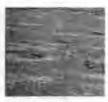
Canada Aberta Northern River Basins Study



NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 32
A GENERAL FISH AND RIVERINE
HABITAT INVENTORY,
ATHABASCA RIVER
APRIL TO MAY, 1992

QL 626.5 .A42 R109 1994

QL/626.5/.A42/R109/1994 A general fish and riverine R L & L Environmental

Date Due			
	,		

Prepared for the Northern River Basins Study under Project 3117-B1

by R.L. & L. Environmental Services Ltd.

Community Contributors: Curtiss Girard, Fort Chipewyan

NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 32 A GENERAL FISH AND RIVERINE HABITAT INVENTORY, ATHABASCA RIVER APRIL TO MAY, 1992

Published by the Northern River Basins Study Edmonton, Alberta April, 1994 ATHABASCA UNIVERSITY

MAR 3 0 1995

LIBRARY

CANADIAN CATALOGUING IN PUBLICATION DATA

Main entry under title:

A General fish and riverine habitat inventory, Athabasca River, April to May, 1992

(Northern River Basins Study project report, ISSN 1192-3571; no. 32) Includes bibliographical references. ISBN 0-662-22040-4 Cat. no. R71-49/3-32E

1. Fishes -- Alberta -- Athabasca River -- Habitat -- Environmental aspects. 2. Fish populations -- Alberta -- Athabasca River. I. R.L. & L. Environmental Services. II. Northern River Basins Study (Canada) III. Series.

QL626.5A42G36 1994 597.09712 C94-980106-2

Copyright (c) 1994 by the Northern River Basins Study. All rights reserved. Permission is granted to reproduce all or any portion of this publication provided the reproduction includes a proper acknowledgement of the Study and a proper credit to the authors. The reproduction must be presented within its proper context and must not be used for profit. The views expressed in this publication are solely those of the authors.

PREFACE:

The Northern River Basins Study was initiated through the "Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies" which was signed September 27, 1991. The purpose of the Study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies.

This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release.

It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material.

This report contains referenced data obtained from sources external to the Northern River Basins Study. Individuals interested in using external data must obtain permission to do so from the donor agency.

NORTHERN RIVER BASINS STUDY PROJECT REPORT RELEASE FORM

This publication may be cited as:

R.L. & L Environmental Services Ltd. 1994. "Northern River Basins Study Project Report No. 32, A General Fish and Riverine Habitat Inventory, Athabasca River, April to May, 1992". Northern River Basins Study, Edmonton, Alberta.

Edmonton, Alberta.	
Whereas the above publication is the result of work Northern River Basins Study and the terms of refere deemed to be fulfilled, IT IS THEREFORE REQUESTED BY THE STUDY OFFICE THAT; this publication be subjected to proper and respons considered for release to the public.	ince for that project are
(Dr. F.J. Wrona, Ph.D., Science Director)	(Date) 94
Whereas it is an explicit term of reference of the Committee "to review, for scientific content, mater the Board", IT IS HERE ADVISED BY THE SCIENCE ADVISORY COMMITTE this publication has been reviewed for scientific c	ial for publication by E THAT;
scientific practices represented in the report are specific purposes of the project and subject to the encountered.	acceptable given the field conditions
SUPPLEMENTAL COMMENTARY HAS BEEN ADDED TO THIS PUBL (Dr. P. A. Larkin, Ph.D., Chair)	Yes No
Whereas the Study Board is satisfied that this publ reviewed for scientific content and for immediate he IT IS HERE APPROVED BY THE BOARD OF DIRECTORS THAT; this publication be released to the public, and that designated for: [] STANDARD AVAILABILITY [] E	ealth implications, t this publication be XPANDED AVAILABILITY
(Bev Burns, Co-chair)	April 7/94 (Date) april 7/94 (Date)
Lucille Partingtor (Lucille Partington, Co-chair)	april 7/94 (Date)

A GENERAL FISH AND RIVERINE HABITAT INVENTORY, ATHABASCA RIVER, APRIL TO MAY, 1992

STUDY PERSPECTIVE

The distribution, abundance and movement of fish is a major interest to the residents of the Peace. Athabasca and Slave rivers because they see these attributes as indicators of the aquatic ecosystems health. The extent to which these aspects are affected by development is a major area of interest to the Study. Information on the composition of the fish community, its seasonal use of riverine habitats for spawning, growth. overwintering and feeding, will assist investigators in understanding the influence of development and discharge on fish and fish behaviour.

Although various reaches of the lower Athabasca River had been subjected to previous field investigations, no prior work had been done on the Athabasca River

Related Study Questions

- 6) What is the distribution and movement of fish species in the watersheds of the Peace, Athabasca and Slave rivers? Where and when are they most likely to be exposed to changes in water quality and where are their important habitats?
- 12) What native traditional knowledge exists to enhance the physical science studies in all areas of enquiry?
- 13b) What are the cumulative effects of man made discharges on the water and aquatic environment?
- 14) What long term monitoring programs and predictive models are required to provide an ongoing assessment of the state of the aquatic ecosystems?

from its source to the mouth. A fisheries survey of the Athabasca River was carried out during spring 1992 to characterize the composition and general abundance of fish within the mainstream river and lower tributaries soon after ice break-up. At best, the work was a snap shot of the aquatic ecosystem following the critical ice cover period. This initial information is important to designing subsequent field and laboratory investigations of behavioural and physiological change.

Fish species composition, abundance, distribution, and habitat characteristics were determined for ten reaches between Jasper Lake, Jasper National Park and Lake Athabasca. A total of 20 fish species were identified during the survey. Forage fish such as the flathead chub, trout-perch and lake chub dominated the numbers of fish caught. Despite having a distribution limited to the upper Athabasca River, mountain whitefish was the most abundant sport fish caught. A longitudinal demarcation of species presence resulted in mountain whitefish, bull trout, arctic grayling, rainbow trout being encountered only in the upper reaches of the Athabasca River, whereas walleye, northern pike and goldeye were more abundant in downstream sections. Longnose sucker was the most abundant coarse fish species and were distributed throughout the study area. In general, fish species diversity and abundance were greater in the lower reaches of the Athabasca River.

Fish populations have previously been extensively surveyed in the lower Athabasca River, but this was the first investigation to examine fish populations from the proximity of the river's headwaters to its mouth. Like the lower portion of the Athabasca River some other reaches of the river have been studied as a consequence of proposed resource development activities but very little has been done in the river above Smith. While these latter works have assisted us in better understanding the composition and dynamics of fish populations within the Athabasca River much work is needed to understand the interaction and dependency of fish populations in the Athabasca River and its tributaries. This survey has established a template for subsequent investigations of fish habitat and populations. In general, preliminary data have now been assembled to guide more detailed investigations of fish populations and their interaction with the available habitats of the Athabasca River and its tributaries. Additional investigations are required before linkages can be made between contaminant levels in edible fish, life history patterns, and fish health.

ACKNOWLEDGMENTS

The following employees of R.L. & L. Environmental Services Ltd. contributed to the collection of field data, analysis, or report preparation.

C. McLeod Project Director L. Hildebrand Project Advisor G. Ash Advisor R. Pattenden Project Biologist T. Clayton Fisheries Biologist C. Pattenden Biological Technician III (author) H. Larsen Biological Technician III M. Braeuer Biological Technician B. Cole Biological Technician J. Campbell Biological Technician S. Millar Biological Technician D. Hobson Biological Technician B. Hathaway Logistical Support

Logistical Support/Drafting

C. Henderson Word Processing
F. Baker Word Processing

Local assistance was provided by Curtiss Girard of Ft. Chipewyan.

S. Morrison

REPORT SUMMARY

In spring 1992, R.L. & L. Environmental Services Ltd. was contracted by the Northern River Basins Study to carry out a general fish inventory of the Athabasca River and the lower reaches of its major tributaries. The information was required for monitoring and modelling the effects of current and future development on the resident and migratory fish populations of the Athabasca River. The objectives of this study were to (1) conduct a baseline fish/fish habitat inventory for the entire length of the Athabasca River, (2) provide recommendations for follow-up studies, (3) update existing fish/fish habitat inventory data, (4) collect samples of fish for contaminant analyses, and (5) conduct an assessment of tributaries in the study area. To accomplish these objectives, field studies were conducted at ten representative intensive survey sites in early spring 1992 on the Athabasca River. An assessment of forty-seven tributaries to the Athabasca River also was conducted.

Fish capture methods included boat electrofishing, gillnetting, beach seining, setlining, drift netting, and backpack electrofishing. All captured fish were identified, enumerated, measured, and weighed. Ageing structures were removed from a representative number of individuals for analysis. All fish were externally examined for evidence of disease or parasites. Individuals that succumbed were internally examined for evidence of parasites, disease or malformation of organs, sex, maturity, and stomach contents.

Two habitat classification systems were utilized to document and characterize river conditions. The first was based on river channel characteristics (e.g., Multiple Island Channel) and selected special habitat features (e.g., Backwater). Within intensive survey sites, a bank habitat classification system was used to reflect the association of fish species with channel margin habitats. This system was based on physical bank processes and conditions within major categories of bank forms (e.g., armoured/stable).

A total of 20 fish species were recorded from the Athabasca River study area. Of these, nine were classed as sport fish, two as coarse fish, and the remainder were forage fish. Major sport species, in order of decreasing abundance, included mountain whitefish, walleye, goldeye, northern pike, burbot, and Arctic grayling. Low numbers of bull trout, rainbow trout, and lake whitefish also were collected. Fish species distribution and abundance varied between sampling locations. Mountain whitefish dominated the sport fish catch in the upper and middle reaches of the Athabasca River but were absent from the catch in the lower reaches. Walleye were absent from the catch in the two uppermost reaches of the study area and exhibited a sporadic distribution in the rest of the mainstem, being more abundant in the Fort McMurray area. Goldeye first appeared in the catch below the Pembina River confluence but were more abundant in the lower reaches of the Athabasca River. Northern pike were encountered in low abundance in all reaches. Burbot abundance was low throughout the study area, while Arctic grayling were collected only from a single reach in the upper portion of the drainage.

Longnose sucker and white sucker were the two coarse fish species recorded from the study area. Longnose sucker were dominant and were encountered in all reaches. White sucker were encountered throughout most study reaches, although usually in low abundance.

Nine forage fish species were collected within the study area; flathead chub were the most abundant followed by trout-perch and emerald shiner.

Evidence of possible spawning use of the Athabasca River by spring spawning sport and coarse fish species was noted at some sites (based on either the presence of adults in spawning condition or young-of-the-year). Captures of walleye in spawning condition (i.e., ripe and spent males and spent females) at sites 8 and 9 suggested that spawning may have occurred within these areas. Mountain Rapids at Site 8 may provide suitable spawning habitats for walleye. The capture of young-of-the-year walleye at Site 9 provided indirect evidence of spawning activity either in Reach 9 or in nearby upstream reaches or tributaries (e.g., MacKay River).

Northern pike in spawning condition (i.e., gravid or ripe females) were captured along mainstem margins at sites 3, 5, 9, and 10. However, the absence of site-specific spawning areas (based on concentrations of adults in spawning condition) and the lack of suitable spawning habitat (i.e., vegetation, shallow-water, little or no current) indicates limited spawning use of the mainstem Athabasca River.

The presence of ripe female goldeye at Site 8 suggested that this species utilized this area of the Athabasc River for spawning. Spawning habitats for coarse and forage fish species and rearing, feeding/holding, and overwintering habitats for all fish species were identified.

Habitat mapping of major channel habitat types was completed for the mainstem Athabasca River. The upper and lower reaches (i.e., reaches 2, 3, 9, and 10) were characterized by Type M channel (i.e., multiple Channel) whereas Type U channel (i.e., Unobstructed Channel) predominated in the middle reaches of the Athabasca River (i.e., reaches 4, 5, 6, 7, and 8). Type S channels were not frequently encountered in the study area. Channel type distribution within the intensive survey sites was similar to that recorded for the reaches. The distribution and composition of bank habitat types were mapped at all intensive survey sites. A total of eighteen bank habitat types were identified at the 10 intensive survey sites. These included armoured/stable, depositional and erosional bank habitat types. Preferred habitats utilized by fish were identified. Bankside habitats associated with armoured/stable bank types exhibited the greatest use by sport and coarse fish. Forage fish and juvenile coarse fish selected depositional bank types. Lowest fish use was recorded along erosional bank types.

Forty-seven tributaries of the Athabasca River were examined and rated for overall sport fish production potential, based on habitat conditions and fish species encountered at the time of the survey. This rating applied only to an area sampled within the influence of the Athabasca River (i.e., maximum upstream distance sampled for any tributary was 4000 m upstream of its confluence with the Athabasca River). Habitat conditions within representative sections were mapped and fish populations were investigated using either boat-mounted or backpack electrofishing equipment.

Fish for contaminant analyses were collected from 12 sites. Fish were collected according to protocols stipulated by the Northern River Basins Study, maintained frozen on dry ice, and subsequently shipped to Edmonton.

TABLE OF CONTENTS

Page #
A CUNOWI EDCMENTS
ACKNOWLEDGMENTS
REPORT SUMMARY
LIST OF TABLES vi
LIST OF FIGURES viii
SECTION 1 INTRODUCTION
SECTION 1 INTRODUCTION
1.1 STUDY DESCRIPTION
1.2 STUDY OBJECTIVES
1.3 STUDY AREA 1
SECTION 2 METHODS
· ·
2.1.1 Study Reach and Intensive Survey Site Selection
2.1.2 Habitat Availability and Utilization
2.2 FISH POPULATION INVENTORY 7
2.2.1 Boat Electrofishing
2.2.2 Gill Nets
2.2.3 Seines
2.2.4 Setlines
2.2.5 Drift Nets
2.2.6 Backpack Electrofishing
2.3 TRIBUTARY HABITAT ASSESSMENT
2.3.1 Aquatic Habitat Assessment
2.3.2 Fish Collection
2.4 LIFE HISTORY COLLECTIONS
2.5 CONTAMINANT FISH
CECTION A DELCAT ENTENTODA
SECTION 3 REACH INVENTORY
3.1 PREVIOUS STUDIES
3.2 PRESENT STUDY
3.3 REACH 1
3.3.1 Physical Habitat
3.3.2 Fish Resources
3.3.3 Tributaries
3.4 REACH 2
3.4.1 Physical Habitat
3.4.2 Fish Resources
3.4.3 Tributaries
3.5 REACH 3
3.5.1 Physical Habitat
3.5.2 Fish Resources
3.5.3 Tributaries

3.6 REACH 4	35
3.6.1 Physical Habitat	35
3.6.2 Fish Resources	35
3.6.3 Tributaries	38
3.7 REACH 5	39
3.7.1 Physical Habitat	39
3.7.2 Fish Resources	40
3.7.3 Tributaries	42
3.8 REACH 6	42
3.8.1 Physical Habitat	42
3.8.2 Fish Resources	43
3.8.3 Tributaries	46
3.9 REACH 7	46
3.9.1 Physical Habitat	46
3.9.2 Fish Resources	47
3.9.3 Tributaries	50
3.10 REACH 8	50
3.10.1 Physical Habitat	50
3.10.2 Fish Resources	51
3.10.3 Tributaries	53
3.11 REACH 9	54
3.11.1 Physical Habitat	54
3.11.2 Fish Resources	55
3.11.3 Tributaries	56
3.12 REACH 10	58
3.12.1 Physical Habitat	58
3.12.2 Fish Resources	59
3.12.3 Tributaries	61
3.13 RELATIONSHIP BETWEEN PHYSICAL HABITATS AND FISH	01
DISTRIBUTION	62
3.13.1 Sport Fish	
3.13.2 Coarse Fish	64
3.13.3 Forage Fish	64
3.13.3 1 0.4ge 1	04
SECTION 4 DISCUSSION	66
SECTION 5 RECOMMENDATIONS FOR FURTHER STUDIES	70
SECTION 6 LITERATURE CITED	73

LIST OF APPENDICES

- A. TERMS OF REFERENCE.
- B. HABITAT CLASSIFICATION AERIAL PHOTOGRAPH SERIES.
- C. CHANNEL PROFILES IN METRES.
- D. FISHERIES DATA.
- E. TRIBUTARY DATA.
- F. CONTAMINANT SAMPLING.
- G. SAMPLING LOCATIONS AT INTENSIVE SURVEY SITES.
- H. DISTRIBUTION OF BANK HABITAT TYPES AT INTENSIVE SURVEY SITES.
- I. PHOTOGRAPHS AND SITE MAPS AT TRANSECT LOCATIONS.
- J. LIST OF TAGGED FISH.

LIST OF TABLES

	Pa	ge#
Table 2.1 Table 2.2 Table 2.3	Athabasca River study reaches	
Table 3.1	examined during spring sampling period, 1992	10
Table 3.2	Lake (Km 1278.0) to the Embarras River (Km 78.7)	18
Table 3.3	Athabasca River, 1992	19
Table 3.4	within reaches of the Athabasca River, spring 1992 Fish species encountered in the mainstem Athabasca River,	19
Table 3.5	spring 1992	20
	Athabasca River study area by all sampling methods, spring 1992.	21
Table 3.6	Athabasca River tributaries sampled during the spring survey 1992.	22
Table 3.7	Percent composition of major channel and bank habitat types at Site 1, Athabasca River, spring 1992.	23
Table 3.8 Table 3.9	Fish species composition at Site 1, Athabasca River, spring 1992	25
Table 3.10	1992	26
Table 3.11	Site 2, Athabasca River, spring 1992	27
Table 3.12	1992	29
Table 3.13	1992	30
Table 3.14	Site 3, Athabasca River, spring 1992	31
Table 3.15	1992	33
Table 3.16	Percent composition of major channel and bank habitat types at	35
Table 3.17	Site 4, Athabasca River, spring 1992	36
Table 3.18	Tributaries sampled in Reach 4, Athabasca River, spring 1992.	36 38
Table 3.19	Percent composition of major channel and bank habitat types at Site 5, Athabasca River, spring 1992.	39

Table 3.20	Fish species composition at Site 5, Athabasca River, spring	40
Table 3.21	1992	40
Table 3.22	1992	42
1 able 5.22	Site 6, Athabasca River, spring 1992	43
Table 3.23	Fish species composition at Site 6, Athabasca River, spring 1992	44
Table 3.24	Tributaries sampled in Reach 6, Athabasca River, spring 1992.	46
Table 3.25	Percent composition of major channel and bank habitat types at Site 7, Athabasca River, spring 1992.	47
Table 3.26	Fish species composition at Site 7, Athabasca River, spring	
Table 3.27	1992	48
Table 3.28	Percent composition of major channel and bank habitat types at	50
Table 3.29	Site 8, Athabasca River, spring 1992	51
Table 3.30	1992	51
	1992	54
Table 3.31	Percent composition of major channel and bank habitat types at Site 9, Athabasca River, spring 1992	55
Table 3.32	Fish species composition at Site 9, Athabasca River, spring 1992	55
Table 3.33	Tributaries sampled in Reach 9, Athabasca River, spring	
Table 3.34	1992	58
Table 3.35	Site 10 Athabasca River, spring 1992	59
	1992.	59
Table 3.36	Tributaries sampled in Reach 10, Athabasca River, spring 1992	61
Table 3.37	Use of major bank habitat classifications by sport and coarse fish species captured by electrofishing in the Athabasca River,	(2
Table 3.38	Spring 1992	62 65
	captured in some name in the range area rever, spring 1772	05

LIST OF FIGURES

	Pa	ge#
Figure 1.1 Figure 3.1a	Athabasca River Fish Inventory - 1992 Study Area, overview map Mean monthly discharge (m³/s) at three stations on the Athabasca River	. 2
Figure 3.1b	from 1965 to 1990	15
Figure 3.2	McMurray, 21 April to 22 May 1992	16
	boundaries, site locations and major features	17
Figure 3.3	Catch-per-unit-effort values for sport and coarse fish captured by electrofishing at Site 1, Athabasca River, spring 1992	24
Figure 3.4	Catch-per-unit-effort values for forage fish captured by beach seining at Site 1, Athabasca River, spring 1992	24
Figure 3.5	Catch-per-unit-effort values for sport and coarse fish captured by electrofishing at Site 2, Athabasca River, spring 1992	. 28
Figure 3.6	Catch-per-unit-effort values for forage fish captured by beach seining at Site 2, Athabasca River, spring 1992	28
Figure 3.7	Catch-per-unit-effort values for sport and coarse fish captured by electrofishing at Site 3, Athabasca River, spring 1992	34
Figure 3.8	Catch-per-unit-effort values for forage fish captured by beach seining at Site 3, Athabasca River, spring 1992	34
Figure 3.9	Catch-per-unit-values for sport and coarse fish captured by	
Figure 3.10	electrofishing at Site 4, Athabasca River, spring 1992	37
Figure 3.11	at Site 4, Athabasca River, spring 1992	37
Figure 3.12	electrofishing at Site 5, Athabasca River, spring 1992	41
Figure 3.13	at Site 5, Athabasca River, spring 1992	41
Figure 3.14	electrofishing at Site 6, Athabasca River, spring 1992	45
Figure 3.15	at Site 6, Athabasca River, spring 1992	45
Figure 3.16	electrofishing at Site 7, Athabasca River, spring 1992 Catch-per-unit-effort values for forage fish captured by beach seining	49
Figure 3.17	at Site 7, Athabasca River, spring 1992	49
Figure 3.18	electrofishing at Site 8, Athabasca River, spring 1992 Catch-per-unit-effort values for forage fish captured by beach seining	52
	at Site 8, Athabasca River, spring 1992	52
Figure 3.19	Catch-per-unit-effort values for sport and coarse fish captured by electrofishing at Site 9, Athabasca River, spring 1992	57

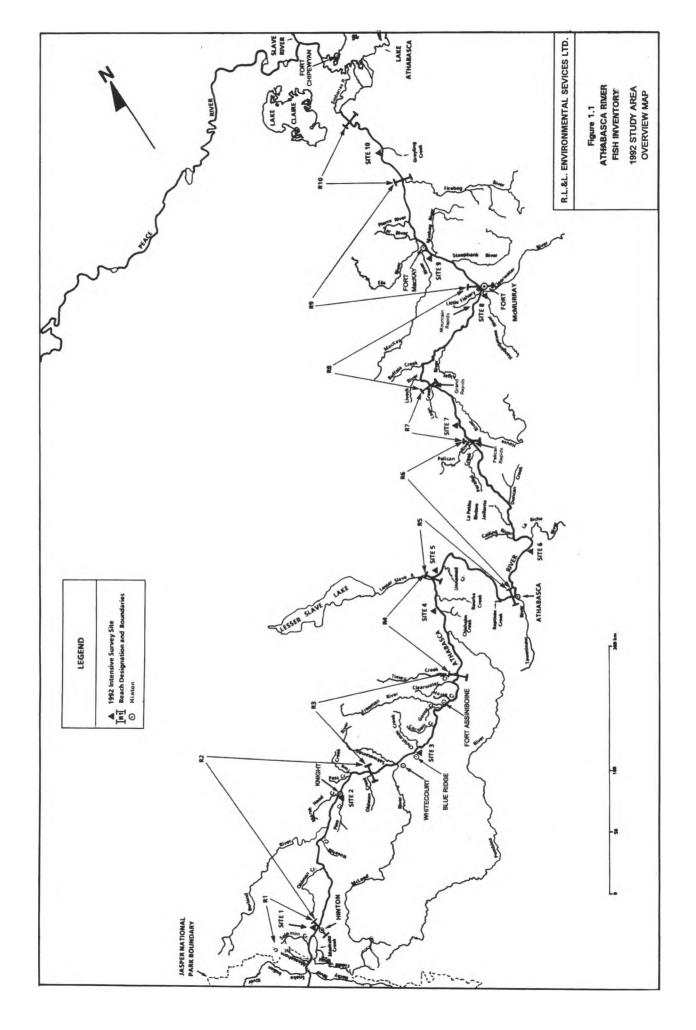
Figure 3.20	Catch-per-unit-effort values for forage fish captured by beach seining	
	at Site 9, Athabasca River, spring 1992	57
Figure 3.21	Catch-per-unit-effort values for sport and coarse fish captured by	
	electrofishing at Site 10, Athabasca River, spring 1992	60
Figure 3.22	Catch-per-unit-effort values for forage fish captured by beach seining	
	at Site 10, Athabasca River, spring 1992	60

SECTION 1 INTRODUCTION

1.1 STUDY DESCRIPTION

Although considerable fisheries information has been collected over the years in the Athabasca River system below Grand Rapids (e.g., through AOSERP studies, Syncrude/Suncor environmental studies, Peace-Athabasca Delta studies), less is known about the locations of critical fish habitat and fish species composition, distribution, and abundance in the middle and upper reaches of the Athabasca River. This information is required to monitor the sensitivity of resident and migratory fish populations to present developments in the basin (e.g., pulp mills, oil sands plants, petrochemical developments, municipal effluent treatment plants) and to allow predictive modelling of potential impacts of any future developments.

