.67	22.50	22.08
Run time (hrs):	28.33	1 05	1.38	0.98	1.18	DO change (mo/L):	0.02	0.66	0.66	0.75	0.63
DO change (mg/L/hr):	0	0.0374	0.0490	0.0347	0.0415	DO change (mg/L/hr):	0.0009	0.0293	0.0291	0.0333	0.0285
Mean depth (m): Volume (L):		0.1421 13.28	0.1433	0.1496 13.99	0.1529	Mean depth (m): Volume (L):		0.1288 12.04	0.1438	0.1550	0.1379 12.90
SOD rate (g/m2/day):		0.127	0.169	0.125	0.152	SOD rate (g/m2/day):		0.088	0,097	0.121	160'0
Tel Philase Include		44.422	95.41	17 769	5.674	Epi Chloro (ma/m2):		16.981	35,468	33.7	11.299
EDI Chloro (ma/m2):		224.44	14.02	201-11	100	-handling and and		· · · · · · · · · · · · · · · · · · ·	100.000		

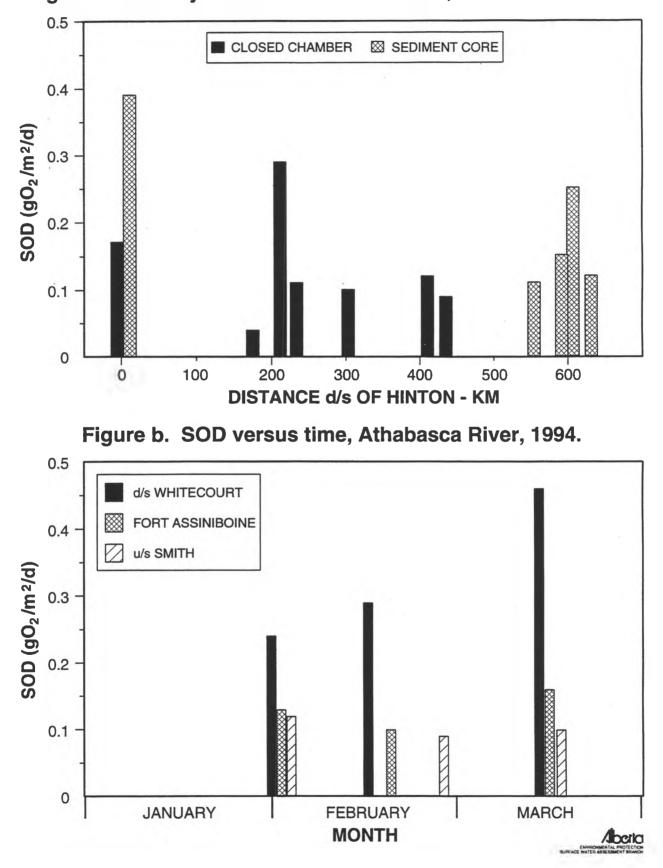
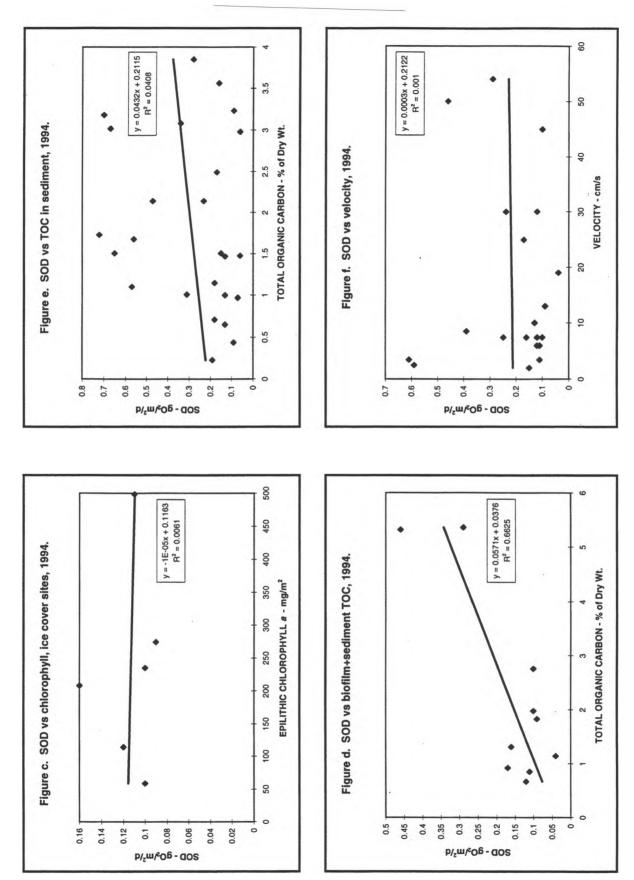
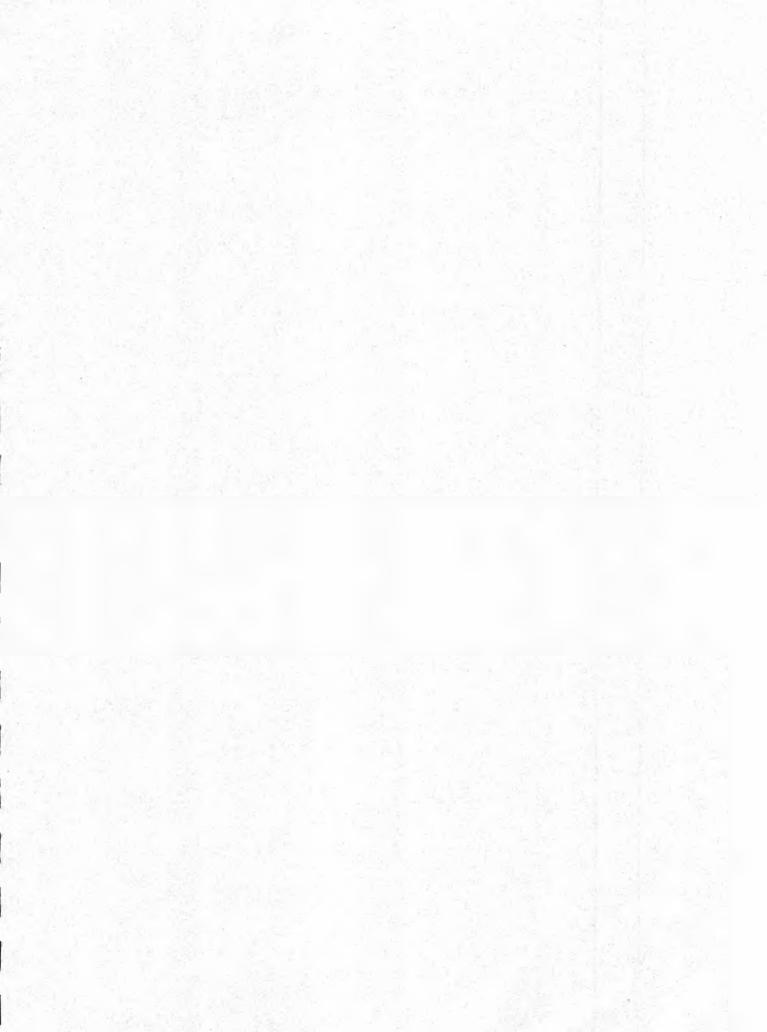
#21 Ambient DO (mg/L) %6 Control 2/16995 12:0 2/16995 12:0 2/16995 12:0 2/16995 12:0 2/1795 12:0 3/1595 15:00 </th <th>UALES: LA</th> <th>COC1 11-01 00 1</th> <th></th>	UALES: LA	COC1 11-01 00 1										
2/1695 1:1 7 8 9 Chamber 1:: 5 7/1695 1:3 5 7/1695 1:3 5 7/1695 1:3 5 7/1695 1:3 5 7/1695 1:3 5 7/1695 1:3	Ambient DO (mg/L);						Ambient DO (mg/L):					
2/1695 13:10 2/1695 13:00 2/1695 13:00 2/1695 13:00 2/1695 13:00 3/1595 15:00<	Chamber #:	4	1	1	8	6	Chamber #:	5	11	8	12	
me. 217/365 12:25 217/365 12:00 217/365 12:00 217/365 12:00 217/365 12:00 217/365 12:00 217/365 12:00 217/365 12:00 21/365 13:50 21/36 13:50 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 21/365 13:55 <td>Install Date/Time.