R.L. & L. Environmental Services Ltd. was contracted in April 1992 to conduct an inventory of fish and fish habitat of the Athabasca River mainstem and lowermost reaches of selected tributaries between the outlet of Jasper Lake and Lake Athabasca. An additional component of the study involved collecting fish for contaminant analyses. The study period (21 April to 21 May 1992) was selected to correspond to spring flow regimes before the onset of freshet conditions, which normally begin in mid to late May.


1.2 STUDY OBJECTIVES

The general objectives of the study as outlined in the Terms of Reference (Appendix A) were as follows:

- To conduct a baseline fish/fish habitat inventory during spring 1992,
- To provide recommendations and strategies for follow-up inventories and fish migration studies during subsequent seasons and years of the Northern River Basins Study,
- To integrate and update fish/fish habitat inventory data gathered from this study with existing information on the fish/fish habitat of the Athabasca River drainage basin, and
- To obtain samples of fish from selected areas throughout the drainage for analysis of contaminants.

1.3 STUDY AREA

The primary study area included the mainstem Athabasca River from the outlet of Jasper Lake downstream to the confluence at Lake Athabasca. The study area reaches, intensive survey site locations, and surveyed tributaries are illustrated in Figure 1.1.

SECTION 2 METHODS

2.1 AQUATIC HABITAT ASSESSMENT

2.1.1 Study Reach and Intensive Survey Site Selection

The initial phase of the intensive survey site selection involved classification of the Athabasca River into homogenous segments or reaches based on a preliminary review of National Topographic Series (NTS) maps (1:250 000 and 1:50 000 scale) and available reports.

In total, 10 preliminary study reaches were identified on the Athabasca River between Jasper Lake and Lake Athabasca (Table 2.1). Criteria involved in the reach allocation process included the following:

- differences in major channel characteristics (singular vs. braided channel, islands, etc.),
- point sources of industrial (pulp mill and oil sands extraction) and domestic (sewage) effluent,
- entry of major tributaries, and
- length of reach (i.e., as it relates to the distance between survey sites).

Table 2.1 Athabasca River study reaches.

REACH NO.	LOCATION	SELECTION RATIONALE*
1	Jasper Lake to Hinton	Habitat Separation
2	Hinton to above Whitecourt	Habitat Separation, Domestic/Industrial Effluent
3	Above Whitecourt (Oldman Creek) to below Fort Assiniboine	Habitat Separation, Domestic/Industrial Effluent
4	Below Fort Assiniboine (Vega Crossing) to Lesser Slave River	Habitat Separation
5	Lesser Slave River to Athabasca	Domestic/Industrial Effluent
6	Athabasca to Pelican Rapids	Habitat Separation, Domestic/Industrial Effluent
7	Pelican Rapids to Grand Rapids	Habitat Separation
8	Grand Rapids to Fort McMurray	Habitat Separation/Fish Movement Blockage
9	Fort McMurray to Firebag River	Habitat Separation, Domestic/Industrial Effluent
10	Firebag River to Embarras River	Habitat Separation

^{*}Major factors differentiating reach from adjacent reaches.

The intensive survey sites were selected using 1:50 000 NTS maps and aerial photographs. Each site had to meet specific criteria. It had to (1) be representative of the river reach in which it was located; (2) provide pertinent biological and hydraulic information that would aid in answering project-related questions; (3) be of a sufficient size to provide a

range of representative habitats, yet small enough to allow efficient analysis using relatively simple sampling techniques; (4) wherever possible, be accessible by vehicle (i.e., to provide logistic support); and (5) be situated within one-day boat travel from adjacent sites.

Access to all intensive survey sites was by jet-drive riverboat. Tent camps were established at each site. A four-wheel drive truck provided logistic support into most sites (gear transportation, gas, resupplying, etc.). However, vehicle support could not be used at Sites 7 and 10 (Figure 1.1). A local riverboat and operator were chartered to provide logistic support into Site 7, and logistic support at Site 10 was provided by chartered aircraft from Fort McMurray.

2.1.2 Habitat Availability and Utilization

A habitat approach was used to document present conditions of the fisheries resources of the Athabasca River. This approach required that the existing habitat conditions at each site be documented in sufficient detail to allow seasonal comparisons. In addition, it required that the utilization patterns of fish species within the sites be identified with respect to the available habitat.

The first requirement was met using a combination of field measurements and observations; channel cross section surveys and photographs of existing habitat observed at each site were used for this purpose. Habitat classifications used in this study were based on gross morphological, surficial, and hydraulic characteristics and, therefore, are very broad and generalized in scope.

Major channel habitat types and bankside habitat classifications were identified based on a habitat classification system developed for use on the Peace River by R.L. & L. Environmental Services Ltd. (Hildebrand 1990). These classification systems were adapted for use on the Athabasca River. The major channel and bank habitat types are described in detail in Appendices B1 and B2, respectively.

Mapping was done on aerial photographs and ground-truthed by boat at intensive survey sites. A detailed listing of the air photo series used is provided in Appendix B4.

Fish Species Habitat Selection

The use of a particular habitat type by fish was identified by their presence or absence within the special habitat features and bank habitat types (i.e., macro-habitats) in the Athabasca River mainstem. Because these macro-habitats often exhibited a wide range of variables, including depth, velocity, substrate, and cover, they likely contained distinct micro-habitats selected by fish for their various life-history functions. The identification and measurement of habitat variables on a micro-habitat level is preferred because it allows the development of habitat preference criteria and habitat suitability curves, quantifiable parameters developed for use in instream flow assessments (Bovee and Cochnauer 1977). The micro-habitat approach was not used in this study for the following reasons:

- the large study area, limited available sampling time, and general overview nature of the study;
- the difficulties in accurately measuring micro-habitat variables in deep or fast river areas sampled by boat electrofishing (a primary sampling method) and determining the exact capture location of a fish in turbid water conditions; and
- the emphasis on important (i.e., sport fish) species; most sport fish captured were adults or large juveniles, size-classes that can utilize a wide range of habitat conditions and, therefore, require large sample sizes to accurately define microhabitat selection criteria.

Because of these limitations, the approach used in this study was qualitative and limited to a general description of macro-habitat selection based on capture results and field observations. During the collection of these data, similarities in the habitat parameters selected by a particular species were observed among sample sites. This observation, combined with a need to generate a large data base, resulted in the grouping of macro-habitat selection observations for each species from all sample sites in the study area. The following assumptions were made in the grouping of these data:

- the observation of a fish species within a range of habitat parameters (i.e., within a macro-habitat type) is indicative of habitat selection, as species tend to select the most favourable conditions within a stream (Trihey 1979); and
- a particular species' life stage will select similar habitat parameters throughout its range.

The primary habitat parameters evaluated in the present study were depth, velocity, substrate, and cover. Although these parameters generally are associated with the definition of micro-habitats, in this study they were used to provide a broad definition of macro-habitats. Limitations of the sampling methods resulted in one or more of these parameters remaining relatively consistent in all sampled areas. For example, the capture efficiency of boat electrofishing is greatly reduced at depths over 3 m; therefore, habitats sampled by this method generally ranged from 1 to 2 m in depth. Gill nets were most effective when set in habitats with low current velocity and depths greater than the net height (i.e., >2.5 m). Seining was limited to shallow (<1.0 m depth) channel margin habitats with a relatively smooth bottom type.

In addition to measurements of the four habitat parameters given above, observations of species habitat selection with regard to water temperature and turbidity were noted.

Habitat Data Collection and Field Measurements

a) Fish Sampling

The determination of fish use patterns with respect to habitat availability or preference was an important component of the fish sampling program. In addition to supplying data regarding the relative abundance and distribution of fish, the three major capture methods (i.e.,

seining, gill netting, and electrofishing) provided generalized species habitat criteria data required to develop information on the range and preferred habitat conditions selected by the fish species in the study area.

Habitat data collected during electrofishing and gill netting operations included depths, substrate composition, and identification of available cover types associated with capture locations of sport fish species. Where possible, flow velocity was measured with a Swoffer Model 2100 series velocity meter, although most areas sampled by boat electrofishing and gill netting were generally too deep (i.e., >1.0 m) to permit velocity measurements using the meter with a wading rod. Flow velocities in deep- and fast-water areas were visually estimated due to the difficulties in obtaining accurate velocity measurements from a large boat. Estimated velocities were assigned Low (<50 cm·s⁻¹), Moderate (50-100 cm·s⁻¹), or High (>100 cm·s⁻¹) ratings.

Habitat data collected during seining operations included water temperature, depths, velocities, substrate composition, water clarity, and cover type. During seining, an attempt was made to sample discrete habitat types within a narrow range of physical parameters.

Substrate classification was based on a subjective evaluation using the modified Wentworth rating system presented in Table 2.2.

TYPE	SIZE RANGE (mm)	CODE
Bedrock	•	BE
Boulder	>256	во
Cobble	65-256	CO
Pebble	17-64	PE
Gravel	3-16	GR
Sand	0.06-2	SA
Silt	0.06-0.004	SI
Clay	<0.004	CL
Detritus	-	DE

Table 2.2 Substrate rating system.

Where substrate could be visually identified, the percentage composition of each substrate type was estimated. In deeper areas, bottom type was determined either using a 3.0 m long aluminum pole to "feel" the bottom or from echo sounder tracings. Substrate classification in these areas was generally limited to the identification of the dominant/codominant types (e.g., sand/silt, cobble/boulder, etc.).

b) Stream Flow

Water surface elevations were recorded to allow an evaluation of habitat conditions associated with or produced by differing flow regimes at a future date. A temporary benchmark (TBM) was established at each intensive survey site and consisted of a 25 cm long spike driven into the base of a tree situated above the high-water mark. The benchmark was marked with orange surveyor tape; an aluminum site marker affixed to the tree identified the site as an R.L. & L. benchmark. Water-surface elevations were determined by differential

levelling, using an automatic level and surveyor's rod. Assumed elevations of 100.00 m were used at each site.

c) Channel Morphometry

Within intensive survey sites, channel cross-sectional profiles and bankside habitat configurations were determined using a Lowrance X-15 chart recording computer sonar. Transects of selected habitat types were surveyed using the sonar to provide a better definition of habitat characteristics (Appendix C). Additional transects were conducted at both the upstream and downstream ends of the intensive survey sites and at the benchmarks. Photographic records of water-level conditions and habitat conditions also were obtained at each site (Appendix I).

2.2 FISH POPULATION INVENTORY

Fish were collected by a variety of methods that included electrofishing (boat and backpack), multi-mesh gill nets, seines, dip nets, drift nets, and setlines. Capture methods were used in a manner that endeavoured to provide a representative sample of the fish community at the species and life-stage levels (i.e., adult, juvenile, and young-of-the-year). Samples taken within each reach will enable comparisons of fish abundance, size, and occurrence between reaches, habitat types, and for different sampling periods. All sites were related to a legal land description, Universal Tranverse Mercator Coordinates for Zone 11 (using a Trimble Navigation Transpak Global Positioning System (GPS), and corrected as necessary), and the national hydrometric watershed code.

2.2.1 Boat Electrofishing

The primary objectives of the boat electrofishing program were to (1) locate concentrations of fish, (2) obtain specimens for life history analysis, and (3) provide data on species composition and relative abundance at each site and within available bank habitat types. Electrofishing was conducted along representative bank habitat types at each study site and in selected special habitat features (e.g., snyes).

At most sites, sampling was conducted from a 5.5 m Smith-Root SR-18 electrofishing boat with a GPP-5.0 electrofishing system and propelled by a 200 hp outboard jet unit. The amperage output of the electrofishing system ranged from 4 to 6 A, with pulse rate and width set at 60 pps and 507 ms, respectively.

Sites 8, 9, and 10 were sampled from an 6.8 m Valco aluminum riverboat propelled by a 200 hp outboard jet unit. Boat electrofishing from the Valco was conducted using a Smith-Root Type VIA electrofishing system. A 4000 W generator provided input voltage of 230 V AC at approximately 15 A. Output voltages from 0 to 1000 V DC (pulsed) (116-V steps) at 0.1-10 A were available to the operator. Highest capture effectiveness occurred with the unit producing 4-6 A; voltage generally was set at either 504 or 672 V DC to produce the desired amperage (i.e., depending on depth, substrate, and conductivity). A pulse rate of 60 pps was utilized with pulse width normally set between 5 and 7 ms.

The boat electrofishing procedure consisted of drifting downstream at motor idle with the boat maintained near shore. The netters attempted to capture all fish stunned by the electrical field. Fish avoiding the netters but positively identified were enumerated and recorded as "observed" at the end of each sample section. Following capture, fish were placed in an on-board holding tank until processed.

All fish over 250 mm in length and not required for other components of the study (e.g., contaminant analyses) were marked with a numbered Floy FD68B anchor tag. In addition to the tag number, each tag carried the address of the Northern River Basins office in Edmonton. Only fish in good physical condition and exhibiting normal behaviour were tagged. The tag was first immersed in an antiseptic, then inserted using a Dennison Mark II applicator gun into the dorsal musculature immediately below the dorsal fin between the pterygiophores. The tag was then checked to ensure it was inserted securely. Information obtained from each tagged fish included species, fork length (mm), weight (g), tag number, date of tagging, location of release, and sex and maturity when they could be determined through external examination.

Pertinent data recorded at boat electrofishing sections included fish captured or observed, section length (km), sampling time (s), habitat conditions (depth, velocity, substrate, cover type, etc.), water temperature and conductivity, and electrofisher settings. Indices of fish abundance (catch-per-unit-effort) were generated utilizing distance sampled (i.e., number of fish captured per km of shoreline). Distance sampled, rather than time sampled, was chosen as the basis for CPUE indices because this unit of measure was consistent at all sites. Use of distance sampled also allowed comparisons of CPUE indices between sites.

2.2.2 Gill Nets

A gill netting program was implemented to determine fish use of quiet-water habitats within each intensive survey site. Gill net panels (15.2 m long x 2.4 m deep) with a range of mesh sizes (3.8, 6.4, 8.9, and 11.4 cm stretched measure monofilament mesh) were employed to maximize the array of species and sizes of fish captured. To the extent possible, gill nets were set in major holding areas (backwaters, snyes, etc.). Nets generally were set overnight. Data collected at each netting location included set duration, depth, velocity, substrate, cover characteristics, water temperature, and Secchi disc visibility. Set efficiency was recorded as the degree of net fouling rated from 1 to 4, where 1=high efficiency (net clean) and 4=low efficiency (net heavily fouled). Owing to the low availability of backwaters and snyes of sufficient size and depth, gill nets could not be set at most sites. CPUE data were generated for each set on a net-unit basis (i.e., 1 net unit=100 m² of gill net surface area fished for the equivalent of a 12-hour period).

2.2.3 Seines

A seining program was undertaken at each intensive survey site to determine the distribution, abundance, and habitat preferences of fish utilizing shallow-water habitats (i.e., forage fish, young-of-the-year and juvenile sport and coarse fish). Seine hauls were conducted in a variety of shallow water habitats. A 5.0 m (length) by 1.5 m (depth) beach seine, with 1.27 cm nylon mesh (collection bag of 0.6 cm mesh) was utilized. Physical parameters recorded at seine haul sites included depth, velocity, and substrate composition. Haul length, width, and efficiency, along with water temperature and Secchi visibility, also were recorded. CPUE data (no. fish/100 m² of seined area) were calculated for each species.

2.2.4 Setlines

Baited setlines (consisting of 20 No. 7/0 regular shank hooks, with a one metre interval between each hook), generally set overnight, were used primarily to capture species that were difficult to obtain by other methods (e.g., burbot). Bait consisted of various fish species that succumbed during capture by other sample methods or were sacrificed for life-history data. Setline sites were established in all of the intensive study sections; CPUE data (no. fish/100 hook hours) were generated for each set.

2.2.5 Drift Nets

A drift net sampling program was established in each intensive survey site to determine the distribution and abundance of young-of-the-year fall and winter spawning species (i.e., mountain whitefish, lake whitefish, burbot, and bull trout). The primary method consisted of setting a drift net attached to metal rods anchored in the substrate to capture larval fish in the drift. Each drift net consisted of a 1 m long funnel constructed of 153 μ m nitex netting terminating in a 1 L perforated collection bottle also covered with 153 μ m nitex netting. The sampling area of the 30 x 60 cm rectangular opening was 1800 cm². At each intensive survey site, two nets were set overnight in various habitat types along nearshore areas of the mainstem Athabasca River. Dip netting for larvae occupying stream margins and quiet backwaters also was conducted. Data collected at each net location included set duration, depth, velocity, substrate, water temperature, and Secchi disc visibility. Specimens collected were preserved in 90% alcohol. CPUE data (no. fish/hour) were generated for each set.

2.2.6 Backpack Electrofishing

The objectives of the backpack electrofishing sampling program were to sample nearshore areas that could not be sampled by other methods and to provide additional information on the distribution and abundance of young-of-the-year. A Smith-Root Type XI backpack electrofisher was utilized. Pertinent data recorded at each sampling site included fish captured or observed, section length, sampling time, habitat conditions (depth, velocity, substrate, cover type, etc.) water temperature, and electrofisher settings. CPUE data (no. fish/s) were generated for each section.

2.3 TRIBUTARY HABITAT ASSESSMENT

2.3.1 Aquatic Habitat Assessment

Habitat Data Collection and Field Measurements

Habitat surveys were conducted in the lower sections of forty-seven of the fifty-one specified tributaries (Table 2.3). The tributaries were assessed to determine their potential suitability for providing critical habitats for specific life requisite functions (spawning/migration, rearing, adult feeding/holding, overwintering) of mainstem Athabasca River sport fish populations. Four tributaries were not sampled (Loon Creek, Livock

Table 2.3 Athabasca River tributaries (confluence and lower reach) examined during spring sampling period, 1992.

REACH	TRIBUTARY	LAND DESCRIPTION
RI	Rocky River	48-28-W5
	Snake Indian River	48-28-W5
	Moosehorn Creek	49-27-W5
	Fiddle River	49-27-W5
	Solomon Creek	49-27-W5
	Maskuta Creek	51-25-W5
R2	Oldman Creek	55-22-W5
	Berland River	58-20-W5
3	Nosehill Creek	58-20-W5
	Pine Creek	60-18-W5
	Marsh Head Creek	60-18-W5
	Pass Creek	61-16-W5
	Two Creeks	61-15-W5
	Oldman Creek	60-14-W5
R3	Sakwatamau River	60-12-W5
	McLeod River	60-12-W5
	Christmas Creek	60-10-W5
	Corbett Creek	61-7-W5
	Goose Creek	61-6-W5
	Freeman River	61-6-W5
	Horse Creek	61-5-W5
	Clearwater Creek	63-4-W5
R4	Timeu Creek	63-3-W5
	Pembina River	66-2-W5
	Chisholm Creek	68-2-W5
	Rourke Creek	70-1-W5
R5	Unnamed Creek	8-72-25-W4
	Baptiste Creek	67-23-W4
R6	Tawatinaw River	66-22-W4
	Calling River	70-19-W4
	La Biche River	69-18-W4
	La Petite Riviere Jaillante	73-18-W4
	Duncan Creek	73-18-W4
	Parallel Creek	78-17-W4
	Pelican River	79-17-W4
R7	House River	83-16-W4
	Loon Creek	84-17-W4
R8	Livock River	86-18-W4
	Buffalo Creek*	87-17-W4
	Algar River	87-14-W4
	Hangingstone River	89-9-W4
	Little Fishery River	89-9-W4
	Clearwater River	89-9-W4
R9	Steepbank River	92-10-W4
	MacKay River	94-11-W4
	Muskeg River	94-10-W4
	Ells River	96-11-W4
	Tar River	96-11-W4
	Pierre River	97-10-W4
R10	Firebag River	101-9-W4
	Grayling Creek	104-9-W4

"Not surveyed; inaccessible by boat due to presence of Grand Rapids.