</td> <td>2/16/95 13:10</td> <td>2/16/95 12:45</td> <td>2/16/95 13:00</td> <td>2/16/95 12:50</td> <td>2/16/95 12:55</td> <td>Install Date/Time:</td> <td>3/15/95 16:00</td> <td>3/15/95 15:40</td> <td>3/15/95 15:45</td> <td>3/15/95 15:50</td> <td>3/15/95 15:55</td>	Install Date/Time.	2/16/95 13:10	2/16/95 12:45	2/16/95 13:00	2/16/95 12:50	2/16/95 12:55	Install Date/Time:	3/15/95 16:00	3/15/95 15:40	3/15/95 15:45	3/15/95 15:50	3/15/95 15:55
edd: 6.21 7.46 7.3 7.45 7.32 Final DO (mgV) 9.56 9.13 15 10.5 10.5 14.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	Removal Date/Time:	2/17/95 12:25	2/17/95 12:10	2/17/95 12:05	2/17/95 12:15	2/17/95 12:20	Removal Date/Time:	3/16/95 14:00		3/16/95 13:45	3/16/95 13:50	3/16/95 14:00
eqd: 16.5 9.5 14 9.5 14 9.5 13.5 17.5 15 10.5 10.5 13.5 13.5 13.5 13.5 13.5 17.5 10.5 13.5 13.5 13.5 13.5 13.5 13.5 15.5 13.5 13.5 13.5 13.5 13.5 15.5 13.5 13.5 13.5 12.5 15.5 13.5 13.5 13.5 13.5 15.5 13.5 13.5 13.5 11.5 11.5 11.5 12.5 13.5 11.5 12.5 13.5 13.5 13.5 11.5 11.5 12.5 13.5 13.5 11.5 11.5 12.5 13.5 13.5 11.5 12.5 13.5 13.5 13.5 11.5 12.5 13.5 13.5 13.5 11.6 13.5 13.5 13.5 13.5 11.5 12.5 13.5 13.5 13.5 11.5 12.5 13.5 13.5 13.5 11.5 13.5 13.5 13.5 13.5 11.5 13.5 0.32.5 0.33.6 <	Final DO (moll.):	8.21	7.46	7.3	7.45	7.32	Final DO (ma/L):	9,56	9.13	9.1	88.8	8.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Depths fem) 12 reg'd:		16.5	9.5	14	9.5	Depths (pm) 12 req'd:		11.5	11.5	10	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			15	10.5	13.5	17.58			13	11.5	16	11
175 105 115 115 115 115 115 105 113 115 115 115 115 115 115 115 115 115 115 115 125 115 115 115 125 125 135 112 115 125 125 125 112 125 125 125 125 115 125 125 125 125 115 125 125 125 125 115 125 125 125 125 115 125 125 125 125 115 125 125 125 125 115 125 125 125 125 115 125 125 125 125 115 125 135 0.000 0.000 0.000 0.0320 0.0325 0.0304 0.0325 0.0304 0.0212 0 12.05 12.19 12.19 12.19 12.19 12.16 0.1454 12.05 12.35 0.1304 0.0018 0.0212 0 0 12.05 12.39 12.19 </td <td></td> <td></td> <td>15</td> <td>16.5</td> <td>14.5</td> <td>115</td> <td></td> <td></td> <td>16.5</td> <td>12</td> <td>13</td> <td>8.5</td>			15	16.5	14.5	115			16.5	12	13	8.5
105 14 11 145 135 155 155 135 135 155 155 135 135 155 135 135 135 155 135 135 125 115 115 125 12 10 125 125 13 8.5 115 125 14 14.5 115 125 115 125 125 125 115 125 135 125 115 125 135 125 115 125 135 135 115 125 135 135 115 125 135 135 115 125 135 135 115 125 135 135 115 125 135 135 0000 0.0320 0.0394 0.0325 0.040 0.1355 0.1304 0.0500 0.1304 0.041 12.19 12.19 12.19 12.19 14164 12.15 12.19 12.19 12.19 12.16			17.5	10.5	13	11.5			14	12.5	11	13
135 15.5 15.5 13.5 15.5 13.5 11.5 11.5 11.5 10.5 13.5 13.5 12.5 13.5 13.5 13.5 13.5 13 9.5 11.5 12.5 13.5 14.5 11.5 12.5 12.5 17 15.5 13.5 12.5 13.5 13.5 16 12.5 13.5 12.5 13.5 16 14.5 11.5 12.5 17 17 13.5 13.5 12.5 13.5 16 14.5 11.5 12.5 13.5 17 14.5 11.5 12.5 13.5 16 14.5 11.5 12.5 13.5 0.00 0.75 0.91 0.76 0.03 0.000 0.0320 0.0304 0.0325 0.0304 0.0212 0.47 0.100 0.0325 0.1325 0.1304 Mean depth (m) 0.0145 0.1454 12.66 11.73 12.39 12.19 12.19 12.19 0.1454 12.66 11.73 12.39 12.19 10.1454 0.1454 12.66 11.73 12.39			10.5	14	14	14.5			13.5	11.5	12.5	14
115 11 115 105 125 165 155 135 12 10 125 135 12 10 125 12 115 12 10 125 115 12 12 12 115 12 12 12 115 12 12 12 115 12 12 12 115 12 12 13 115 12 12 12 115 12 13 12 115 12 13 12 116 12 13 12 117 12 13 12 116 14.5 13 12 117 0.00 0.75 0.030 0.000 0.0320 0.0304 0.0325 0.0030 0.0325 0.1325 0.1324 12.39 12.19 12.19 12.19 12.10 12.19 12.19 12.19 12.10 12.10 12.19 12.16			13.5	15.5	15.5	13.5			12.5	10	14.5	16.5