River, Buffalo Creek, and Algar River) due to their proximity to non-navigable Class VI rapids (i.e., Grand Rapids). Tributaries were sampled immediately upstream of the zone of influence from the Athabasca River. Sampling sections varied in length from 100 m to 2000 m depending on the size of the tributary.

Within the selected sampling section, habitat was rated and quantified (i.e., percentage composition based on visual estimates) into discrete cover types using the R.L. & L. Stream Habitat Classification System (Appendix B3). This system has been used effectively on many streams in Alberta and provides a rapid means of assessing carrying capacity for specific life requisites (i.e., spawning, rearing, adult feeding/holding, overwintering) for the various streams.

Pertinent habitat data (relating to major habitat limiting factors) recorded at each sampling site included bank erosion and cover, instream cover, substrate size and type, and depth. The investigated section also was assigned a preliminary habitat suitability rating for target species (i.e., sport fish) and life requisite functions. Photographic records were taken of each sampling site.

2.3.2 Fish Collection

The electrofishing program provided data on species composition and relative abundance at each site. Backpack electrofishing was conducted along each bank and, water depth permitting, throughout the stream channel. A Smith-Root Type XI electrofisher unit was used in streams that were shallow. In some of the larger creeks and rivers either a Smith-Root SR-18 electrofishing boat with a GPP-5.0 electrofishing system or a Valco aluminum riverboat fitted with a Smith-Root Type VIA electrofishing unit was utilized. Settings and methods were similar to those described in Section 2.2.1.

The fish sampling sections corresponded to sections sampled for the tributary habitat assessment component. Pertinent data recorded at the electrofishing sections included number of fish captured or observed, sampling time, water temperature and conductivity, and electrofisher settings.

2.4 LIFE HISTORY COLLECTIONS

Life history data were collected from all fish. This information included fork length (to the nearest millimetre) and weight (g); sex and maturity were determined by dissection, external examination, or release of sexual products. Appropriate ageing structures as suggested by Mackay et al. (1990) were collected from a subsample of sport fish. Ageing was conducted using the appropriate laboratory technique for each structure. Stomach content data, obtained from sport fish succumbing to the capture method, were visually identified in the field. These fish were subsequently examined internally and externally for evidence of disease, parasites, and malformation of organs. Released fish were externally examined. Since all fish encountered appeared to be healthy, "Gross Pathology" forms were not filled out.

The procedure used for assessing feeding habits followed the method described by Thompson (1959), which is a modification of the numerical method used by Hynes (1950). The stomach was examined and evaluated for fullness and allotted a certain number of points (i.e., 20 points for a full stomach and 0 points for an empty stomach). After points were allotted for the degree of fullness, the stomach was opened and the points were distributed among individual food categories observed based on volume. To account for the presence of empty stomachs, values of zero were incorporated into the analysis. This was accomplished by subtracting the total points of food items observed in a sample of fish from the total potential points for that sample (i.e., number of fish in sample x 20 minus total points of food items observed). The resulting value was allotted to an "empty category". A point total was then calculated for each food group.

All fish life history data was entered onto computerized data sheets; data analysis was conducted using FISHPAK, an in-house software developed by G. Ash. Data output included length, weight, sex and maturity, and capture data for individual fish and combined length-frequency, weight-frequency, length-weight regression, and condition factor data for each species. Length and weight frequency distributions for each species have been provided for each site and gear type. This information has been submitted on disc in ASCII format.

2.5 CONTAMINANT FISH

Methods for the collection of fish for contaminant analyses and a list of fish collected are presented in Appendix F.

SECTION 3 REACH INVENTORY

3.1 PREVIOUS STUDIES

Wallace and McCart (1984) completed an extensive review of the literature dealing with fish inventory studies conducted on the Athabasca River Basin. The following provides a brief overview of their findings. A limited amount of fisheries inventory information exists for the upper portion of the Athabasca River (i.e., Jasper Park boundary to Fort Assiniboine). Early studies conducted by Dempsey in 1945 found that this section of river supported populations of rainbow trout, Dolly Varden, Arctic grayling, northern pike, lake whitefish, and mountain whitefish. Non-sport fish species included brook stickleback, pearl dace, white sucker, and longnose sucker. During 1955, Miller encountered similar species assemblages from Hinton to Fort Assiniboine. More recent work completed by Alberta Fish and Wildlife in 1980 indicated the presence of walleye, flathead chub, and goldeye.

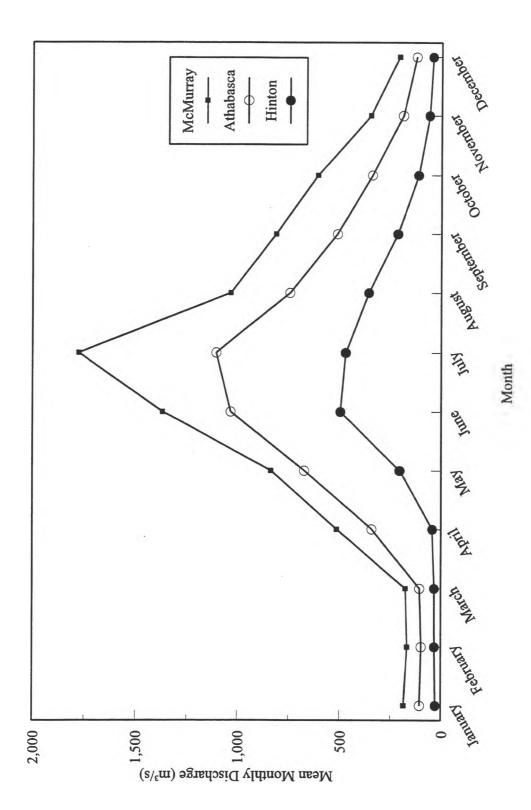
Prior to 1984, fish populations were not studied extensively between Fort Assiniboine and Grand Rapids, which is approximately 140 km upstream of Fort McMurray (Wallace and McCart 1984). In 1988, Beak completed a general fisheries inventory in the vicinity of the Calling River (B. Schelast, Biologist, Sentar Consultants Ltd., pers. comm.). This was followed by detailed fisheries studies by Sentar Consultants Ltd. within the Alberta-Pacific Forest Industries Inc. (ALPAC) study area in 1991 and 1992. Fish species encountered in this area included mountain whitefish, northern pike, goldeye, burbot, and walleye.

The section of the Athabasca River between Grand Rapids and Fort McMurray lies within the former Alberta Oil Sands Environmental Research Program (AOSERP) study area and, as such, was studied in detail (Wallace and McCart 1984). This section of river serves as a major spawning area for several species of fish. A lake whitefish population that overwinters in Lake Athabasca utilizes the Mountain and Cascade rapids for fall spawning. McCart et al. (1982) estimated that a minimum of 300 000 lake whitefish spawn in the area. Tripp and McCart (1979) suggested that walleye migrating from Lake Athabasca and the lower Athabasca River may also spawn in this area. This hypothesis was based on catches of young-of-the-year fish, and not the presence of spawning walleye. The same researchers established that longnose suckers also use the area for spring spawning. Wallace and McCart (1984) stated that Cascade Rapids was at least a partial barrier to the movements of fish. The existing data suggest that densities of fish are consistently higher in the reach of the Athabasca River from Fort McMurray to Cascade Rapids than in the reach immediately upstream of these rapids. They based this statement on CPUE values generated from gillnet and minnow seine catches.

The Athabasca River between Fort McMurray and the Peace-Athabasca Delta is within the former AOSERP study area. As such, the mainstem river and its tributaries have been intensively studied (Wallace and McCart 1984). Species composition, fish distribution and life histories of major fish species have been documented. As many as 27 species of fish have been identified in the area. Many of the major fish species utilize the Athabasca River

mainstem as a migratory route between overwintering, summer feeding, and spawning areas. The relative abundance of various fish utilizing the Athabasca River mainstem in the vicinity of Mildred Lake has been provided by Bond (1980). Trout-perch were the most abundant species (25% of all catches) followed by longnose and white suckers (32%). Lake whitefish (8%) and goldeye (10%) were common, followed by walleye (6%), northern pike (3%), and yellow perch (1%).

Since 1984, several fisheries inventories have been completed in the area. In 1988, Beak completed an inventory in the vicinity of the Suncor Tar Sands Plant (B. Schelast, pers. comm.). Fisheries surveys on the mainstem river and several tributaries (e.g., MacKay River) also have been conducted on a regular basis as part of Syncrude's monitoring program (T. VanMeer, Environmental Coordinator, Syncrude Canada Ltd., pers. comm.).


3.2 PRESENT STUDY

The present study area extended from the Peace-Athabasca Delta (Km 0.0) to Jasper Lake (Km 1278.0). The Athabasca River was divided into 10 major reaches, based on river gradient, channel morphology, and point sources of industrial and domestic effluent. Ten intensive survey sites (one in each reach) were established in sections of river considered representative of habitat conditions within that particular reach (refer to Appendix G for maps of sampling locations at intensive survey sites).

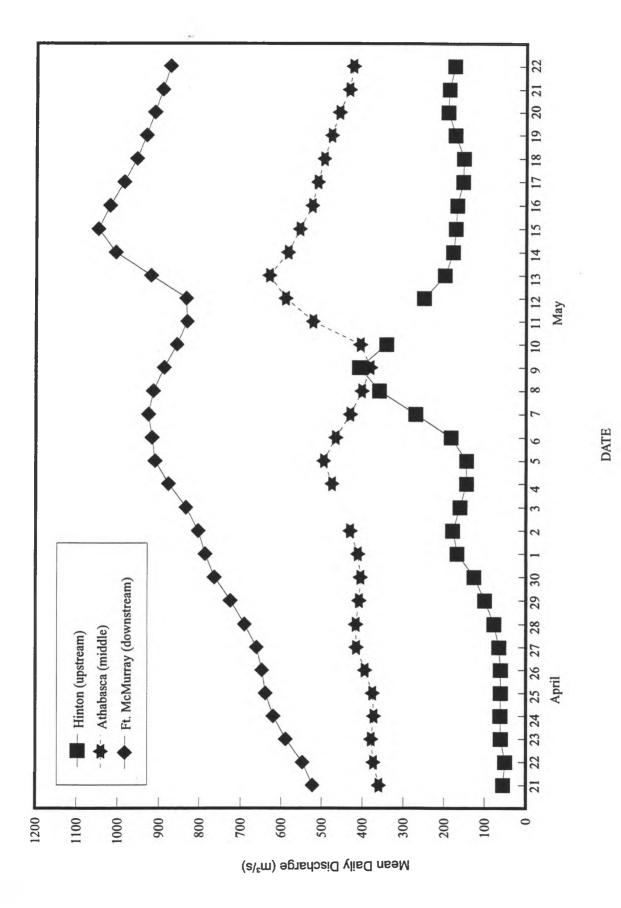

The Athabasca River can exhibit widely fluctuating annual flows. The hydrograph in Figure 3.1a illustrates the seasonal variations at three Water Survey of Canada gauging stations; Hinton (upstream), Athabasca (middle), and Fort McMurray (downstream) for the period 1965-1990. Lowest discharges occur during winter months (i.e., January, February, March, and December), with flows peaking in late June and early July. By mid-summer, flows are already decreasing, stabilizing by early December.

Figure 3.1b illustrates mean daily discharges during the study period for the Athabasca River at Hinton, Athabasca, and Fort McMurray. Discharges during the study period were lowest at Hinton and highest at Fort McMurray. This difference reflects the addition of tributary waters to the mainstem Athabasca River. Water-level fluctuations were similar at all three locations, but a lag time of six days occurred between Hinton and Fort McMurray.

The Athabasca River has a moderate gradient in its upper and middle reaches (Figure 3.2). Reach lengths ranged from 52 to 189 km; average channel gradients ranged from 0.08 to 1.37 m/km (Table 3.1).

Mean monthly discharge (m³/s) at three stations on the Athabasca River from 1965 to 1990 (Source: Historical streamflow summary, Alberta. Env. Can. 1991). Figure 3.1a

Mean daily discharges measured at Hinton, Athabasca and Fort McMurray, 21 April to 22 May 1992. Source: River Forecast Centre, Alberta Environment. Figure 3.1b

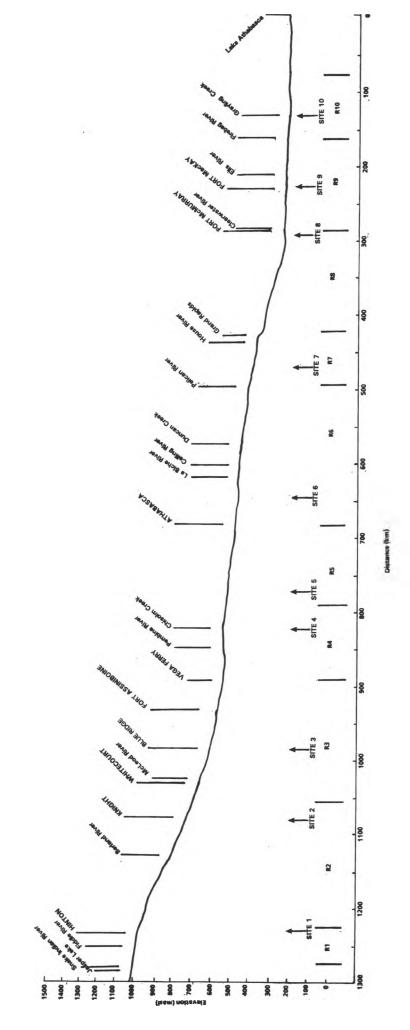


Figure 3.2 Gradient profile of the Athabasca River in Alberta, illustrating reach (R) boundaries, site locations, and major features.

Table 3.1	Major sampling reaches of the Athabasca River from Jasper Lal	ke
	(Km 1278.0) to the Embarras River (Km 78.7).	

REACH	REACH DESIGNATION	REACH LOCATION (km)	REACH LENGTH (km)	AVG. CHANNEL GRADIENT (m/km)	INTENSIVE SURVEY SITE LOCATION (km)
RI	Hinton	1278.0 - 1226.0	52.0	0.99	1232.4 - 1236.8
R2	Knight	1226.0 - 1056.9	169.1	1.37	1099.5 - 1108.2
R3	Blue Ridge	1056.9 - 890.0	166.9	0.92	1000.4 - 1008.0
R4	Vega Crossing	890.0 - 790.0	100.0	0.28	819.5 - 829.5
R5	Lesser Slave River	790.0 - 683.5	106.5	0.39	773.0 - 782.0
R6	AlPac	683.5 - 494.5	189.0	0.35	626.0 - 634.2
R7	Pelican Rapids	494.5 - 423.0	71.5	0.98	452.2 - 461.1
R8	Fort McMurray	423.0 - 288.0	135.0	0.93	296.0 - 305.0
R9	Fort MacKay	288.0 - 163.0	125.0	0.17	229.8 - 239.3
R10	Embarras River	163.0 - 78.7	84.3	0.08	128.1 - 136.0

[&]quot;Gradients calculated from contour intervals (1:50 000 NTS maps).

A summary of the physical and chemical parameters recorded for the Athabasca River during the study is provided in Table 3.2. Water temperatures ranged from 6.0 to 14.0 °C. Water clarity tended to decrease in a downstream direction; conductivity values ranged from 209 to 316 μ S/cm.

Major channel types in the Athabasca River were mapped for the entire mainstem in the study area. Type M (Multiple Channel) was the dominant channel type encountered in some of the upper areas of the Athabasca River (i.e., reaches 2 and 3) (Table 3.3), whereas Type U (Unobstructed Channel) was dominant in the midsections (i.e., reaches 4 to 8). In the farthest downstream reaches (reaches 9 and 10), the dominant channel habitat reverted back to Type M. The length and percent composition of channel types within each reach and at each site are discussed in the following subsections. Channel habitat types are described in Appendix B1.

Eighteen bank habitat types were recorded at the 10 intensive survey sites (refer to Appendix B2 for bank type description and codes). Armoured/stable bank habitats predominated at sites 1, 4, and 7, whereas sites 5, 6, 9, and 10 exhibited primarily erosional bank habitats. The percent composition of bank habitats in each intensive survey site are presented in the following sub-sections. The distribution of bank habitat types at each intensive survey site is illustrated in Appendix H.

In total, 20 fish species were captured from the Athabasca River study area during the 1992 spring sampling programs (Table 3.4). For discussion purposes, fish species were classed as sport fish (i.e., species of sport, domestic, or commercial fisheries importance), coarse fish (i.e., catostomids), and forage fish (e.g., cyprinids and cottids). Of the nine sport fish species captured, Arctic grayling, bull trout, and rainbow trout were encountered only in the upper reaches of the Athabasca River, whereas walleye, northern pike, and goldeye tended to be most abundant in downstream sections. At Site 1, a few individual rainbow trout and lake whitefish were captured during a concurrent radio-telemetry study for Northern River Basins Study (Sub-Project 3121). Mountain whitefish was the dominant sport fish species in the study area, contributing 37.9% to the total sport and coarse fish catch (Table 3.5). Bull trout and rainbow trout combined contributed <1% to the total. Longnose sucker, the most abundant coarse fish species, was distributed throughout the study area and contributed 27.5% to the total sport and coarse fish catch.

Table 3.2 Physical and chemical water quality parameters recorded in the Athabasca River, 1992.

SITE (Reach)	SURVEY DATE	WATER TEMPERATURE (°C)	WATER CLARITY (m)	CONDUCTIVITY (μS/cm)
I	26 Apr 27 Apr.	6.0	0.46	•
2	22 Apr 23 Apr.	6.5	0.80	209
3	25 Apr 26 Apr.	7.0	0.44	307
4	28 Apr 30 Apr.	13.5	0.43	314
5	2 May - 3 May	13.5	0.36	289
6	5 May - 6 May	14.0	0.38	284
7	9 May - 10 May	13.0	0.38	277
8	13 May - 14 May	11.0	0.21	258
9	16 May - 17 May	11.0	0.28	268
10	19 May - 20 May	8.0	0.24	316

Table 3.3 Availability and percent composition of major channel types within reaches of the Athabasca River, spring 1992.

		СОМ	LENGTH POSITION CHANNEL	OF MAJOR			СОМР	ENGTH A OSITION HANNEL	OF MAJOR
REACH	MAJOR CHANNEL TYPE	No. units ^b	Total Length (km)	Percent Composition (%)	REACH	MAJOR CHANNEL TYPE	No. Units ^b	Total Length (km)	Percent Composition (%)
1	U	6	38.2	73	6	U	12	183.0	97
	S	6	3.6	7		S	11	6.0	3
	M	2	10.2	20		М	0	-	0
	Combined	14	52.0	100		Combined	23	189.0	100
2	U	43	74.6	44	7	Ŭ	3	70.3	98
	S	12	9.6	6		S	3	1.2	2
	M	35	34.9	50		М	0	-	0
	Combined	90	169.1	100		Combined	6	71.5	100
3	Ŭ	29	53.3	32	8	Ŭ	3	132.6	98
	S	11	10.2	6		S	2	1.8	1
	M	18	103.4	62		М	1	0.6	1
	Combined	58	166.9	100		Combined	6	135.0	100
4	U	11	90.4	90	9	U	31	43.0	35
	S	6	3.6	4		S	15	13.8	11
	M	4	6.0	6		М	22	67.8	54
	Combined	21	100.0	100		Combined	68	125.0	100
5	U	6	102.6	96	10	U	19	26.6	32
	S	2	0.6	1		S	12	12.1	14
	M	3	3.3	3		М	8	45.6	54
	Combined	11	106.5	100		Combined	39	84.3	100

^{*} U = Unobstructed; S = Singular; M = Multiple (see Appendix B1 for detailed explanations).

^b Number of times each major channel type occurred within the length of each reach.

In total, 2425 forage fish were captured. Flathead chub was the dominant species and contributed 45.4% to the forage fish species composition. Summary information for catch-per-unit-effort (CPUE) and percent composition of fish species encountered in each intensive survey site is presented in the following section. Raw catch data and CPUE values for all sampling methods are presented in Appendix D, Tables D1 to D19.

Table 3.4 Fish species encountered in the mainstem Athabasca River, spring 1992.

				DISTRIBUTION	
SPECIES	CODE	SCIENTIFIC NAME	Km 1236.8-1000.4 (Sites 1-3)	Km 452.2-829.5 (Sites 4-7)	Km 128.1-305.0 (Sites 8-10)
SPORT FISH					
Arctic grayling	ARGR	Thymallus arcticus (Pallas)	*		
Bull trout	BLTR	Salvelinus confluentus (Suckley)	*		
Rainbow trout	RNTR	Oncorhynchus mykiss (Walbaum)	#a		
Mountain whitefish	MNWH	Prosopium williamsoni (Girard)		*	
Lake whitefish	LKWH	Coregonus clupeaformis (Mitchill)	 a≉a	*	*
Walleye	WALL	Stizostedion vitreum (Mitchill)		*	
Northern pike	NRPK	Esox lucius Linnaeus	*	*	•
Goldeye	GOLD	Hiodon alosoides (Rafinesque)		*	*
Burbot	BURB	Lota lota (Linnaeus)	*	*	*
COARSE FISH					
Longnose sucker	LNSC	Catostomus catostomus (Forester)		*	*
White sucker	WHSC	Catostomus commersoni (Laepede)	*	*	*
FORAGE FISH					
Brook stickleback	BRST	Culaea inconstans (Kirtland)			*
Emerald shiner	EMSH	Notropis atherinoides Rafinesque		*	*
Flathead chub	FLCH	Hybopsis gracilis (Richardson)		*	
Fathead minnow	FTMN	Pimephales promelas (Rafinesque)		*	*
Lake chub	LKCH	Couesius plumbeus (Agassiz)	*	*	*
Longnose dace	LNDC	Rhinichthys cataractae (Valenciennes)	*	•	*
Spottail shiner	SPSH	Notropis hudsonius (Clinton)	*	*	*
Trout-perch	TRPR	Percopsis omiscomaycus (Walbaum)	•	*	*
Spoonhead sculpin	SPSC	Cottus ricei (Nelson)			*
Sculpin spp.			*	*	*

^{*} Captured during concurrent radio telemetry study.