12.5 16.5 15.5 13.5 13.5 13.5 13 9.5 11.5 12.5 17 12 14 14.5 11.5 12.5 17 15 12.5 17 12 12 16 14.5 11.5 12.5 17 17 14.5 11.5 12.5 13 16 14.5 11.5 12.5 13 17 14.5 11.5 12.5 13 16 14.5 11.5 13.5 13 17 0.00 0.77 0.091 0.78 0.04 0.47 0.000 0.0320 0.0325 0.0394 0.0325 0.0394 0.0212 0 0.1354 0.1325 0.1304 Mean depth (m): 0.0018 0.1454 0 12.55 12.19 Volume (L): 0.016 0.2122 0 12.55 12.19 Volume (L): 0.0018 0.1454 0			11.5		11.5	10.5			14.5	12	12	
13 9.5 11.5 12 12 12 12 10 12.5 17 12 12 11.5 12.5 13 13 13 12 11.5 14.5 11.5 13 13 13 12.5 11.5 13 13 13 15 14.5 11.5 13 13 12 15 23.25 23.42 23.42 23.42 23.42 23.42 0.000 0.75 0.91 0.76 0.89 DO change (mpU) 0.04 0.47 0.000 0.032D 0.0394 0.0325 0.0390 0.0325 0.0390 0.212 0 0.1354 0.1325 0.1304 Mean deplh (m) 0.018 0.1454 0 12.95 12.19 Volume (L) 0.018 0.1454 0			12.5	16.5	15.5	13.5			13.5	H	10.5	13
12 10 12.5 17 12 12 11.5 12.5 15 12.5 15 12.5 14 14.5 11.5 12.5 13 23.25 23.42 23.42 23.42 23.42 23.42 0.00 0.75 0.91 0.76 0.89 DO change (mg/L): 0.04 0.47 0.000 0.0320 0.0394 0.0325 0.0390 DO change (mg/L): 0.0018 0.2212 0 0.1054 0.1325 0.1325 0.1325 0.1324 0.1325 0.1454 0 12.66 11.73 12.39 12.19 12.19 12.19 0.1454 0			13	9.5	11.5	12			10	13	10	20
11.5 12.5 15 12.5 15 12.5 14 14.5 11.5 13 13 14 14.5 11.5 13 15.5 13 13 13 23.25 23.42 23.42 23.42 0.00 0.75 0.91 0.76 0.89 0.000 0.755 0.0394 0.0325 0.0390 0.0000 0.0325 0.0390 DC change (mg/L)r) 0.0018 0.2212 0 0.1354 0.1325 0.1325 0.1326 0.1326 0.1326 0.1454 12.66 11.73 12.39 12.19 12.19 12.19 0.1454			12	10	12.5	17			12	6	11.5	12.5