Forty-seven tributaries of the Athabasca River were sampled during the spring survey period (Table 3.6). A general discussion of tributaries within each reach of the Athabasca River is presented in the following subsections. Detailed information relating to habitat, species captured, and an evaluation of each tributary's potential for sport fish production are presented in Appendix E.

Percent composition of fish species captured in the mainstem Athabasca River study area by all sampling methods, spring 1992. Table 3.5

	S	Site 1	S	Site 2	Si	Site 3	Si	Site 4	Si	Site 5	Si	Site 6	S	Site 7	S	Site 8	S	Site 9	Sil	Site 10
Fish Species	No.	Percent Comp.	Š.	Percent Comp.																
Sport Fish																				
Arctic grayling			20	31.7																
Bull trout	2	1.3	2	3.2																
Rainbow trout	2	1.0	2	3.2	1	f														
Mountain whitefish	169	75.4	6	14.3	102	61.5	54	24,8	99	36.5	2	3.2	14	33.3						
Lake whitefish							-	6,0									1	3.1		
Walleye					4	2.4	17	7.8	6	4.9	24	38.1	3	7.1	51	55.4	Ξ	34.4	4	25
Northern pike			-	1.6	\$	3.0	7	6:0	3	1.7	4	6.3			4	4.3	c	9,4	2	31,3
Goldeye							6	4.1	9	3.3	1	11.1			25	27.2	00	25,0	3	18.7
Burbot	3	1,3	4	6.3	7	4.2	5	2.3	4	2.2	-	9,1	2	4.00	2	2.2				
Coarse Fish																				
Longnose sucker	47	21.0	24	38,1	28	6.91	100	45.9	20	27.6	91	25,4	23	54.8	6	8.6	4	12.5	-	6.3
White sucker			-	1,6	20	12.0	30	13.8	43	23.8	6	14.3		þ	1	1.1	2	15.6	3	18.7
TOTAL	224	100	63	100	991	100	218	100	181	100	63	100	42	100	92	100	32	100	91	100
Forage Fish																				
Brook stickleback															2	6.0				
Emerald shiner		•					103	25,9	15	8.9	9/	19.0	44	16.4	00	3.8	26	8.9		
Flathead chub							84	21,1	82	37.3	110	27.4	138	51.3	121	57.6	137	35.9	429	8'06
Fathead minnow					à				-	0.5					11	5.2	7	0.5		
Lake chub	6	15.0	3	10.7	7	56.9	54	13.5	4	1.8	126	31.4	2	1.0	7	6.0	32	8.4		
Longnose dace					2	7.7	10	2.5	32	14.5	13	3.2	9	2.2	7	3.6	6	2.4	-	0.2
Spottail shiner			7	7.1			86	24.6	13	5.9	21	5.2					9	9.1	-	0,2
Trout perch			4	14,3	2	7.7	41	10.3	29	13.2	47	11.7	69	25.6	44	21.0	162	42.5	41	80
Spoonhead sculpin	1	5.0			2	7.7			3	1.4			=	6.0	7	6.0	7	0.5		
Sucker spp.			61	61.9	6	34.6			12	5.4	S	1.3	-	0.4	=	5.2	2	0.5		
Sculpin spp.					_	3.8	-	0.3							h					
Cyprinid spp.	16	0.08		1	3	9.11	7	1.8	29	13.2	3	8.0	00	3.0	7	6.0	3	60		
TOTAL	20	100	28	100	26	100	398	100	220	100	401	100	569	100	210	100	381	100	472	100

Table 3.6 Athabasca River tributaries sampled during the spring survey 1992.

REACH	TRIBUTARY	KM LOCATION	REACH	TRIBUTARY	KM LOCATION
1	Rocky River	1277.6	5	Unnamed Creek	772.5
	Snake Indian River	1272.1		Baptiste Creek	696.3
	Moosehorn Creek	1265.8	6	Tawatinaw River	683.5
	Fiddle River	1261.7		La Biche River	622.1
	Solomon Creek	1249.8		Calling River	606.7
	Maskuta Creek	1234.9		La Petite Riviere Jaillante	594.4
2	Oldman Creek	1175.2		Duncan Creek	573.5
	Nosehill Creek	1136.5		Parallel Creek	505.8
	Berland River	1129.1		Pelican River	497.7
	Marsh Head Creek	1102.9	7	House River	439.0
	Pine Creek	1102.8	8	Hangingstone River	 -
	Pass Creek	1077.4		Little Fishery River	292.1
	Two Creeks	1076.2		Clearwater River	286.5
	Oldman Creek	1056.9	9	Steepbank River	253.9
3	Sakwatamau River	1027.3		Muskeg River	239.2
	McLeod River	1026.3		MacKay River	235.3
	Christmas Creek	1000.6		Ells River	217.9
	Corbett Creek	965.5		Tar River	215.9
	Goose Creek	843.1		Pierre River	201.5
	Freeman River	936.0	10	Firebag River	162.9
	Horse Creek	926.2		Grayling Creek	130.8
	Clearwater Creek	897.5	- 15.51		
4	Timeu Creek	884.1			
	Pembina River	845.5			
	Chisholm Creek	824.2			
	Rourke Creek	807.0			

3.3 REACH 1

3.3.1 Physical Habitat

Reach 1 (R1) of the Athabasca River extended from Jasper Lake to Hinton and was 52 km in length (Figure 1.1). This reach exhibited a moderate gradient (0.99 m/km) throughout most of its length, although a few localized sections of high gradient were encountered (Table 3.1; Figure 3.2).

Water clarity was low to moderate in R1, because of glacial silt and sediment input from wind and wave action on exposed depositional bars in Jasper and Brule lakes.

Type U and Type M channels contributed 73 and 20%, respectively, to the total available channel length in R1 (Table 3.3). Type S channel, a minor component in the reach, contributed 7% to the total channel length (refer to Appendix B1 and B2 for habitat codes and descriptions).

The intensive survey site (Site 1) in R1 was 4.4 km long and located upstream of Hinton, approximately 1 km downstream of Highway 40. Type U, the dominant channel at Site 1, contributed 75% to the total available channel length (Table 3.7). The remainder of the site was made up of Type S channel (25%).

Table 3.7 Percent composition of major channel and bank habitat types at Site 1, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE	LENGTH (km)	PERCENT COMPOSITION
U	3.3	75	Al	1.5	20
S	1.1	25	A2	2.4	32
M	-	-	A3	1.3	17
			D1	0.6	8
			E1	0.2	3
1			A1/D2	1.5	20
TOTAL	4.4	100		7.5	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

At Site 1, five of the 18 bank types identified in the Athabasca River were recorded. Armoured bank habitats (A1, A2, and A3) were dominant and contributed 69% to the total. This was the highest value recorded for armoured bank habitat at any intensive survey site. Depositional (D1) and erosional (E1) habitats were an infrequent component of the bank complex; together they contributed only 11% to the total available bank habitat. One special habitat feature noted at this site was a large backwater (BW) found in association with a steep eroding bank.

3.3.2 Fish Resources

Fish species diversity at Site 1 was low. Four sport fish species, one coarse fish species, and two species of forage fish were encountered (Table 3.8).

Mountain whitefish, the most abundant sport fish species recorded at Site 1, contributed 76.4% to the combined sport and coarse fish catch (Table 3.8). The presence of most size-classes (adult, and juvenile) indicated use of the area by this species for feeding and rearing. Habitats utilized by adult mountain whitefish at Site 1 were located in areas of moderate current velocities adjacent to A1, A2, and E1 bank types. Larger juveniles selected habitats of higher velocities (i.e., RAPIDS), whereas smaller juveniles utilized areas of low to moderate velocities adjacent to armoured/stable (A1 and A2) bank types.

Rainbow trout, bull trout, and burbot were the other sport fish species recorded at Site 1; all three species exhibited low abundance indices in the area (Table 3.8; Figure 3.3). Insufficient numbers of these species were captured to determine habitat selection preferences.

^b Refer to Appendix B2 for habitat codes and descriptions.

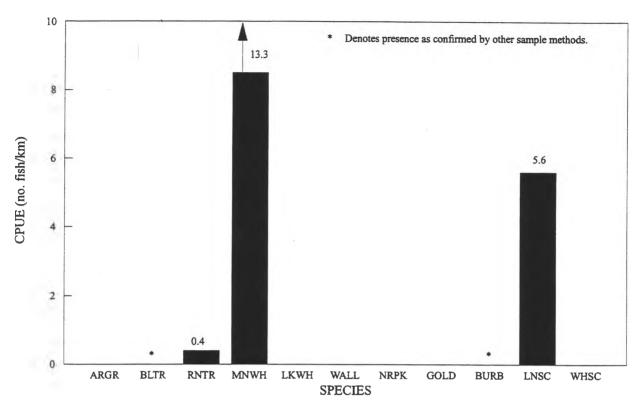


Figure 3.3 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 1, Athabasca River, spring 1992

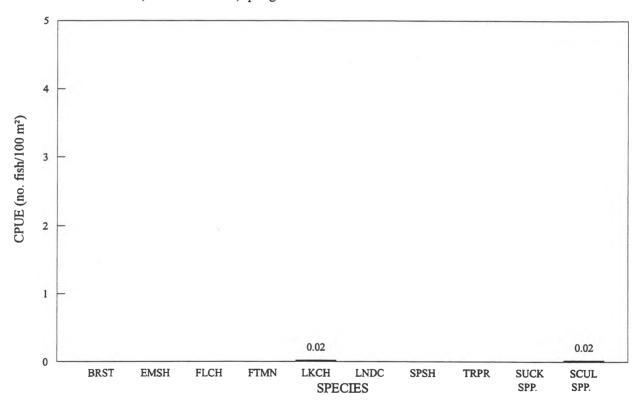


Figure 3.4 Catch-per-unit-effort values for forage fish captured by beach seining at Site 1, Athabasca River, spring 1992.

Longnose sucker was the only coarse fish species captured at Site 1. The presence of adults and juveniles in the catch suggested a use of the area for feeding and rearing. Both size-classes were most abundant in areas of low current velocities in association with D1 bank types. Forage fish species diversity and catch rates at Site 1 were low (Table 3.8; Figure 3.4). These fish were captured in shallow-water habitats exhibiting low current velocities adjacent to D1 bank types.

Table 3.8 Fish species composition at Site 1, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-O-Y	JUV/AD*	CAPTURED	/6	SPECIES	CAPTURED ^b	/0
Arctic grayling					Flathead chub		
Mountain whitefish		*	179	76.4	Lake chub	1	5.5
Lake whitefish					Longnose dace		
Bull trout	l	*	3	1.3	Emerald shiner		
Rainbow trout	l .	*	2°	0.9	Spottail shiner		
Northern pike					Fathead minnow		
Walleye					Trout-perch		
Goldeye					Brook stickleback		
Burbot			3	1.3	Spoonhead sculpin		
Longnose sucker		*	47	20.1	Sculpin spp.	1	5.5
White sucker					Sucker spp.		
					Cyprinid spp.	16	88.9
TOTAL			234	100		18	100

^{*} Combined due to difficulties in differentiating between these life stages solely on the basis of size.

3.3.3 Tributaries

Six tributaries were sampled in R1 (Table 3.9). For the most part, RUN (R3) was the dominant habitat followed by RIFFLE (RF) and RIFFLE/BOULDER GARDEN (RF/BG). POOL habitats were recorded only in Solomon Creek and were created by numerous beaver impoundments. FLAT habitat was a minor component of the overall available habitat in most streams. An exception was Moosehorn Creek, where, because of the presence of shallow beaver impoundments, FLAT habitat contributed 75% to the total available habitat.

The dominant substrate encountered in most tributaries consisted mainly of cobbles, gravels, and pebbles. Exceptions were Solomon and Moosehorn creeks, where silt was the predominant substrate, a reflection of beaver activity (i.e., beaver ponds) in these systems.

^b Data for all sampling methods combined.

^c Captured during concurrent radio telemetry study.

Table 3.9	Tributaries	sampled i	in Reach	1,	Athabasca	River,	spring 1992.	
-----------	-------------	-----------	----------	----	-----------	--------	--------------	--

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Rocky River	1277.6	230	150	5-15	0.3	Erosional	MNWH	R3 & RF
Snake Indian River	1272.1	320	120	15-30	0.8	Erosional	LKCH, MNWH	R3
Moosehorn Creek	1265.8	175	150	<5	0.3	Erosional	-	F3
Fiddle River	1261.7	450	140	15-30	0.3	Erosional	-	RA/BG & RF/BG
Solomon Creek	1249.8	200	40	10-15	0.3	Erosional	BKTR	R3
Maskuta Creek	1234.9	165	100	<5	0.3	Erosional	-	R3

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

The largest tributary sampled in Reach 1 was the Snake Indian River; its lower reach contained suitable habitat for all life stages of cold water sport fish species, including bull trout, rainbow trout, and mountain whitefish.

The lower reaches of Moosehorn Creek were inaccessible to fish from the Athabasca River because of the presence of beaverdams. Suitable habitat for rearing was available for trout species and mountain whitefish, but the small size of the system provided limited habitats for larger size-classes of fish.

The lower reaches of Maskuta and Solomon creeks were accessible to fish from the Athabasca River during spring flows, with suitable habitats available for use by adult sport fish species (i.e., ARGR, MNWH, RNTR, and BLTR) for feeding and overwintering. Spawning areas were available for Arctic grayling and rainbow trout, and suitable rearing areas for these species also were present. The presence of large beaverdams in the lower reaches of Solomon Creek limited its potential as a spawning area for Athabasca River fish, although these are only temporary obstructions. Watters (1975) recorded a rainbow trout population during his investigations of Solomon Creek. In the present study, brook trout was the only species recorded from the creek.

Three mountain whitefish were captured in the Rocky River. At the time of sampling, low discharge rates in this stream reduced the potential for fish use. However, under higher flows, the system could provide suitable spawning and rearing habitat for mountain whitefish.

When sampled in May, the Fiddle River at its confluence with the Athabasca River was dry; this prevented fish movement into or out of the tributary. Higher stream flows during the summer period could provide access to habitats in the lower reaches suitable for rearing and spawning use by fall spawners, such as mountain whitefish and bull trout.

3.4 REACH 2

3.4.1 Physical Habitat

Reach 2 (R2) was one of the longest reaches in the study area. The Athabasca River in this reach flowed in a northeasterly direction over its 169.1 km length. The average

^b Species code explanation provided in Table 3.4.

Refer to Appendix B3 for habitat codes and descriptions.

gradient of 1.37 m/km was the highest recorded in all surveyed reaches (Table 3.1). Water clarity in R2 also was the highest recorded for all reaches (Table 3.2).

The dominant channel habitat in Reach 2 was Type M channel, which contributed 50% to the total available channel length (Table 3.3); Type U and Type S channel types contributed 44 and 6%, respectively (refer to Appendix B1 and B2 for habitat codes and descriptions).

The intensive survey site (Site 2), located in the upper half of the reach, was 8.7 km in length (Table 3.10). Type M and Type U channels contributed 56 and 44%, respectively, to the total available channel length at Site 2.

Site 2 was characterized by high diversity of bank habitat types; ten types were recorded (Table 3.10). Depositional bank habitats (D2 and D3) predominated (43% of the total) followed by armoured/stable habitats (A1, A2, A3, and A4), which contributed 39%. Four types of erosional habitats were present, but their combined contribution was low (16% of the total). One small, shallow BW habitat was noted in association with an armoured bank.

Table 3.10 Percent composition of major channel and bank habitat types at Site 2, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE*	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE	LENGTH (km)	PERCENT COMPOSITION
U	3.8	44	Al	2.7	13
S	-	-	A2	3.5	17
M	4.9	56	A3	1.5	8
			A4	0.2	1
			D2	7.8	39
			D3	0.9	4
			E4	0.5	2
			E4B	1.0	5
			E5	0.2	1
			E6	1.5	8
			A2/E3	0.3	2
TOTAL	8.7	100		20.1	100

[&]quot; U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

3.4.2 Fish Resources

In total, eleven fish species were recorded at Site 2. Mountain whitefish, the dominant sport fish species, contributed 71.6% to the combined sport and coarse fish catch (Table 3.11). Catch rates for mountain whitefish at Site 2 were lower than those reported for this species at Site 1 (Figure 3.5). Arctic grayling also were relatively common at this site. Burbot, bull trout, rainbow trout, and northern pike were the other sport fish present at Site 2, but their contributions to the total catch were relatively minor.

^b Refer to Appendix B2 for habitat codes and descriptions.

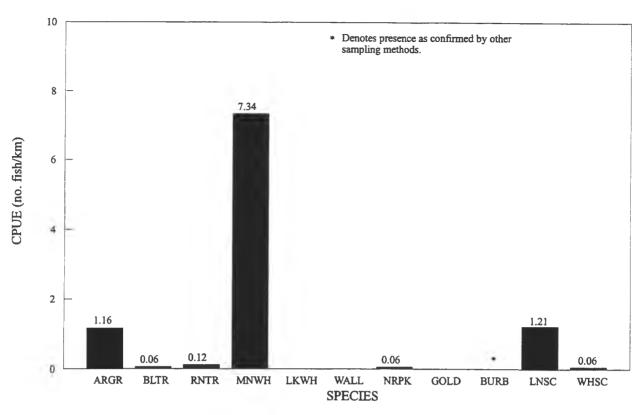


Figure 3.5 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 2, Athabasca River, spring 1992.

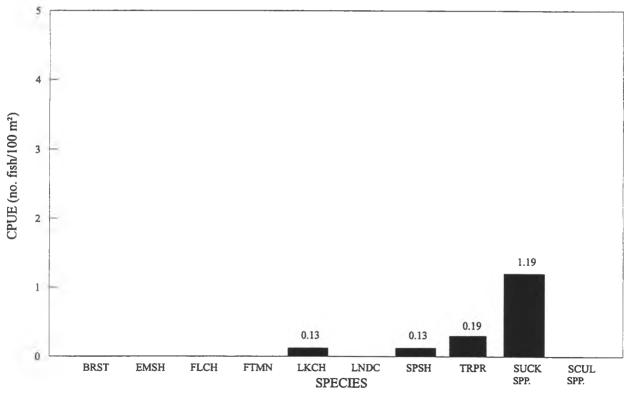


Figure 3.6 Catch-per-unit-effort values for forage fish captured by beach seining at Site 2, Athabasca River, spring 1992.

Table 3.11	Fish species	composition	at	Site	2,	Athabasca	River,	spring
	1992.							

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-O-Y	JUV/AD*	CAPTURED	/6	SPECIES	CAPTURED	70
Arctic grayling		*	20	10.5	Flathead chub		
Mountain whitefish		*	136	71.6	Lake chub	3	10.7
Lake whitefish					Longnose dace		
Bull trout		*	2	1.1	Emerald shiner		
Rainbow trout		*	2	1.1	Spottail shiner	2	7.1
Northern pike	li	*	1	0.5	Fathead minnow		
Walleye					Trout-perch	4	14.3
Goldeye					Brook stickleback	i	
Burbot		*	4	2.1	Spoonhead sculpin		
Longnose sucker		*	24	12.6	Sculpin spp.		
White sucker			1	0.5	Sucker spp.	19	67.9
					Cyprinid spp.		
TOTAL			190	100		28	100

^{*} Combined due to difficulties in differentiating between these life stages solely on the basis of size.

The presence of adult and juvenile mountain whitefish in the catch suggested a use of this area for most life requisites. Habitats selected by adults were generally associated with A1, A3, and D2 bank types. These areas were characterized by moderate velocities and boulder substrates. Larger juvenile mountain whitefish were most abundant in RIFFLE/RAPID habitats adjacent to D2 bank types characterized by moderate to high velocities. Smaller juveniles selected shallow depositional habitats (i.e., D2) characterized by moderate velocities and gravel/cobble substrates.

Arctic grayling also utilized habitats adjacent to A1, A3, and D2 bank types; these habitats were characterized by gravel and cobble substrates and high velocities.

Burbot and northern pike were not abundant at Site 2 during the sampled period. Burbot were absent in the electrofishing catch but were captured by setlines set adjacent to depositional habitats (i.e., D2 and D3). These habitats exhibited low current velocities with gravel/cobble substrates. The captured burbot were adults taken from depths that ranged from 1.3 to 2.0 m. The single northern pike captured was a gravid male. Suitable spawning habitat for this species was not identified at Site 2, and as such, it is unknown whether this species would spawn in the immediate vicinity or in some of the tributaries. This individual was captured from a shallow backwater adjacent to an A3 bank type.

Longnose sucker was the dominant coarse fish in the catch at Site 2. Areas associated with A3 bank types were utilized by both adults and juveniles. These habitats exhibited moderate current velocities; overhead cover was provided by turbidity. Only one adult white sucker was captured. The abundance of juvenile suckers in beach seine catches indicates a use of the area for rearing and possibly for spawning.

Lake chub, spottail shiner, and trout-perch were the forage species recorded at Site 2. All three species exhibited a similar abundance in the catch and a sporadic distribution throughout the survey site (Figure 3.6). They were captured in areas of moderate current

b Data for all sampling methods combined.

velocities and turbidity adjacent to armoured/stable bank types (i.e., A1 and A2 types). Instream cover was provided by large substrate (i.e., cobble and boulder).