14 14.5 11.5 13 15.5 15.5 23.25 23.42 23.42 23.42 23.42 23.42 23.42 23.17 0.00 0.75 0.91 0.76 0.393 0.78 0.393 0.79 0.04 0.47 0 0.0000 0.0320 0.0325 0.0386 0.3225 0.0380 0.0212 0.0212 0 0.2712 0 0.1354 0.1325 0.1304 Mean depth (m): 0.018 0.1454 0 0.1454 0 12.54 0.1325 0.1304 Mean depth (m): 0.018 0.1454 0 0.1454 0 12.54 0.1304 Mean depth (m): 12.19 Volume (L): 0.0168 0.1454 0			11.5	12.5	15	12.5			20	11	14	11
23.25 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.41 22.17 22.17 22.17 0.07 0.01 0.07 0.01 0			14	14.5	5.11	13			15.5	8	12	16
0.00 0.75 0.91 0.76 0.89 DC change (mg/L): 0.04 0.47 0.0000 0.0320 0.0394 0.0325 0.0380 DC change (mg/L/hr): 0.0018 0.0212 0.0000 0.1354 0.1325 0.1304 Mean depth (m): 0.0018 0.0212 12.65 11.73 12.39 12.19 Valume (L): 0.1018 0.1454	Bun time (hrs):	23.25	23.42	23.08	23.42	23.42	Run time (hrs):	22.00	22.17	22.00	22.00	22,08
0.0000 0.0320 0.0394 0.0325 0.0380 DO change (mg/L/hr): 0.0018 0.0212 0.1354 0.13254 0.1325 0.1304 Mean depth (m): 0.0018 0.1454 12.89 12.19 Volume (L): 13.60	DO change (molt)	0.00	0.75	0.91	0.76	0.89	DO change (mg/L):	0.04	0.47	0.50	0.72	0.72
0.1254 0.1255 0.1304 Mean depth (m): 0.1454 0.1456 11.73 12.39 12.19 Volume (L): 13.60	DO change (mg/L/hr):	0.0000	0.0320	0.0394	0.0325	0.0380	DO change (mg/L/hr):	0.0018	0.0212	0.0227	0.0327	0.0326
12.66 11.73 12.39 12.19 Volume (L): 13.60	Mean denth (m):		0.1354	0.1254	0.1325	0.1304	Mean depth (m):		0.1454	0.1108	0.1225	0.1367
	Volume (L):		12.66	11.73	12,39	12.19	Volume (L):		13.60	10.36	11.45	12.78
0,104 0,119 0,103 0,119 SOU rate (g/m2/raty):	SOD rate (g/m2/day):		0,104	0.119	0.103	0.119	SOD rate (g/m2/day):		0.068	0.056	0.091	0,101