3.4.3 Tributaries

Eight tributaries were sampled in Reach 2 (Table 3.12). RUN (R3) was the dominant habitat in four of the tributaries, whereas BOULDER/GARDEN (RA/BG, RF/BG, R3/BG) habitat was dominant in the remainder.

Table 3.12 Tributaries sampled in Reach 2, Athabasca River, spring 1992.

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY' (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED'	DOMINANT HABITAT
Oldman Creek	1175.2	100	100	<5	0.5	Erosional	MNWH, BKTR, RNTR, LNDC, LNSC	RA/BG
Berland River	1129.1	400	400	30-60	>1.0	Erosional	MNWH, ARGR, BURB, LNDC	R2 & R3
Nosehill Creek	1136.5	220	100	5-15	0.4	Erosional	LNDC	RF/BG
Marsh Head Creek	1102.9	209	120	5-15	0.4	Erosional	-	R3/BG
Pine Creek	1102.8	285	120	5-15	0.4	Erosional	-	R3/BG
Pass Creek	1077.4	210	120	15-30	0.3	Erosional	Scul. spp.	R3
Two Creeks	1076.2	280	130	15-30	0.7	Erosional	TRPR, Sucker spp., Scul. spp.	R3
Oldman Creek	1056.9	397	150	15-30	0.3	Erosional	LKCH, LNDC, Sucker spp.	R3

^a Upstream boundary - distance in metres from confluence with Athabasca River.

Substrate in the examined tributaries consisted mainly of boulders, cobbles, pebbles, and gravels. Fines (silt/sand) did not contribute appreciably to the substrate composition in any of these systems.

Sport fish were captured in two tributaries, Oldman Creek (Km 1175.2) and the Berland River. The lower reaches of Oldman Creek did provide potential rearing habitats for trout species, mountain whitefish, and Arctic grayling. The size of the creek, however, limited use by larger size-classes of fish. Mountain whitefish, Arctic grayling, and burbot were captured in the lower reaches of the Berland River. Feeding and overwintering habitats for adult sport fish from the Athabasca River were available in the sampled section. There also appeared to be suitable rearing areas for the species captured in the Berland River.

Of the remaining tributaries, Two Creeks was the only tributary that provided suitable feeding and overwintering habitats for adult sport fish residing in the Athabasca River. Potential spawning and rearing habitats were not available in the sampled section of this tributary. The lower reaches of Pine, Marsh Head, Nosehill, Pass, and Oldman creeks had low potential for any of the life history requisites by sport fish from the Athabasca River mainstem.

^b Species code explanation provided in Table 3.4.

^e Refer to Appendix B3 for habitat codes and descriptions.

3.5 REACH 3

3.5.1 Physical Habitat

In Reach 3 (R3) the Athabasca River flowed in a northeasterly direction (Figure 1.1) for a distance of 166.9 km (Table 3.1). The average channel gradient was 0.92 m/km, with moderate current velocities encountered in many sections.

The dominant channel type in R3 was Type M (62% of the total channel length; Table 3.3). Type U and Type S channels contributed 32 and 6%, respectively, to the total available channel length (refer to Appendix B1 and B2 for habitat codes and descriptions).

The intensive survey site (Site 3) was 7.6 km in length. The dominant channel type was Type M (52% of the total channel length). This channel type was found predominantly in the upper and lower sections of the site. The lower section was characterized by numerous large islands and flowing side channels. Type U and Type S channels contributed 37 and 11%, respectively, to the total channel length.

Depositional bank types (D1-D3) were dominant at Site 3 (49% of the total available bank habitat), although both armoured and erosional types also were well represented (Table 3.13). Six erosional bank types were recorded; together they contributed 24% to the total bank habitat. Armoured/stable banks were co-dominant with erosional banks. The armoured/stable banks consisted mainly of A1 and A2 types. Two SN habitats were recorded at Site 3; these were situated within the island complex.

Table 3.13 Percent composition of major channel and bank habitat types at Site 3, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
Ü	2.8	37	Al	2.7	12
S	0.8	11	A2	2.3	10
M	4.0	52	A3	0.3	I
			D1	1.8	8
			D2	8.1	36
			D3	1.2	5
			ĔI	2.4	11
			E2	0.9	4
			E3	0.3	I
			E4	0.3	1
			E4B	0.8	4
			E6	0.6	3
			A1/E6	0.1	1
			A2/E3	0.6	3
TOTAL	7.6	100		22.4	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

^b Refer to Appendix B2 for habitat codes and descriptions.

3.5.2 Fish Resources

Nine fish species were encountered at Site 3 (Table 3.14). Mountain whitefish remained the dominant sport fish species and contributed 58.6% to the total sport and coarse fish species catch. Mountain whitefish adults and juveniles were the only maturity stages in the catch. Adults tended to utilize areas of high current velocities associated with A2, E2, and D2 bank types, whereas juveniles preferred D2 and D3 bank types in areas of moderate velocities.

Rainbow trout and bull trout were absent from the catch. Walleye, northern pike, and burbot were relatively abundant compared with their abundance in upstream reaches (Figure 3.7). Walleye were captured in habitats with moderate velocities and cobble/gravel substrates, adjacent to E1 bank types. Three of the captured walleye were ripe males. It is unknown whether these individuals would spawn in the vicinity (i.e., suitable spawning areas were not identified) or in some of the larger tributaries (e.g., McLeod River). Northern pike (two individuals were gravid females) selected SN habitats and, to a lesser extent, small BW habitats associated with A2 bank types. In the Peace River, SN habitats were critical habitats utilized by northern pike for spawning and rearing during the spring period (Hildebrand 1990). During the present study, spawning habitats within the SNYES in the Athabasca River were marginal. During higher flow discharges, these areas would be more suitable for spawning northern pike.

Most burbot (n=5) were taken by setline. They tended to select habitats associated with D1 bank types (i.e., low current velocities, substrate, and depths of 4 m) and, to a lesser extent, SN habitats. One individual was captured by electrofishing in an area of fast current velocity, with cobble/boulder substrates, adjacent to an A2 bank type. The other individual was captured by beach seine in habitats associated with D2 bank types. The area was characterized by slow current velocities with cobble/boulder substrates.

Longnose sucker was the dominant coarse fish species at Site 3, contributing 20.7% to the combined sport and coarse fish catch. Adults and larger juveniles captured during electrofishing surveys were recorded in association with E1 and D3 bank types. Habitats selected in these areas exhibited moderate to high current velocities, and cobble/boulder substrates. Cover was provided by turbidity and submerged woody debris. The presence of adult males in both gravid and ripe spawning condition indicated that suitable habitat may have been available for spawning in this reach. White suckers were more abundant than at upstream sites. The catch consisted mainly of adults, two of which were in spawning condition (i.e., gravid males). Habitat selection by white suckers was similar to that of longnose suckers.

Lake chub dominated the forage fish catch (Table 3.14), followed by juvenile suckers, longnose dace, sculpins, and unidentified cyprinid species. Catch-per-unit-effort values for beach seines are illustrated in Figure 3.8. Forage fish species at Site 3 were generally recorded in association with D1 and D2 bank types. These areas were characterized by low to moderate current velocities with cobble/gravel/pebble substrates.

Table 3.14 Fish species composition at Site 3, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-O-Y	JUV/AD*	CAPTURED	/0	SPECIES	CAPTURED	/0
Arctic grayling					Flathead chub		
Mountain whitefish		*	102	58.6	Lake chub	12	36.3
Lake whitefish					Longnose dace	2	6.1
Bull trout					Emerald shiner		
Rainbow trout					Spottail shiner		
Northern pike		*	5	2.9	Fathead minnow		
Walleye		*	4	2.3	Trout-perch	3	9.1
Goldeye					Brook stickleback		
Burbot		*	7	4.0	Spoonhead sculpin		
Longnose sucker		*	36	20.7	Sculpin spp.	2	6.1
White sucker		*	20	11.5	Sucker spp.	11	33.3
					Cyprinid spp.	3	9.1
TOTAL			174	100		33	100

^{*} Combined due to difficulties in differentiating between these life stages solely on the basis of size.

3.5.3 Tributaries

Eight tributaries were sampled in Reach 3 (Table 3.12). FLAT habitats dominated four of the tributaries (Corbett, Goose, and Christmas creeks, and the Freeman River). Substrates in these tributaries consisted exclusively of silt. Corbett Creek was inaccessible to fish from the Athabasca River due to the presence of a large beaverdam immediately upstream from the mouth. The stream channel of the Freeman River contained water from its confluence with the Athabasca River to a point approximately 800 m upstream. From this point upstream, the river was dry. Both Corbett Creek and the Freeman River, as well as Goose and Christmas creeks, did not have suitable habitats in their lower reaches to sustain any of the life stages of sport fish residing in the Athabasca River.

RUN (R1, and R2) habitats were dominant in the McLeod and Sakwatamau rivers; substrates consisted primarily of cobbles, pebbles, and gravels. Suitable feeding and overwintering habitats for adult sport fish that reside in the Athabasca River were present in sampled sections of both tributaries. Rearing habitats also were present but to a lesser extent.

The dominant habitat types in Horse and Clearwater creeks were RIFFLE/BOULDER GARDEN (RF/BG) and RIFFLE (RF), respectively. Boulder/cobble substrates were dominant in Horse Creek, whereas smaller substrates (i.e., cobble/gravel) were dominant in Clearwater Creek. Suitable rearing habitat was recorded for most sport fish species, but because of the small size of the creeks, they provided limited feeding and overwintering habitat for larger size-classes.

^b Data for all sampling methods combined.

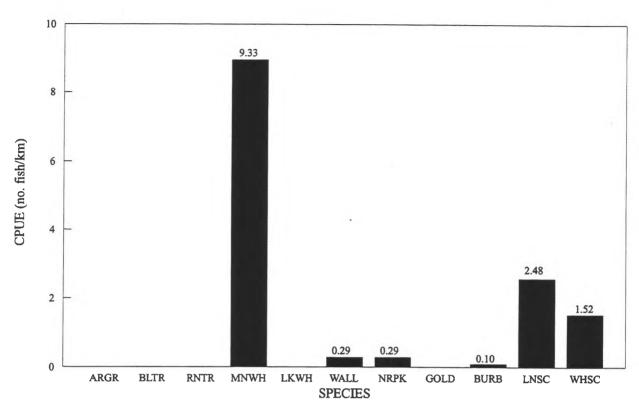


Figure 3.7 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 3, Athabasca River, spring 1992.

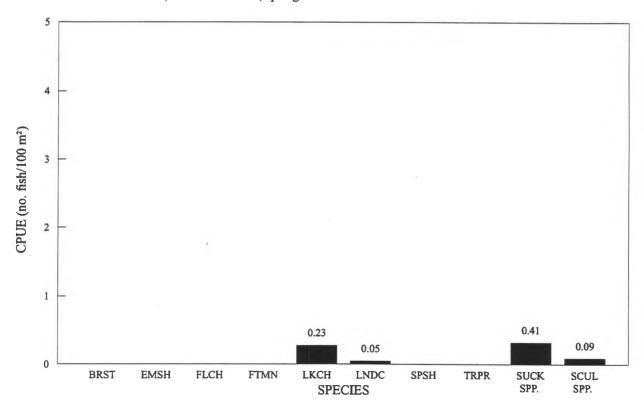


Figure 3.8 Catch-per-unit-effort values for forage fish captured by beach seining at Site 3, Athabasca River, spring, 1992.

Table 3.15 Tributaries sampled in Reach 3, Athabasca River, spring 1992.

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Sakwatamau River	1027.3	380	130	15-30	>1.0	Depositional	LNDC	R2
McLeod River	1026.3	1500	1500	>60	2.4	Erosional	MNWH, LNSC, WHSC	RI
Christmas Creek	1000.6	200	100	5-15	>1.0	Depositional	-	F3
Corbett Creek	965.5	350	200	<5	>1.0	Depositional	-	F1 & F3
Goose Creek	843.1	300	100	<5	>1.0	Depositional		F2
Freeman River	936.0	354	142	15-30	>1.0	Depositional		F 3
Horse Creek	926.2	180	100	<5	0.2	Erosional	WHSC, LKCH, Sucker spp.	RF/BG
Clearwater Creek	897.5	270	120	<5	0.2	Erosional	Scul. spp., Cyprinid spp.	RF

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

3.6 REACH 4

3.6.1 Physical Habitat

The Athabasca River within Reach 4 (R4) flowed in a northeasterly direction for 100.0 km (Figure 1.1). The average channel gradient was 0.28 m/km, one of the lowest recorded in the study area (Table 3.1). The water clarity was moderate (0.43 m) and similar to that recorded in R3 (Table 3.2).

Type U channel contributed 90% to the total available channel length in R4 (Table 3.3; refer to Appendix B1 and B2 for habitat codes and descriptions). Type M and S channels contributed 6 and 4%, respectively.

Site 4, the longest intensive survey site in the study area (10.0 km), was located in the vicinity of the Chisholm townsite. The major channel type was Type U; Type S and Type M channels were not present within the site (Table 3.16).

Armoured/stable bank types at Site 4 consisted of A1 and A2 types and contributed 69% (combined) to the total available bank habitat (Table 3.16). Depositional habitats (D1 and D2) also were available, with D2 bank type predominating (15%). Erosional bank types (E1 and E2) contributed less than 10% to the total available bank habitat.

3.6.2 Fish Resources

Mountain whitefish was the dominant sport fish recorded at Site 4 (Table 3.17, Figure 3.9). The presence of both adults and juveniles indicates that this area is utilized for feeding, rearing, and possibly overwintering. Both size-classes tended to select habitats with moderate to high current velocities adjacent to A2 bank types. Substrates consisted primarily of cobble/gravel, with overhead cover provided by turbidity.

^b Species code explanation provided in Table 3.4.

^e Refer to Appendix B3 for habitat codes and descriptions.

Table 3.16 Percent composition of major channel and bank habitat types at Site 4, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE*	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
U	10.0	100	Al	11.6	63
S	-	-	A2	1.2	6
M	-	-	Dl	0.1	1
			D2	3.0	15
			Εl	0.1	1
			E2	1.4	8
			A1/D2	1.1	6
TOTAL	10.0	100		18.5	100

^{*}U-Unobstructed Channel, S-Singular Island, M-Multiple Island.

Table 3.17 Fish species composition at Site 4, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-0-Y	JUV/AD*	CAPTURED	/*	SPECIES	CAPTURED	/6
Arctic grayling					Flathead chub	84	18.1
Mountain whitefish			54	24.8	Lake chub	54	11.6
Lake whitefish		*	1	0.5	Longnose dace	10	2.2
Bull trout					Emerald shiner	103	22.2
Rainbow trout			!		Spottail shiner	98	21.1
Northern pike		*	2	0.9	Fathead minnow		
Walleye	i	*	17	7.8	Trout-perch	41	8.7
Goldeye			9	4.1	Brook stickleback		
Burbot		*	5	2.3	Spoonhead sculpin		
Longnose sucker		*	101	46.3	Sculpin spp.	1	0.2
White sucker		*	29	13.3	Sucker spp.	67	14.4
					Cyprinid spp.	7	1.5
TOTAL			218	100		465	100

^{*}Combined due to difficulties in differentiating between these life stages solely on the basis of size.

Walleye were present in setline and boat electrofishing catches (Appendix D, Table D13). Most of these individuals were adults, although a few juveniles also were present in the catch. Two walleye were ripe males, which suggested a possible use of the area or larger tributaries (e.g., Pembina River) for spawning. Habitats selected by walleye were adjacent to D2 bank types and characterized by low current velocities, high turbidity, and shallow depths (<1.0 m). Substrates in these areas were predominantly gravel/cobble. Site 4 was the farthest upstream that goldeye were encountered; this species contributed 4.1% to the catch (Table 3.17). All were mature adults, which may indicate a primary use of the area for feeding. Two northern pike and one lake whitefish also were captured at Site 4. Insufficient numbers of these species were captured to determine habitat associations or use for life history requisites.

^b Refer to Appendix B2 for habitat codes and description.

^b Data for all sampling methods combined.

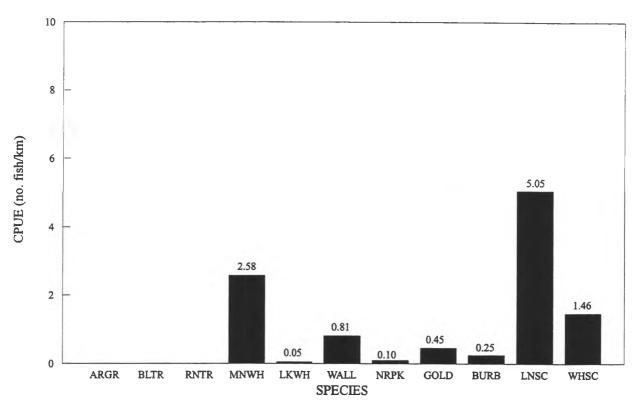


Figure 3.9 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 4, Athabasca River, spring 1992.

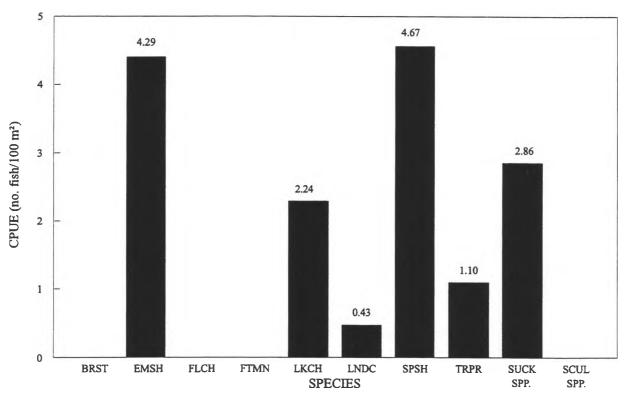


Figure 3.10 Catch-per-unit-effort values for forage fish captured by beach seining at Site 4, Athabasca River, spring 1992.

Longnose suckers were more abundant than white suckers at Site 4; these species contributed 46.3 and 13.3%, respectively, to the sport and coarse fish catch. The capture of several individuals of both species in spawning condition (i.e., gravid males and females) indicated a probable use of the area for spawning. The presence of juvenile suckers indicated a use of the area for rearing purposes. Adults and larger juveniles of both species tended to select discrete BW habitats associated with A2 bank types with low current velocities and gravel/cobble substrates.

Six forage fish species were captured. Emerald shiners, spottail shiners, and flathead chub dominated the catch (Table 3.17; Figure 3.10). Flathead chub and emerald shiners were located in a variety of habitats throughout this section of river, while trout-perch and lake chub were recorded mainly from habitats adjacent to E1 and E2 bank types. These habitats were characterized by low current velocities and silt/sand substrates.

3.6.3 Tributaries

The Pembina River was the largest tributary sampled in Reach 4. The habitat was predominantly RUN with silt/sand as the dominant substrates. Three sport fish species, walleye, goldeye, and burbot, were captured in the Pembina River (Table 3.18). Suitable feeding and overwintering habitats for adults of these sport fish species were available in the lower reaches as well as rearing habitats for juvenile walleye, goldeye, and burbot. Westworth (1990) documented the presence of these species as well as Arctic grayling, mountain whitefish, rainbow trout, and northern pike in other sections of the Pembina River.

Table 3.18 Tributaries sampled in Reach 4, Athabasca River, spring 199	Table 3.18	8 Tributarie	sampled i	n Reach 4,	Athabasca	River,	spring	1992.
--	-------------------	--------------	-----------	------------	-----------	--------	--------	-------

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Timeu Creek	884.1	420	120	<5	0.2	Erosional	TRPR, LKCH, Sucker spp., Scul. spp.	RF
Pembina River	845.5	1700	800	30-60	0.8	Erosional	WALL, BURB, GOLD, FLCH, EMSH, SNSC	R1 & R3
Chisholm Creek	824.2	420	120	5-15	0.3	Erosional	LNSC	R3
Rourke Creek	807.0	340	110	5-15	0.5	Erosional	BRST, Sucker spp., Cyprinid spp.	R3

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

In Rourke and Chisholm creeks, the dominant habitat type was RUN (R3), whereas in Timeu Creek, RIFFLE (RF) habitat was dominant. Cobbles, pebbles, and gravels were the dominant substrate types in all three tributaries. Sands/silts were present but did not contribute significantly to the overall composition. Sport fish were not captured in these tributaries. The presence of juvenile sucker species in Rourke and Timeu creeks indicates a use of the area for rearing and may provide indirect evidence of spawning in these tributaries. The lower sections of these three tributaries had a low suitability for use by sport fish from the Athabasca River.

^b Species code explanation provided in Table 3.4.

e Refer to Appendix B3 for habitat codes and descriptions.

3.7 REACH 5

3.7.1 Physical Habitat

In Reach 5 (R5), the Athabasca River generally flowed in a southerly direction over its 106.5 km length (Figure 1.1). The average channel gradient was 0.39 m/km, with moderate current velocities. Water clarity was slightly lower than in Reach 4, probably because of sediment input from the Lesser Slave River.

Type U channel habitat contributed 96% to the total available channel length in R5; Type M and Type S contributed 3 and 1%, respectively (Table 3.3; refer to Appendix B1 and B2 for habitat codes and descriptions).

Site 5, the intensive survey site in R5, was located immediately downstream of the R4-R5 boundary. The site was 9 km in length, with Type U as the dominant channel type (78%) followed by Type M (22%); Type S channel habitat was not encountered (Table 3.19).

Table 3.19 Percent composition of major channel and bank habitat types at Site 5, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE'	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
U	7.0	78	Al	0.8	5
S	-	-	A2	3.5	20
M	2.0	22	D1	0.3	2
			D2	1.8	10
			E1	2.6	15
			E2	2.7	16
			E4	0.5	3
			E6	0.9	5
			A2/E5	4.2	24
TOTAL	9.0	100		17.3	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

A total of eight bank habitat types were identified within the intensive survey site (Table 3.19). Erosional bank habitats were dominant and contributed 39% to the total. Armoured/stable (A1 and A2) and depositional (D1 and D2) bank habitat types contributed 25 and 12%, respectively.