Epi Chloro (mg/m2): 8.457 23.637 8.644 44.991 Epi Chloro (mg/m2): 34.344 9.208	Epi Chloro (mg/m2):		8.457	23.637	8.644	44.991	Epi Chloro (mg/m2):		34,344	9.208	10.395	2.672

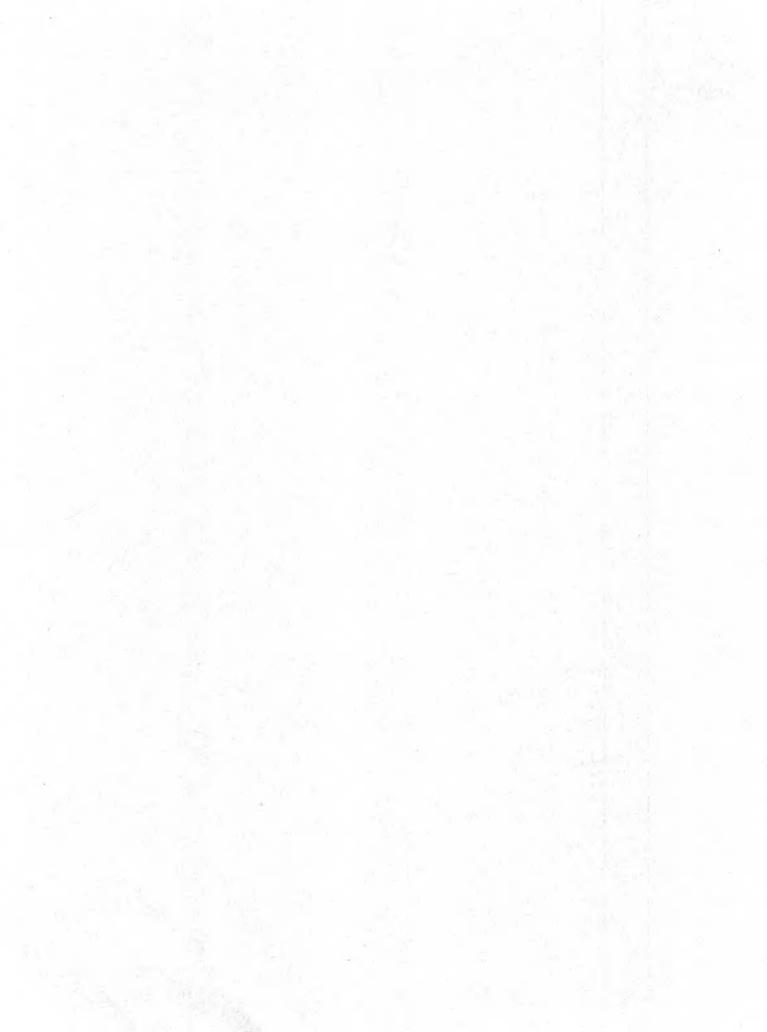
	River
	loleod
	the N
	d/s of
	4 km
	site 3-
	the
SOD.	stalled a
SED S	vere in
RESS	hers v
I EXP	cham
EON	blank
N TIM	2 pue
TION	trate
CUBA	squa
F IN	rs with
CT O	adma
	8 ch
Ë.	1095
CION	Aarch
APPENDIX E. EFFE	On 7 March 1995 B cl
-	1.1

were deployed as normal but sequentially removed at about 9, 20, 27, 32, and 44 hours after installation. The purpose was to check the effect er. The chambers substrate to the point of limiting respiration, and/or that initial set-up agitates things thus inducing a high consumption rate which drops back of 'incubation' length on the O₂ consumption rate (i.e., SOD). The concern is that as incubation continues, DO may be consumed near the after a while. If these things are a problem, the expressed rate of SOD should decrease with increasing incubation time. On 7 March 1995, 8 chambers with substrate and 2 plank cham

The results are tabled and graphed below. SOD did not appear to decrease with increasing incubation time. The slope of the linear regression conditions tested here. Note however, that some rates at the site 2 km d/s of McLeod were so high that DO fell to low levels in the chambers line is not significant (p = 0.34). Thus the normal incubation length of about 24 hours appears to be acceptable, at least for the rates and and very well may have limited the SOD rate. These are indicated in the report text.