Special habitat features recorded were BW and SHC habitats. Numerous small BW habitats were present in association with A2/E5 bank habitats.

^b Refer to Appendix B2 for habitat codes and descriptions.

3.7.2 Fish Resources

Five sport fish species (mountain whitefish, walleye, goldeye, burbot, and northern pike) were encountered at Site 5 (Table 3.20, Figure 3.11).

Table 3.20 Fish species composition at Site 5, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-0	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-O-Y	JUV/AD*	CAPTURED'	/0	SPECIES	CAPTURED ^b	70
Arctic grayling					Flathead chub	89	37.7
Mountain whitefish			66	36.5	Lake chub	6	2.5
Lake whitefish					Longnose dace	34	14.4
Bull trout					Emerald shiner	15	6.4
Rainbow trout					Spottail shiner	17	7.2
Northern pike		•	3	1.7	Fathead minnow	6	2.5
Walleye		*	9	5.0	Trout-perch	29	12.2
Goldeye		*	6	3.2	Brook stickleback		
Burbot	1 1	*	4	2.2	Spoonhead sculpin		
Longnose sucker		*	50	27.6	Sculpin spp.	3	1.3
White sucker	1		43	23.8	Sucker spp.	18	7.6
					Cyprinid spp.	19	8.2
TOTAL	1		181	100		236	100

^{*} Combined due to difficulties in differentiating between these life stages solely on the basis of size.

Mountain whitefish, the dominant sport fish species recorded at Site 5, contributed 36.5% to the total sport and coarse fish catch. The presence of adults and juveniles indicated a use of this area for feeding, rearing, and possibly overwintering. Walleye, goldeye, burbot, and northern pike were present in low numbers during the spring survey. All captured goldeye and northern pike were adults; one goldeye was a gravid female whereas one northern pike was a ripe female. Spawning habitat for goldeye and northern pike were not identified at the time of the survey; however, small BW habitats associated with A2/E5 bank habitats may provide suitable spawning areas for these species at higher flows.

There did not appear to be any discernable trends in habitat selection at Site 5. Generally, fish were distributed along mainstem margins adjacent to a variety of bank types, including A1, E1, and E2 bank types. Habitats were characterized by low to moderate current velocities. Overhead cover was provided by turbidity; instream cover was generally absent.

Longnose and white suckers were co-dominant at Site 5; they contributed 27.6 and 23.8%, respectively, to the total sport and coarse fish catch. Adults and juveniles of both species were recorded. Small, localized BW habitats with gravel substrates were utilized by both size-classes; these areas were closely associated with D2 bank types. The presence of ripe white suckers (male and female) suggests a possible use of the area for spawning.

^b Data for all sampling methods combined.

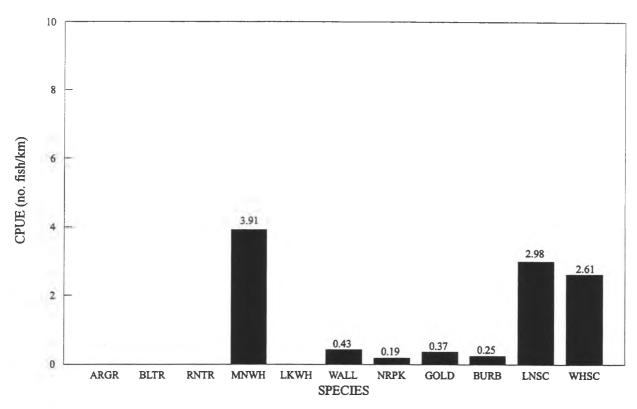


Figure 3.11 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 5, Athabasca River, spring 1992.

Figure 3.12 Catch-per-unit-effort values for forage fish captured by beach seining at Site 5, Athabasca River, spring 1992.

Flathead chub was the most abundant forage fish in the catch, followed (in decreasing order of abundance) by longnose dace and trout-perch (Table 3.20). Lake chub, emerald shiner, spottail shiner, and fathead minnow also were present in the catch. Longnose dace were the most abundant forage fish species in beach seine captures at Site 5 (Figure 3.12). Forage fish species at Site 5 utilized similar habitats to that recorded for sucker species.

3.7.3 Tributaries

The lower reaches of the two tributaries sampled in Reach 5 did not exhibit any potential for use by sport fish present in the mainstem (Table 3.21).

Table 3.21 Tributaries sampled in Reach 5, Athabasca River, spring 1992.

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Unnamed Creek	772.5	298	120	<5	0.4	Depositional	LKCH, BRST, Sucker spp.	R3
Baptiste Creek	696.3	198	130	<5	0.2	Erosional	LKCH, LNSC, WHSC, FTMN, SPSH, Sucker spp.	RF/BG

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

The lower section of Unnamed Creek was accessible to fish from the Athabasca River. RUN (R3) was the predominant habitat type; substrate consisted of silt (95%). The water was extremely turbid (visibility=0.06 m), probably because of extensive bank erosion.

Surface flows in Baptiste Creek at its confluence with the Athabasca River were low; beaverdams located approximately 200 m upstream from the mouth restricted fish movements into the creek. Habitat in areas not influenced by beaverdams was predominantly RIFFLE/BOULDER GARDEN (RF/BG) characterized by boulder, cobble, and gravel substrates. In areas of lower current velocities, higher proportions of fine substrate types were encountered. The presence of juvenile sucker species indicates a use of Baptiste Creek for rearing by these species. Fathead minnow (n=33) was the most abundant cyprinid species. Two spottail shiners and one lake chub also were captured.

3.8 REACH 6

3.8.1 Physical Habitat

Reach 6 was the longest reach (189.0 km) identified in the Athabasca River. The average channel gradient in R6 was 0.35 m/km (Table 3.1). Current velocities within the reach were rated as moderate. Water clarity was similar to values recorded in the adjacent upstream reach (Table 3.2).

^b Species code explanation provided in Table 3.4.

e Refer to Appendix B3 for habitat codes and descriptions.

The dominant major channel type in R6 was Type U, which contributed 97% to the total channel length (Table 3.3). The remaining 3% was composed of Type S channel; Type M channels were not recorded in this reach (refer to Appendix B1 and B2 for habitat codes and descriptions).

The intensive survey site (Site 6; length=8.2 km) was characterized by channel Types U and S (Table 3.22), in a proportion that was typical of Reach 6.

Table 3.22 Percent composition of major channel and bank habitat types at Site 6, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE*	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
Ŭ	7.8	95	A2	3.5	22
S	0.4	5	D1	0.4	3
M	-	-	D2	0.2	1
			E1	3.6	23
			E2	7.5	48
			A2/E5	0.5	3
TOTAL	8.2	100		15.7	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

The diversity of available bank habitat types at Site 6 was low. Erosional bank habitats were dominant and contributed 71% (combined) to the total available habitat. Armoured/stable bank types consisted exclusively of A2 habitat; this bank habitat contributed 22% to the total available bank habitat. Depositional habitats (D1 and D2), a minor bank habitat component in Site 6, contributed only 4% to the total available shoreline length.

3.8.2 Fish Resources

Walleye was the dominant sport fish species captured at Site 6 (Table 3.23, Figure 3.13). Walleye were captured by setlines, beach seine, and boat electrofishing (Appendix D, Table D15). This species contributed 38.1% to the sport and coarse fish catch. During electrofishing surveys, adult and juvenile walleye were captured adjacent to most of the bank habitat types sampled, although some preference for A2, E1, E2, and D1 bank types was noted. In general, bank habitats selected by this species exhibited shallow depths (0.5 to 1.0 m) with low to moderate current velocities. Substrates ranged from sand/silt to cobble/boulder. Some instream cover was provided by bank slumping; overhead cover was available in the form of turbidity. Young-of-the-year walleye were captured in beach seines in the confluence area of a small tributary. Selected habitats were adjacent to D2 bank types and were characterized by low current velocities, shallow depths, gravel/cobble substrates, and high turbidity. The presence of all life stages of this species in the catch indicated that suitable habitats were available for rearing, feeding, overwintering, and possibly spawning.

^b Refer to Appendix B2 for habitat codes and descriptions.

Table 3.23 Fish species composition at Site 6, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%	
SPECIES	Y-O-Y	JUV/AD*	CAPTURED	/*	SPECIES	CAPTURED	/0	
Arctic grayling		*			Flathead chub	110	27.4	
Mountain whitefish			2	3.2	Lake chub	126	31.4	
Lake whitefish					Longnose dace	13	3.3	
Bull trout					Emerald shiner	76	19.0	
Rainbow trout					Spottail shiner	21	5.3	
Northern pike		*	4	6.3	Fathead minnow			
Walleye	•	*	24	38.1	Trout-perch	47	11.7	
Goldeye		*	7	11.1	Brook stickleback			
Burbot		*	1	1.6	Spoonhead sculpin			
Longnose sucker		•	16	25.4	Sculpin spp.			
White sucker		*	9	14.3	Sucker spp.	5	1.2	
					Cyprinid spp.	3	0.7	
TOTAL			63	100		401	100	

^{*} Combined due to difficulties in differentiating between these life stages solely on the basis of size.

Goldeye, the second most abundant sport fish at Site 6, contributed 11.1% to the total sport and coarse fish catch. Bankside habitats selected by adults were E1 bank types, characterized by moderate velocities, and gravel/cobble substrates. Young-of-the-year and juvenile goldeye were absent from the catch. Primary use of the area was for feeding.

Northern pike distribution at this site was sporadic. The capture of two males in spawning condition (i.e., one was gravid, the other was spent) may indicate use of the area for spawning purposes, although suitable spawning habitat was not noted. Mountain whitefish and burbot also were captured at Site 6, but their contribution to the total catch (3.2 and 1.6%, respectively) precluded assessments of habitat preferences or life-stage usage.

Longnose sucker was the dominant coarse fish at Site 6. The capture of most life stages indicated suitable habitat was available for most life history requisites. White suckers were less abundant than longnose sucker. The capture of adult and juvenile life stages suggested a use of the area for feeding and rearing. Both species were commonly recorded in association with E1 and E2 bank types. These areas had moderate velocities and gravel/cobble substrates.

Lake chub was the most abundant forage species at Site 6. Flathead chub, emerald shiner, and trout-perch also were well represented in the catch (Table 3.23, Figure 3.14). In general, all forage fish species selected habitats associated with D1 bank types. These areas exhibited low current velocities and silt/sand substrates.

^b Data for all sampling methods combined.

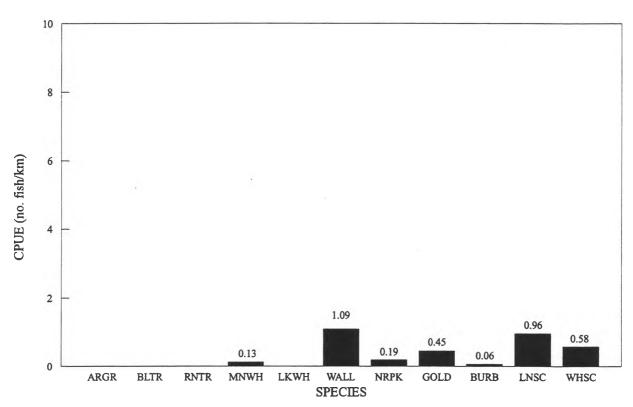


Figure 3.13 Catch-per-unit-effort rates for sport and coarse fish captured by boat electrofishing at Site 6, Athabasca River, spring 1992.

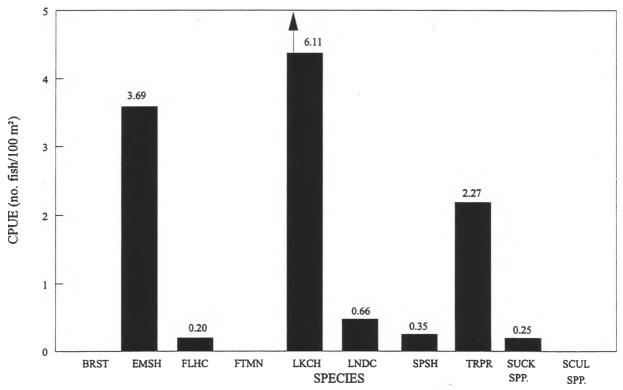


Figure 3.14 Catch-per-unit-effort rates for forage fish captured by beach seining at Site 6, Athabasca River, spring 1992.

3.8.3 Tributaries

Seven tributaries were sampled in Reach 6 (Table 3.24). The dominant habitat type in most was RUN (R3, R3/BG). The exception was the Pelican River, where RAPID (RA) was dominant. In most of the tributaries, substrates consisted mainly of cobbles, pebbles, and gravels. Exceptions were Duncan Creek and La Petite Riviere Jaillante, where sands/silts contributed significantly to the substrate composition.

Table 3.24 Tributaries sampled in Reach 6, Athabasca River, spring 1992.

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Tawatinaw River	683.5	305	115	5-15	0.4	Erosional	NRPK	R3/BG
La Biche River	622.1	520	100	30-60	0.6	Erosional	-	R3
Calling River	606.7	210	120	30-60	0.3	Erosional	-	R3
La Petite Riviere	594.4	270	110	<5	0.2	Erosional	LNSC, WHSC,	R3
Jaillante	ĺ						LKCH, Sucker spp.	
Duncan Creek	573.5	220	100	5-10	0.4	Erosional	LNDC, LKCH,	R3
		,					LNSC, WHSC,	
							Sucker spp.	
Paraliel Creek	505.8	210	100	5-15	0.4	Erosional	LKCH, FTMN,	R3/BG
							LNSC, LNDC,	
							BRST, Sucker spp.	
Pelican River	497.7	400	100	30-60		Erosional	LKCH, FLCH,	RA
							LNDC, BRST	

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

The lower sections of all tributaries sampled in R6 were accessible to fish from the Athabasca River. Potential spawning habitats for use by sport fish species from the mainstem Athabasca River were not available in the lowermost surveyed section of the La Biche and Calling rivers, but may have been available farther upstream. Both systems, however, contained areas with limited rearing potential for northern pike, walleye, and burbot as well as feeding areas for adult life stages. Only the La Biche River appeared to have habitats with sufficient depths for overwintering use. The lower reaches of the Tawatinau River also contained areas with limited rearing potential for northern pike, walleye, and burbot but lacked areas for feeding and overwintering by adults.

The Tawatinau, La Biche, and Calling rivers were the only tributaries in this reach that exhibited some potential in their lowermost sections for use by sport fish from the Athabasca River. Westworth (1990) documented the presence of walleye and northern pike in both the La Biche and Calling rivers, as well as Arctic grayling in the Calling River.

3.9 REACH 7

3.9.1 Physical Habitat

In Reach 7 (R7) the Athabasca River flowed in a northeasterly direction for a distance of 71.5 km (Figure 1.1). Average channel gradient was high (0.98 m/km), and as a result,

^b Species code explanation provided in Table 3.4.

^e Refer to Appendix B3 for habitat codes and descriptions.

current velocities were high with numerous rapids (Table 3.1). Water clarity was similar to that recorded in R6 (Table 3.2).

The percent composition of major channel types in R7 was similar to Reach 6. Type U, the dominant major channel type, contributed 98% to the total channel length (refer to Appendix B1 and B2 for habitat codes and descriptions). Type S channel contributed 2% to the total, whereas Type M channel was absent from R7. Special habitat features recorded in R7 included a series of three rapids; Pelican, Stony, and JoliFou.

The intensive survey site (Site 7) was 8.9 km in length and was made up exclusively of Type U channel habitat (Table 3.25).

Table 3.25 Percent composition of major channel and bank habitat types at Site 7, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
U	8.9	100	Al	0.2	l
S	-	-	A2	6.8	43
M	-		A3	1.7	11
			D2	1.7	11
			El	0.8	5
1	ļ		E2	2.3	14
			E4	1.8	11
			E6	0.6	4
TOTAL	8.9	100		15.9	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

At Site 7, bank types consisted mainly of armoured/stable bank habitat (A1, A2, and A3) (Table 3.25). A2 bank type dominated (43% of the total). Erosional bank habitat contributed 34% to the total, with E2 as the dominant type. Depositional habitats (D2) represented a minor component of bank habitats at Site 7.

3.9.2 Fish Resources

Of the nine sport fish species recorded in the study area, only three were encountered at Site 7 (Table 3.26). Mountain whitefish, the dominant sport fish species at Site 7, contributed 33.3% to the total sport and coarse fish catch. Juveniles made up the majority of the mountain whitefish catch, indicating that a primary use of this area was for rearing and feeding. RIFFLE and RAPID habitats were utilized by both adult and juvenile size-classes. These mainstem habitats were generally associated with A2 and A3 bank types. Instream cover was provided by substrate roughness (i.e., boulders). Juvenile mountain whitefish also were recorded in areas of moderate current velocities adjacent to D2 bank types.

^b Refer to Appendix B2 for habitat codes and descriptions.

Table 3.26 Fish species composition at Site 7, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-O-Y	JUV/AD*	CAPTURED ^b	/6	SPECIES	CAPTURED	70
Arctic grayling					Flathead chub	138	51.3
Mountain whitefish		*	14	33.3	Lake chub	2	0.7
Lake whitefish					Longnose dace	6	2.2
Bull trout					Emerald shiner	44	16.4
Rainbow trout					Spottail shiner		
Northern pike		i			Fathead minnow		
Walleye		*	3	7.1	Trout-perch	69	25.7
Goldeye					Brook stickleback		
Burbot		*	2	4.8	Spoonhead sculpin		
Longnose sucker	ļ ļ		23	54.8	Sculpin spp.	1	0.4
White sucker	ŀ				Sucker spp.	1	0.4
					Cyprinid spp.	8	2.9
TOTAL	·		42	100		269	100

[&]quot; Combined due to difficulty in differentiating between these life stages solely on the basis of size.

Walleye were present in low numbers at Site 7 in both electrofishing (Table 3.26) and setline catches (Appendix D, Table D16). Catch rates for walleye were substantially lower than those recorded at Site 6 (Figure 3.15). Walleye captured by electrofishing utilized habitats associated with A2 bank types. These habitats were characterized by moderate current velocities and gravel/cobble substrates. Walleye captured by setlines were in areas of slow current velocity with gravel/silt/sand substrates, in depths of 2.0 m adjacent to D2 bank types. All captured individuals were adults.

Burbot were captured on setlines adjacent to D2 bank types in depths of 2.0 m. Slow current velocities and silt/sand substrates characterized these habitats.

Longnose sucker was the only coarse fish species recorded at Site 7. The presence of juvenile and adult size-classes indicated a use of the area for most life requisites. Longnose sucker (juveniles and adults) tended to select moderate velocity areas along D2 bank margins.

Flathead chub, the dominant forage fish at Site 7, contributed 51.3% to the forage fish catch (Table 3.26). The presence of all life stages suggested that suitable habitats were available for all life requisites of this species. Trout-perch were the second most abundant forage species in the area (Figure 3.16). Both flathead chub and trout-perch at Site 7 were commonly found in association with longnose sucker. The majority of emerald shiners were recorded from habitats characterized by low current velocities, shallow water depths, and gravel/silt substrates in association with D2 bank types.

Based on the presence of most life stages for all forage species, it appears that suitable habitats for all life history requisites were available in the area.

^b Data for all sampling methods combined.

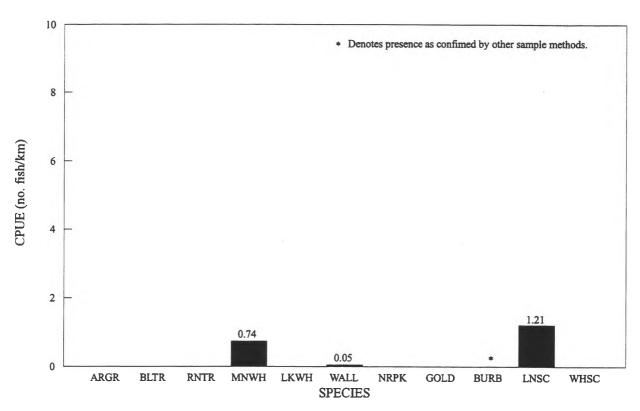


Figure 3.15 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 7, Athabasca River, spring 1992.

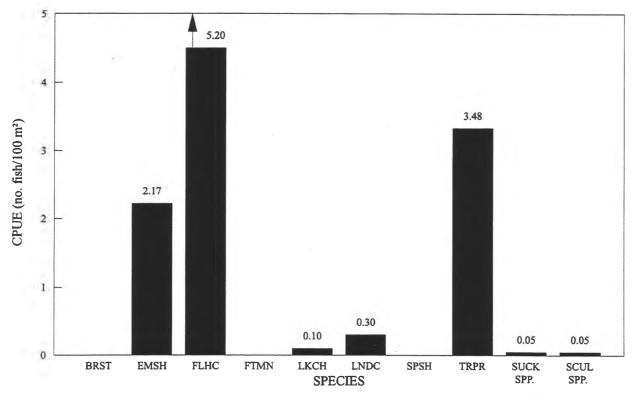


Figure 3.16 Catch-per-unit-effort values for forage fish captured by beach seining at Site 7, Athabasca River, spring 1992.

3.9.3 Tributaries

The House River was the only tributary sampled in R7 (Table 3.27). Tributaries, such as Loon and Buffalo creeks and Livock and Algar rivers, were not sampled due to unsafe river conditions in the vicinity of Grand Rapids. RUN (R3) was the only habitat type recorded in the House River; substrates consisted primarily of sand/silt. Sport fish were not captured at the site. Limited availability of instream and bank cover, as well as low habitat diversity, may limit the potential for sport fish in the lower House River. Westworth (1990) documented the presence of walleye, Arctic grayling, mountain whitefish, and northern pike from the upper reaches of the House River.

Table 3.27 Tributaries sampled in Reach 7, Athabasca River, spring 1992.

TRIBUTAR	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
House River	439.0	700	700	30-60	0.5	Erosional	LNSC	R3

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

3.10 REACH 8

3.10.1 Physical Habitat

Reach 8 (R8) of the Athabasca River was 135 km long and flowed in a northeasterly direction (Figure 1.1). Most of the reach was situated within a series of twelve rapids, including Brule, Boiler, Middle, Long, Crooked, Rock, Cascade, and Mountain rapids. Average channel gradient was 0.93 m/km (Table 3.1), and as a result, current velocities were high. Water clarity was lower in R8 than in R7 (Table 3.2).

Type U channel habitat contributed 98% to the total available channel length in R8 (Table 3.3). Type S and Type M channels (combined) contributed 2% to the total channel length (refer to Appendix B1 and B2 for habitat codes and descriptions).

The intensive survey site (Site 8) included Mountain Rapids, the rapids situated farthest downstream in R8. Site 8 was 9 km long, and similar to Site 7, the major channel habitat consisted exclusively of Type U (Table 3.28).

Nine bank habitat types were recorded within Site 8 during the spring sampling period. Depositional habitat (D1 and D3) contributed 33% to the total available bank habitat. Armoured/stable bank types (primarily A2 type) also contributed 33% to the total habitat. Erosional habitats (E2, E3, and E4) also were abundant at Site 8, with E2 and E4 bank types being dominant. Canyon bank habitats (C2B and C3) were present but contributed only 9% to the total bank habitat.

^b Species code explanation provided in Table 3.4.

e Refer to Appendix B3 for habitat codes and descriptions.

Table 3.28 Percent composition of major channel and bank habitat types at Site 8, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE*	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
U	9.0	100	A2	5.4	32
S	-	-	A3	0.2	1
M	-	-	C2B	1.4	8
			C3	0.2	1
			D1	2.7	16
			D3	2.9	17
			E2	1.8	11
			E3	0.6	4
			E4	1.5	10
TOTAL	9.0	100		16.4	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

3.10.2 Fish Resources

Walleye, the dominant sport fish species at Site 8, contributed 55.4% to the combined sport and coarse fish catch (Table 3.29). Both juvenile and adult size-classes of walleye were captured. The majority of adults that were in spawning condition were ripe males, although a few spent males and one spent female also were captured. Spawning habitats for walleye in rivers are rocky areas in whitewater below rapids or falls (Scott and Crossman 1973). Suitable spawning habitats for walleye were available at Site 8 in the form of Mountain Rapids. Boat electrofishing CPUE values for walleye at Site 8 were considerably higher than at any of the other intensive survey sites sampled during the spring period (Figure 3.17).

Table 3.29 Fish species composition at Site 8, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-0-Y	JUV/AD*	CAPTURED	,,,	SPECIES	CAPTURED	,•
Arctic grayling					Flathead chub	125	57.8
Mountain whitefish					Lake chub	2	1.0
Lake whitefish					Longnose dace	7	3.3
Bull trout					Emerald shiner	8	3.8
Rainbow trout					Spottail shiner		
Northern pike		*	4	4.3	Fathead minnow	11	5.3
Walleye			51	55.4	Trout-perch	43	20.6
Goldeye		*	25	27.2	Brook stickleback	2	1.0
Burbot		*	2	2.2	Spoonhead sculpin		
Longnose sucker		*	9	9.8	Sculpin spp.	2	1.0
White sucker		*	1	1.1	Sucker spp.	11	5.2
					Cyprinid spp.	2	1.0
TOTAL		•	92	100		209	100

^{*} Combined due to difficulties in differentiating between these life stages based solely on size.

^b Refer to Appendix B2 for habitat codes and descriptions.

^b Data for all sampling methods combined.

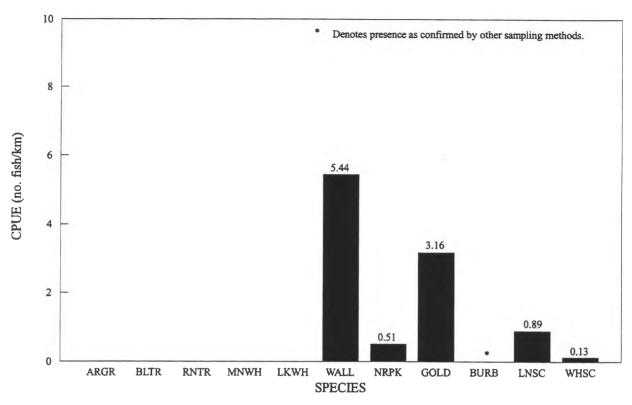


Figure 3.17 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 8, Athabasca River, spring 1992.

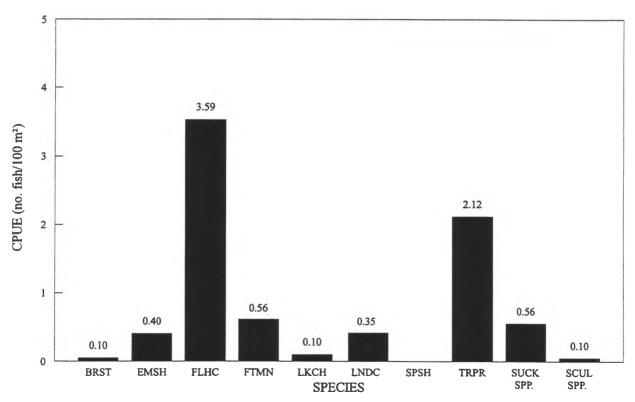


Figure 3.18 Catch-per-unit-effort values for forage fish captured by beach seining at Site 8, Athabasca River, spring 1992.

Goldeye also were well represented in the catch. Most adults in the catch were ripe females. Since ripe goldeye females spawn very quickly, the presence of these individuals is indicative of use of the area for spawning, although typical spawning habitats for this species (i.e., large quiet BW or side channels; Scott and Crossman 1973) were not abundant in the reach. After spawning in the present area, the semi-buoyant goldeye eggs likely drift downstream to lower gradient reaches for hatching and rearing.

During electrofishing surveys, adult walleye and goldeye were recorded in association with a variety of bank types, including A3, C2B, C3, E2, and E4. Habitats selected in these areas exhibited high current velocities and shallow depths (i.e., 0.5 m) with boulder/cobble substrates. Adult goldeye also were encountered along LEDGE habitats. Overhead cover was provided by high levels of turbidity; instream cover was present in the form of instream boulders and bedrock fractures.

Northern pike and burbot were recorded in low abundance at Site 8 (Appendix D, Table D17). Adults of both species were the only life stage captured. Both species selected small BW habitats associated with A3 bank types, which were characterized by high current velocities and high turbidity.

Longnose sucker was the dominant coarse fish species recorded at Site 8. The presence of adults and juvenile size-classes suggests that the habitat was for feeding and rearing purposes. White suckers were infrequent in the catch; only one individual was captured during boat electrofishing. Habitat selection by longnose and white suckers was similar to that noted for sport fish species at Site 8.

Forage fish species diversity was high at Site 8 (Table 3.29, Figure 3.18). Flathead chub and trout-perch were the dominant forage fish species; these species contributed 57.8 and 20.6% to the catch, respectively. Most life stages of flathead chub were present; larger juveniles and adults were found mainly in habitats with high current velocities associated with C2B bank types. Overhead cover was mainly in the form of turbidity. Smaller individuals utilized small localized backwaters associated with the irregular shoreline of D3 bank types. Trout-perch were captured in habitats associated with depositional (D1 and D3) bank types. These areas exhibited low current velocities, shallow depths, and cobble/gravel substrates.

3.10.3 Tributaries

The Hangingstone, Little Fishery, and Clearwater rivers were the three tributaries sampled in R8 (Table 3.30). The dominant habitat was RUN (R3) in both the Clearwater and Hangingstone rivers, whereas RUN/BOULDER GARDEN (R3/BG) was dominant in the Little Fishery River. Cobbles, pebbles, and gravels were the dominant substrates in the Hangingstone and Little Fishery rivers; silt and sand were the only substrates recorded in the Clearwater River. Bank erosion and siltation were high in the lower sections sampled of all three tributaries.

Potential spawning habitats for use by sport fish species from the mainstem Athabasca River were not available in any of the sampled sections of the three tributaries. The lower reaches of all three systems, however, contained areas with limited rearing potential for northern pike and walleye. Owing to its small size, the Little Fishery River provided limited

habitat for larger size-classes of fish. Both the Hangingstone and Clearwater rivers appeared to have potential as feeding areas for adult sport fish species, but only the Clearwater River exhibited habitats with sufficient depths for overwintering use. Westworth (1990) documented the presence of Arctic grayling, mountain whitefish, walleye, and northern pike from the Hangingstone and Clearwater rivers as well as lake whitefish, goldeye, and burbot from the Clearwater River.

Table 3.30 Tributaries sampled in Reach 8, Athabasca River, spring 1992.

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Hangingstone River	-	388	105	30-60	0.5	Erosional		R3
Little Fishery River	292.1	220	110	5-10	0.4	Erosional	FTMN, LKCH, Sucker spp.	R3/BG
Clearwater River	286.5	2000	2000	30-60	0.5	Erosional	WHSC, WALL, NRPK	R3

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

3.11 REACH 9

3.11.1 Physical Habitat

The Athabasca River within this 125.0 km long reach (R9) flowed in a northeasterly direction (Figure 1.1). The low average channel gradient (0.17 m/km) produced low to moderate current velocities throughout the reach (Table 3.1). Water clarity was similar to that recorded in R8 (Table 3.2).

The dominant channel type in R9 was Type M, which contributed 54% to the total available channel length (Table 3.3) (refer to Appendix B1 and B2 for habitat codes and descriptions). Type U was the second most abundant major channel type (35%) followed by Type S (11%).

The intensive survey site (Site 9) was 9.5 km in length, with the upstream end of the site located at the Muskeg River. The site was characterized by Type M channel, which contributed 91% to the total available channel length (Table 3.31). Type U and Type S channels contributed 9% (combined) to the total channel length.

Seven bank habitat types were present at Site 9. Erosional habitat types (E1 and E2) were dominant, and contributed 75% (combined) to the total available bank habitat.

Depositional bank habitat consisted mainly of the D1 type that contributed 14% to the total. Limited amounts of armoured/stable bank habitat were available at Site 9. Special habitat features recorded at Site 9 included shoals (SHF).

^b Species code explanation provided in Table 3.4.

e Refer to Appendix B3 for habitat codes and descriptions.

Table 3.31 Percent composition of major channel and bank habitat types at Site 9, Athabasca River, spring 1992.

MAJOR CHANNEL TYPE	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
U	0.7	7	Al	1.9	8
S	0.2	2	A2	0.3	1
M	8.6	91	C2B	0.2	1
			Dl	3.5	14
			D2	0.3	1
			Ei	12.6	52
			E2	5.7	23
			Al/Cl	0.1	<1
TOTAL	9.5	100		24.6	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

3.11.2 Fish Resources

Four sport fish species were recorded from Site 9. Walleye was the dominant species, contributing 34.4% to the sport and coarse fish species catch (Table 3.32). Larval stages of walleye were captured in drift nets (Appendix D, Table D18). The presence of young-of-the-year in the catch, and the presence of numerous adults in spawning condition (i.e., ripe males and spent females), indicated spawning activity either in Reach 9, upstream reaches, or larger tributaries (e.g., MacKay River) within the reach. Suitable walleye spawning habitat was not recorded in the mainstem Athabasca River in Reach 9 but was recorded in Reach 8. Adult walleye captured by electrofishing were generally adjacent to A1 bank types. The selected habitats had moderate current velocities and gravel substrates. Young-of-the-year caught in drift nets were captured in similar habitats as adults. Walleye captured by setlines were adjacent to D1 bank types in areas of low current velocities with sand substrates in depths of 1.5 to 2.0 m.

Table 3.32 Fish species composition at Site 9, Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%	
SPECIES	Y-O-Y	JUV/AD'	CAPTURED	/0	SPECIES	CAPTURED'	/0	
Arctic grayling					Flathead chub	137	36.2	
Mountain whitefish					Lake chub	32	8.5	
Lake whitefish		*	1	3.1	Longnose dace	9	2.4	
Bull trout					Emerald shiner	26	6.9	
Rainbow trout					Spottail shiner			
Northern pike		*	3	9.4	Fathead minnow	2	0.5	
Walleye	*	*	11	34.4	Trout-perch	162	42.9	
Goldeye		*	8	25.0	Brook stickleback			
Burbot			1		Spoonhead sculpin	6	1.6	
Longnose sucker	*		4	12.5	Sculpin spp.	2	0.5	
White sucker		*	5	15.6	Sucker spp.	2	0.5	
					Cyprinid spp.			
TOTAL			32	100		378	100	

^{*} Combined due to difficulty in differentiating between these life stages based solely on size.

^b Refer to Appendix B2 for habitat codes and descriptions.

^b Data for all sampling methods combined.

Goldeye also were relatively abundant at Site 9 (Table 3.32, Figure 3.19). All captured goldeye were adults. Goldeye were generally distributed in habitats characterized by moderate current velocities adjacent to A1, A2, E1, and E2 bank types. Suitable spawning habitats (i.e., large, quiet BW or side channels; Scott and Crossman 1973) were not recorded at this site. Based on the available data, there is no evidence to suggest that goldeye spawn in the vicinity of Site 9.

Lake whitefish and northern pike also were present at Site 9. Only one lake whitefish (captured at the confluence with the MacKay River) and two northern pike were captured. One of the northern pike was a ripe female, the other was a juvenile. Limited spawning habitats (i.e., shallow vegetated areas) for northern pike were recorded in certain sections of the Athabasca River in Reach 9.

White sucker was the dominant coarse fish species in the area. Captured specimens included both adults and juveniles. The capture of larval stages of longnose sucker in drift nets situated in the mainstem Athabasca River indicated a use of upstream areas in the vicinity of Site 9 for spawning purposes. Habitat selection by white suckers was similar to that reported for goldeye.

Trout-perch and flathead chub were the most abundant forage fish species at Site 9 (Table 3.32, Figure 3.20). Lake chub, longnose dace, emerald shiner, and sculpins also were well represented in the catch. The presence of most life stages of trout-perch and flathead chub indicated that suitable habitat was available for all life requisites. Forage fish species utilized similar bank habitats as those utilized by goldeye, but they exhibited a closer affinity to the shore in shallower depths.

3.11.3 Tributaries

All six tributaries sampled in R9 were low gradient, depositional streams (Table 3.33). The habitat in the Pierre, Steepbank, Ells, and Tar rivers was predominantly RUN (R3, and R2), characterized by silt/sand substrates. Bank erosion and siltation was high, with low to moderate bank and instream cover. The lower reaches of the Tar and Steepbank rivers appeared to have suitable areas for feeding and overwintering use by adult walleye and northern pike. However, they had limited spawning and rearing habitat for sport fish species residing in the Athabasca River.

The Muskeg River contained predominantly RUN (R3) habitat, with pebbles and gravels contributing significantly to the substrate composition. Bank erosion was high, with limited instream and bank cover. Potential spawning habitats for use by sport fish from the mainstem Athabasca River were not available in the lower reaches of the Muskeg River. However, the lower sections did contain areas with limited rearing and feeding potential for species such as northern pike and walleye.

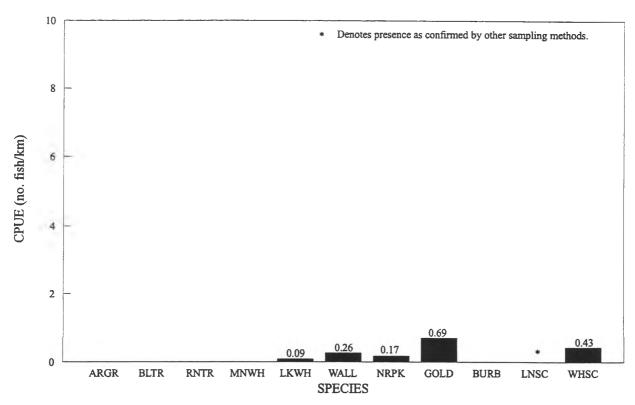


Figure 3.19 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 9, Athabasca River, spring 1992.

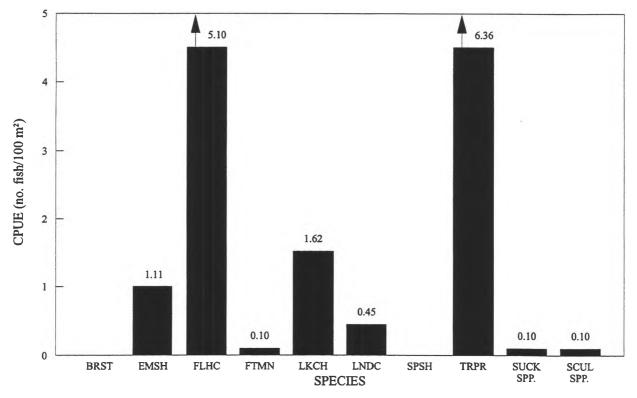


Figure 3.20 Catch-per-unit-effort values for forage fish captured by beach seining at Site 9, Athabasca River, spring 1992.

Table 3.33 Tributaries sampled in Reach 9), Athabasca]	River, spring 1992.
---	----------------	---------------------

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Steepbank River	253.9	650	650	15-30	0.8	Depositional	-	R2
Muskeg River	239.2	500	500	15-30	0.6	Depositional	WHSC	R3
MacKay River	235.3	1500	1500	30-60	0.3	Depositional	TRPR, FLCH, WALL, WHSC	R3
Ells River	217.9	800	800	30-60	0.5	Depositional	-	R3
Tar River	215.9	800	800	30-60	0.8	Depositional	-	R2
Pierre River	201.5	120	60	10-15	0.5	Depositional	Scul. spp.	R3

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

Similar to the other tributaries sampled in R9, RUN (R3, and R2) was the dominant habitat type in the MacKay River. Sand/silt predominated the substrate although cobbles, pebbles, and gravel were present. Bank erosion was moderate, and the amount of bank and instream cover was low. One walleye was captured in the MacKay River; in addition, white suckers and forage fish, such as trout-perch and flathead chub, were captured. Although suitable spawning habitats were not recorded, the lower section provided feeding and overwintering habitats as well as limited rearing habitat for larger size-classes of sport fish. Westworth (1990) documented the presence of Arctic grayling, walleye, and northern pike in all tributaries sampled in Reach 9 with the exception of the Tar River. Burbot were reported from the Ells and MacKay rivers; goldeye also were documented in the Ells River.

3.12 REACH 10

3.12.1 Physical Habitat

In Reach 10 (R10), the Athabasca River flowed in a northeasterly direction for 84.3 km to the Embarras River, the reach's lowermost boundary. Seventy-eight kilometres downstream of the Embarras River, the Athabasca empties into the Peace/Athabasca Delta (Figure 1.1). The average channel gradient (0.08 m/km) was the lowest recorded in the study area, and the mainstem was characterized by low current velocities (Table 3.1). Water clarity remained similar to that recorded in the two previous upstream reaches (Table 3.2).

The major channel type in R10 was Type M (54% of the total channel length); Type S and Type U were present in lower abundance (14 and 32%, respectively) (Table 3.3; refer to Appendix B1 and B2 for habitat codes and descriptions).

The intensive survey site was 7.9 km long (Site 10). Channel type composition was similar to that recorded for Reach 10. Extensive braiding with numerous vegetated islands and well-developed side channels were common features in the area (Table 3.34).

^b Species code explanation provided in Table 3.4.

e Refer to Appendix B3 for habitat codes and descriptions.

Table 3.34 Percent composition of major channel and bank habitat types at Site 10 Athabasca River, spring 1992.

MAJOR CHANNEL TYPE*	LENGTH (km)	PERCENT COMPOSITION	BANK HABITAT TYPE ^b	LENGTH (km)	PERCENT COMPOSITION
U	-	-	D1	4.4	14
S	-	- 1	El	19.5	62
M	7.9	100	E2	0.6	2
			E4	6.8	22
TOTAL	7.9	100		31.3	100

^{*} U - Unobstructed Channel; S - Singular Island; M - Multiple Island.

Bank habitat diversity was the lowest recorded for all survey sites on the Athabasca River. Erosional bank habitats predominated (E1, E2, and E4) and contributed 86% to the total available bank habitat. Depositional habitats were recorded, but these consisted solely of D1; armoured/stable banks were not present at Site 10. Special habitat features recorded included shoals (SHF).

3.12.2 Fish Resources

Sport fish diversity at Site 10 was low (Table 3.35; Figure 3.21). Northern pike, walleye, and goldeye, the three sport fish species recorded at Site 10, were all recorded at low levels of abundance.

Table 3.35 Fish species composition at Site 10 Athabasca River, spring 1992.

SPORT AND COARSE FISH	SIZE-	CLASSES	TOTAL	%	FORAGE FISH	TOTAL	%
SPECIES	Y-O-Y	JUV/AD*	CAPTURED	/6	SPECIES	CAPTURED	/0
Arctic grayling					Flathead chub	429	90.9
Mountain whitefish					Lake chub		
Lake whitefish			1		Longnose dace	1	0.2
Bull trout					Emerald shiner		
Rainbow trout					Spottail shiner	1	0.2
Northern pike		*	5	31.3	Fathead minnow		
Walleye		*	4	25.0	Trout-perch	41	8.7
Goldeye		*	3	18.8	Brook stickleback		
Burbot					Spoonhead sculpin		
Longnose sucker		•	1	6.3	Sculpin spp.		
White sucker		•	3	18.8	Sucker spp.		
					Cyprinid spp.		
TOTAL	† <u>'</u>		16	100		472	100

^{*} Combined due to difficulties in differentiating between these life stages based solely on size.

^b Refer to Appendix B2 for habitat codes and descriptions.

^b Data for all sampling methods combined.

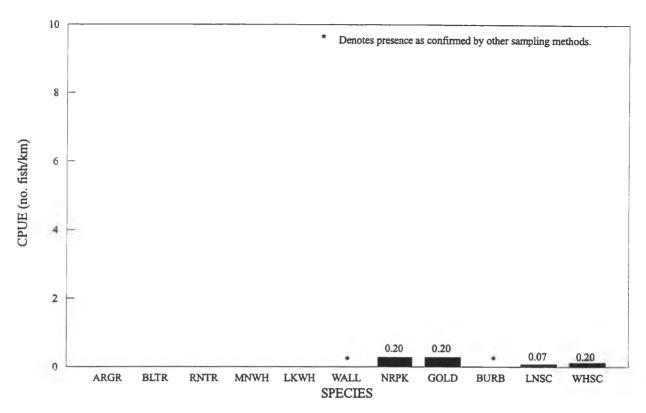


Figure 3.21 Catch-per-unit-effort values for sport and coarse fish captured by boat electrofishing at Site 10, Athabasca River, spring 1992.