APPENDIX F. SOD AND AS								HBT Agra 199
LOCATION	SITE	DATE	CHAMBER		gO₂/m²/d	EPILCHLa	TOC - % c	
			OR CORE #	Mean	Reps	mg/m ²	Biofilm+Sed.	Sediment
linton (d/s Weldwood)	1	15/16-Feb-94	CC 8	0.17	0.3		0.92	
			11		0.08			
			12		0.08			
	2	14/15-Feb-94	SC 2	0.39	0.31			1.01
			3		0.37			
			6		0.48			
Vindfall Bridge	1	17/18-Feb-94	CC 9	0.04	0.02		1.14	
			8		0.03			
			12		0.04			
			7		0.05			
			11		0.05	1		
Vhitecourt (d/s Millar Western)	1	31-Jan/01-Feb-94	CC	0.24	0.1			·
, , , , , , , , , , , , , , , , , , , ,	+				0.21			
					0.25			
					0.25			
					0.39			
· · · ···		40/47 Eab 04	CC 9	0.00		440.075	5.00	
		16/17-Feb-94		0.29	0.08	412.075	5.36	
			11		0.25	258.672		
			7		0.36	396.866		
	+		8		0.46	396.549		
		14/15-Mar-94	CC 7	0.46	0.59	157.181	5.32	
			8		0.55	117.994		
			9		0.33	109.838		
			11		0.42	75.268		
			13		0.4	89.375		
Blue Ridge	1	19/20-Feb-94	CC 7	0.11	0.09	267.335	0.85	
<u>w</u>			8		0.11	448.054		
. =:	1		9		0.12	780.246		
ort Assiniboine	1	02/03-Feb-94	cc	0.13	0.06			
ou Assiliborie	+ '	02/03-1 60-34		0.15	0.07			
	+							
· · · · · · · · · · · · · · · · · · ·					0.11			
					0.2			-
					0.2			
		21/22-Feb-94	CC 7	0.1	0.07	226.44	1.98	
			12		0.08	259.771		
			8		0.1	234.71		
			1?		0.13	217.998		
		15/16-Mar-94	CC 7	0.16	0.16	277.3	1.31	
			8		0.44	235.463		
			9		0.18	190.53		
			11		0.01	148.087		
	<u> </u>	· · · ·	13					
					0.03	189.442		
Chisholm	1	23/24-Feb-94	CC 9	0.12	0.1	139.368	0.67	_
			12		0.12	108.548		
			8		0.14	94.43		
Smith (u/s Lesser Slave River)	1	04/05-Feb-94	CC	0.12	0.05			
					0.12			
			1		0.13			
······					0.14			
······································	1				0.14			
	1	25/26-Feb-94	CC 8	0.09	0.08	187.38	1.83	
	2		12	0.00	0.08	345.834	1.00	
	3		9			289.788		
		17/10 Mar 04		0.4	0.11		0.70	
	1	17/19-Mar-94	CC 7	0.1	0.09	10.552	2.76	
	<u> </u>		8		0.12	75.167		
	ļļ		9		0.15	90.642		
	<u> </u>		11		0.04			
			13		0.12			
mith (d/s Lesser Slave River)	1	27/28-Feb-94	CC 8	0.59	0.65			1.51
	2		CC 11		0.57			1.1
	3		CC 12		0.56			1.68
	4	18/19-Mar-94	SC 1	0.61	0.34			3.08
	+		2		0.67			3.02
			3		0.07			3.18
	+		4		0.72			1.73
thabasea	+	01/02 Ma- 04		0.11				
thabasca	1	01/02-Mar-94	SC 1	0.11	0.18			1.15
			2		0.06		 	1.48
	↓ − ↓		3		0.13	1		1
	ļ		4		0.07	1		0.97
			5		0.13			1.47
IPac (u/s effluent discharge)	1	04/05-Mar-94	SC 1	0.15	0.13			0.65
	2		2		0.18			0.71
	3		3		0.19			0.23
	4		4		0.09			0.44
IPac (d/s effluent discharge)	1	03/04-Mar-94	SC 1	0.25	0.28			3.85
	+	03/04-Mal-94		v.20				
	+		2		0.17			2.49
	++	·····	3		0.47	ļ		2.14
			4		0.23			2.14
			-		0.09			3.23
			5		0.09	L		0.20
alling River	1	06/07-Mar-94	5 SC 1	0.12	0.09		· · · · · · · · · · · · · · · · · · ·	2.98
alling River	1	06/07-Mar-94		0.12				


Figure a. SOD by location in Feb-Mar 1994, Athabasca River.

3 1510 00167 9878