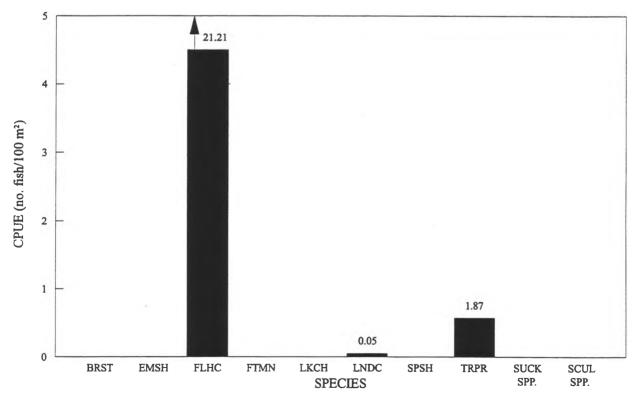


Figure 3.22 Catch-per-unit-effort values for forage fish captured by beach seining at Site 10, Athabasca River, spring 1992.

Walleye at Site 10 were captured by setlines; the catch consisted of four adults. Northern pike were present in both electrofishing and setline catches. Most northern pike captured were adults, one of which was a female in spawning condition (i.e., ripe). All goldeye captured at Site 10 were adults. The presence of mainly adult and juvenile maturity classes of all sport fish species indicated a primary use of the area for feeding, holding, and rearing functions. Suitable overwintering habitats also were available at Site 10 for all of these fish species. Walleye, goldeye, and northern pike were captured mainly in habitats adjacent to E1 and E2 bank types. These habitats were characterized by slow current velocities and depths in excess of 1.0 m. Instream cover was available in the form of root wads and woody debris.

Coarse fish species were not abundant at Site 10. Two white suckers and one longnose sucker were captured by electrofishing.

Flathead chub, the dominant forage fish species in the area, contributed 90.9% to the total forage fish catch. Trout-perch, the second most abundant species, contributed 8.7% to the total forage fish catch. All life stages of both species were present, which suggested that suitable habitat was available for all life requisites. Longnose dace and spottail shiner were present, but in low abundance (Table 3.35, Figure 3.22, Appendix D, Table D19). The forage fish and juvenile sucker species encountered at Site 10 utilized shallow-water habitats along D1 bank margins associated with islands. Current velocities in these habitats were slow and substrates were predominantly sand.

3.12.3 Tributaries

The Firebag River and Grayling Creek were the two tributaries sampled in R10 (Table 3.36). Both were characterized by RUN (R2) type habitats, with a predominance of silt/sand substrates. Instream and bank cover availability and suitability was rated as moderate for both systems. Fish were not captured in Grayling Creek, although one adult northern pike was observed. Two northern pike juveniles were captured from the Firebag River. Suitable rearing and feeding habitats for both walleye and northern pike were available in the Firebag River. Westworth (1990) documented the presence of Arctic grayling, lake whitefish, walleye, northern pike, and burbot in other sections of the Firebag River. Grayling Creek exhibited limited feeding and overwintering habitat potential for most sport fish species.

Table 3.36 Tributaries sampled in Reach 10, Athabasca River, spring 1992.

TRIBUTARY	KM LOCATION	UPSTREAM BOUNDARY* (m)	LENGTH (m)	AVG. WIDTH (m)	AVG. DEPTH (m)	CHANNEL TYPE	SPECIES ENCOUNTERED	DOMINANT HABITAT
Firebag River	162.9	1000	1000	30-60	0.3	Depositional	NRPK	R2
Grayling Creek	130.8	2000	2000	30-60	1.0	Depositional	NRPK⁴	R2

^{*} Upstream boundary - distance in metres from confluence with Athabasca River.

^b Species code explanation provided in Table 3.4.

^e Refer to Appendix B3 for habitat codes and descriptions.

d Observed; not captured.

3.13 RELATIONSHIP BETWEEN PHYSICAL HABITATS AND FISH DISTRIBUTION

One of the main assumptions used to determine fish-habitat relationships is the assumption that a particular maturity stage of a species will utilize similar habitats throughout the range of that species. In the course of sampling throughout the Athabasca River, similarities in the bank habitat selected by a particular species maturity class were recorded. These observations are summarized in the following discussions.

3.13.1 Sport Fish

Mountain whitefish

Mountain whitefish adults and juveniles in the Athabasca River were found primarily in habitats with moderate current velocities (50-100 cm/s) and gravel/cobble/boulder substrates along mainstem margins. Habitats selected by both maturity-classes generally were associated with armoured/stable bank types (Table 3.37). Depths generally ranged from 1.0 to 1.5 m. Overhead cover was available in the form of turbulence, depth, and to a certain extent, turbidity. Instream cover was provided by substrate roughness. In areas where higher velocities (i.e., RAPIDS) were present, juvenile mountain whitefish tended to select these habitats. A more limited selection of areas associated with depositional (i.e., D2) and erosional (i.e., E2) bank types was noted for juveniles and less frequently for adults. These areas were characterized by moderate to high current velocities and gravel/cobble substrates. Yearling mountain whitefish captured in beach seines were most abundant in areas of low to moderate current velocities and gravel/cobble substrates along mainstem margins. These areas were generally associated with D2 and, to a lesser extent, A1/A2 bank types. Yearling mountain whitefish were infrequently captured in areas adjacent to erosional bank types.

Table 3.37 Use of major bank habitat classifications by sport and coarse fish species captured by electrofishing in the Athabasca River, spring 1992.

BANK HABITAT TYPE	NUMBER OF BANK HABITAT	PERCENTAGE OF BANK HABITAT UNITS WHERE FISH SPECIES WERE RECORDED ^b										
	UNITS SAMPLED	MNWH	NRPK	WALL	ARGR	GOLD	BURB	LNSC	WHSC			
A	19	79	26	53	5	16	26	89	63			
A/D	6	83		17	50			67				
A/E	13	77	8	23	15	15		77	46			
С	3		33	67		33						
D	11	73	9	9	9			73	55			
E	18	39	39	44		67	22	44	61			

^a A=Armoured/stable; D=Depositional; E=Erosional; C=Canyon. For an explanation of habitat codes see Appendix B2.

^b For species code explanation, see Table 3.4; percent value represents the number of bank habitat types sampled in which a species was recorded.

Northern pike

Northern pike utilized shallow mainstem margins along a variety of bank habitats, which included armoured/stable, depositional, and erosional types (Table 3.37). Generally, this species tended to select habitats of low to moderate current velocities; depths and substrates in these areas were variable. Where SNYE habitats were present, northern pike adults exhibited a selection for these quiet water areas. Two SNYE habitats were encountered at Site 3, and at both locations northern pike were captured (either by boat electrofishing or setlines).

Walleye

Adult and juvenile walleye were captured by boat electrofishing and setlines adjacent to most of the bank habitat types sampled; however, a greater use of armoured/stable and erosional bank habitats was noted (Table 3.37). Generally, bank habitats selected by walleye were adjacent to areas with low (<50 cm/s) to moderate (50-100 cm/s) current velocities. Substrates ranged from silt/sand to cobbles and gravels. Young-of-the-year were captured at Site 6 in the confluence area of a small tributary. The habitat selected by this maturity-class exhibited low current velocities, shallow depths, gravel/cobble substrates, and high turbidity. Young-of-the-year walleye also were captured at Site 9 in drift nets adjacent to armoured/stable bank habitat (A1). These areas were characterized by moderate current velocities, shallow depths, high turbidity, and cobble/gravel substrates.

Arctic grayling

Arctic grayling were recorded only from the upper reaches of the Athabasca River at Site 2. Adult and larger juvenile Arctic grayling were captured by electrofishing, most often adjacent to armoured/stable bank habitats (A1 and A3) in combination with small areas of depositional habitats (i.e., D2). These areas exhibited characteristics of both bank types (i.e., predominantly gravel/cobble substrates and low to moderate current velocities). Arctic grayling were infrequently recorded in association with only depositional bank types (Table 3.37).

Goldeye

All maturity classes of goldeye were captured by electrofishing in areas of low to moderate current velocities. Overhead cover was provided by depth and turbidity, with instream cover generally absent. Habitats selected by this species were generally associated with erosional bank types and, to a lesser extent, with armoured/stable banks (Table 3.37).

Burbot

The majority of burbot recorded in the Athabasca River study area were adults or juveniles. Burbot captured by boat electrofishing and setlines were most often found in habitats that exhibited moderate current velocities, adjacent to armoured/stable and erosional bank types (Table 3.37). Capture depths for the setlines usually ranged from 0.5 to 4.0 m; substrates were variable.

Others

Other sport fish species captured in the study area were rainbow trout, bull trout, and lake whitefish. These species were captured in sufficient numbers to determine habitat selection trends. The trout and char species were distributed sporadically in the upper reaches of the Athabasca River. The two captured lake whitefish were captured from areas associated with armoured/stable and erosional bank habitat types.

3.13.2 Coarse Fish

White and longnose sucker (adults and juveniles) captured by boat electrofishing were recorded adjacent to most of the bank habitat types sampled (Table 3.37). A slight preference for armoured/stable and erosional bank types was noted for both species. Generally, depths and current velocities in selected habitats were variable and substrates ranged from silt/sand to cobbles and gravels. Smaller juveniles (i.e., yearlings) selected shallow-water habitats with low current velocities in association with depositional banks.

3.13.3 Forage Fish

The majority of forage fish were captured by beach seining in shallow-water habitats. Emerald shiner, lake chub, longnose dace, and trout-perch were recorded in habitats with low current velocities and a predominance of cobble/gravel substrates along mainstem margins. Habitats selected generally were associated with depositional bank types (Table 3.38). A more limited use of areas associated with armoured/stable bank types was noted.

Flathead chub were first encountered at Site 4 and were recorded in shallow-water habitats throughout the study area. Adults and juveniles tended to utilize areas of greater depth and current velocities than smaller fish. Insufficient data are available for other forage fish species to determine habitat preferences.

Table 3.38 Use of major bank habitat classifications by fish species captured in seine hauls in the Athabasca River, spring 1992.

HABITAT BAN	NUMBER OF BANK HABITAT		PERCENTAGE OF BANK HABITAT UNITS WHERE FISH SPECIES WERE RECORDED ^b												
TYPE'	TYPE' UNITS SAMPLED	BRST	EMSH	FLCH	FTMN	BURB	LKCH	LNDC	MNWH	SCUL SPP.	SPSH	SUCK. SPP.	TRPR	WHSC	WALL
A	14	-	14	36	14	-	21	29	14	21	7	29	57	-	-
AD	3	-	-	33	-	-	-	-	100	-	-	-	-	-	-
AE	1	-	100	100	-	-	100	100	-	-	100	100	100		-
D	35	3	57	57	3	3	34	51	23	17	11	60	66	6	3

^a A=Armoured/stable; D=Depositional; E=Erosional; C=Canyon. For an explanation of habitat codes, see Appendix B2.

^b For species code explanation, see Table 3.4; percent value represents the number of bank habitat types sampled in which a species was recorded.

SECTION 4 DISCUSSION

Major channel types in the Athabasca River were mapped for the entire mainstem in the study area. The upper and lower reaches (i.e., reaches 2, 3, 9, and 10) were characterized by Type M channel (i.e., Multiple Channel), whereas Type U channels (i.e., Unobstructed Channel) predominated in the middle reaches of the Athabasca River (i.e., reaches 4, 5, 6, 7, and 8). Type U channel types also were dominant in Reach 1. Type S channels were not frequently encountered in the study area. The distribution of channel types within the intensive survey sites was similar to that recorded for the reaches.

The distribution and composition of bank habitat types were mapped at all sites within the study area. A total of eighteen bank habitat types were identified at the 10 intensive survey sites. Armoured/stable bank habitats were dominant at some upper (Site 1) and middle (sites 4 and 7) sites of the Athabasca River. These bank habitats also were co-dominant with depositional bank habitats at sites 2 and 8. Bank habitats at Site 3 were characterized by depositional bank types. At the remaining sites (i.e., sites 5, 6, 9, and 10), erosional bank habitat types were dominant.

Relationships between major channel types, availability of bank habitat types, and fish diversity did not appear to be well defined in the Athabasca River. The habitat classification system used to characterize river conditions was first developed to characterize conditions on the Peace River (Hildebrand 1990). In that particular study, habitat mapping from the first field survey was verified in two subsequent sampling trips. Based on just one field survey on the Athabasca River, it is difficult to determine a definitive relationship between fish diversity, channel types, and bank habitat types.

Mountain whitefish, the dominant sport fish encountered in the study area, was most abundant in the upper and middle reaches of the Athabasca River. Walleye were less abundant than mountain whitefish, but were common throughout the study area. Northern pike exhibited a lower abundance relative to walleye throughout most of the study area, as did burbot. Goldeye were recorded only from the middle and lower reaches of the Athabasca River. The remaining sport fish (i.e., Arctic grayling, rainbow trout, and bull trout) were infrequently encountered only from the uppermost reaches of the Athabasca River.

Longnose sucker was the most abundant coarse fish; juveniles and adults were recorded from most sites throughout the study area.

The most abundant forage fish species recorded in the study area was flathead chub. They were not recorded upstream of Site 4. Trout-perch and lake chub, although not as abundant as flathead chub, were common throughout the study area.

CRITICAL HABITATS

The following discussion summarizes the locations of suspected critical habitats for fish species in the Athabasca River for the four major life requisite functions (i.e., spawning, rearing, feeding, and overwintering).

Spawning

Spawning sites for fall spawning fish species in the Athabasca River (i.e., mountain whitefish, lake whitefish, and bull trout) were not defined. Suitable spawning habitats for mountain whitefish were recorded in reaches 1 and 2. Spawning areas for bull trout were not identified during the present study but were identified in upstream tributaries in subsequent telemetry studies (Sub-Project 3121).

The major spring spawning sport fish species in the Athabasca River study area include goldeye, walleye, rainbow trout, and northern pike. Although site-specific spawning locations for spring spawning species were not identified during the study, the presence of gravid/ripe individuals and young-of-the-year provided indirect indications of spawning use within the study site or nearby areas.

Evidence of probable mainstem spawning by goldeye was noted at Site 8. The presence of goldeye in pre-spawning (i.e., gravid) condition at Site 5 (near Lesser Slave River) also suggests that some spawning may occur in the vicinity or in nearby larger tributaries (e.g., Lesser Slave River). In general, the suitability and availability of potential habitats for documented goldeye spawning (i.e., large, quiet backwaters and side channels) was low throughout the mainstem Athabasca River at the flows observed in the spring survey. However, it is likely that spawning occurred in higher gradient areas such as Site 8, with the semi-buoyant eggs drifting to downstream reaches for hatching and rearing.

Adult male walleye in spawning condition (i.e., ripe) were recorded at sites 3, 4, 8, 9, and 10 on the Athabasca River mainstem. Male walleye in spent condition also were encountered at Site 8. Female walleye in spent condition were captured at sites 8 and 9. The capture of ripe and spent males and spent female walleye at Site 8 suggested spawning may have occurred within the general area. Spawning habitats for walleye in rivers are rocky areas in white water below rapids, falls, or dams (Scott and Crossman 1973). Suitable spawning habitats for walleye were available at Site 8 (i.e., Mountain Rapids). In a study conducted by Tripp et al. (1979) in the vicinity of the present Site 8, walleye spawning areas and the extent of the spawning runs could not be determined because of the low number of captured spawning walleye. Based on the distribution and abundance of young-of-the-year walleye, spawning was suspected to have occurred upstream of Cascade Rapids. During the same study, large concentrations of young-of-the-year also were recorded downstream of Mountain Rapids. In the present study, the capture of young-of-the-year walleye at Site 9 provided indirect evidence of spawning activity in either Reach 9 or upstream reaches; suitable spawning habitats were not recorded in the mainstem Athabasca River in Reach 9. Therefore, the presence of young-of-the-year walleye may indicate a downstream drift from upstream areas where suitable spawning habitats were recorded (i.e., Site 8) or drift out of tributaries (e.g., MacKay River). The presence of spent females may indicate use of the area for feeding purposes by these post-spawners.

Adult northern pike were recorded at most sites during the spring 1992 survey. Gravid (pre-spawning) females were captured at two sample locations in Reach 3 (Blue Ridge). Ripe females were encountered in Reach 5 (Lesser Slave River), Reach 9 (Ft. MacKay), and Reach 10 (Embarras). Site-specific mainstem spawning areas (based on concentrations of adults in spawning condition) were not located during the study. Machniak (1975) indicated that pike generally spawn over flooded aquatic or terrestrial vegetation in shallow water areas with minimal current. In the Peace River researchers (Hildebrand 1990) suspected that northern pike utilized SNYE habitats for spawning. SNYE habitats and nearshore habitats with flooded vegetation and quiet water were rare in the Athabasca River. SNYE habitats were recorded only at Site 3, and at the flows present, these potential spawning habitats were of marginal quality. During higher flows later in the spring, these areas would become more suitable for spawning northern pike. A limited amount of quiet, nearshore habitat with flooded terrestrial vegetation was present at Site 9.

The presence of longnose and white sucker adults in spawning condition was considered as an indirect evidence that spawning probably occurred in the mainstem Athabasca River or in nearby tributaries. Juvenile suckers were more abundant in the upper and middle study reaches of the Athabasca River, which might indicate that spawning was more prevalent in these areas

Rearing

Rearing habitat was defined as habitat utilized by young-of-the-year or juvenile fish. Juvenile goldeye were mainly recorded from the lower reaches of the Athabasca River; however, abundance in these areas was low.

Yearling mountain whitefish were captured from the upper Athabasca River (i.e., Reaches 1-4) during spring. Their absence from the lower reaches reflects reduced habitat suitability. Juvenile mountain whitefish were recorded from the majority of reaches, with the exception of reaches 8, 9, and 10. They generally selected armoured/stable and depositional bank habitat types.

The absence of young-of-the-year northern pike in the mainstem Athabasca River suggests that spawning and rearing habitats for this species are primarily located in tributaries. Juveniles of this species were recorded only from the lower reaches of the Athabasca River. Only one individual was captured at each of sites 9 and 10, which suggested that suitable rearing habitat in the mainstem was limited. The capture of two juvenile northern pike from the Firebag River indicated suitable rearing habitats were available in this system.

Young-of-the-year walleye were captured at sites 6 and 9. At Site 6, they were captured within the confluence of a small tributary adjacent to depositional bank habitats (i.e., D2). This area was characterized by low current velocities, shallow depths, gravel/cobble substrates, and high turbidity. This type of bank habitat was not frequently encountered at Site 6. At Site 9, young-of-the-year walleye were captured adjacent to armoured/stable bank types (i.e., A1). This habitat was characterized by moderate current velocities and gravel substrates. Armoured/stable bank types were relatively uncommon at Site 9. Rearing habitats for young-of-the-year walleye appeared to be limited at sites 6 and 9.

Rearing areas for coarse and forage fish were abundant and widely distributed throughout the mainstem Athabasca River. Juveniles suckers (spp.) were recorded at most intensive survey sites. Rearing habitats for both coarse and forage fish were generally located in shallow margins adjacent to depositional bank habitat types.

Adult Feeding, Holding, and Overwintering

Adult goldeye were encountered in habitats adjacent to both armoured/stable and erosional bank habitats; however, they were recorded more frequently adjacent to erosional bank types. These areas exhibited low current velocities and a predominance of silt/sand substrates. Adult mountain whitefish were generally associated with armoured/stable banks rather than depositional and erosional bank habitats. Northern pike did not select a particular bank type, and their distribution was sporadic throughout the study area. Walleye appeared to frequent armoured/stable bank habitats more often than either depositional or erosional bank types.

Coarse fish species were recorded adjacent to most of the bank habitat types sampled, although both longnose and white suckers were captured more frequently alongside armoured/stable bank types.

The availability and distribution of potentially suitable overwintering habitats can only be discussed in general terms. Availability of deep-water (i.e., >7 m, Hildebrand 1990) habitats in the mainstem was very limited in all study reaches of the Athabasca River. Potential overwintering sites for mountain whitefish were observed in the upper and middle reaches of the study area, mainly between sites 2 and 5. Potentially suitable overwintering habitats for walleye were noted at sites 6 and 9. Suitable overwintering habitat for coarse and forage fish species appeared to be widely available throughout the Athabasca River. Based on preliminary observations, one of the limiting factors of the Athabasca River is a lack of deep, quiet water habitats for use by adults for feeding, holding, and overwintering activities.

SECTION 5 RECOMMENDATIONS FOR FURTHER STUDIES

The following summarizes the major difficulties encountered during the spring 1992 program, with recommendations for program changes and identification of further studies. The order in which they are presented does not necessarily reflect a ranking of importance.

1) Program Components

The 1992 spring study consisted of many individual components. The overall study included three major components: (1) inventory of the mainstem Athabasca River at intensive survey sites; (2) habitat and fisheries assessment of 51 tributaries; and (3) collection of fish for contaminant analyses. General problems with this approach are discussed below.

The data collected from the tributary surveys in spring 1992 are probably indicative of mainstem fish associations rather than tributary use. Only a short reach of creek/river could be sampled upstream of the mainstem confluence; thus, habitat and fish utilization in this area is not necessarily representative of habitat conditions and fish populations in upstream reaches. Because of the short time frame available, only limited effort could be spent on each tributary. In several instances, sampling of six to eight tributaries was required in one day (eight to ten hours of sampling), in addition to mainstem travel of 185 km between sites.

The collection of fish for contaminant analyses created major logistic and sample design problems. Attempts to "fit" the collections into the inventory sampling program of the mainstem Athabasca River did not work effectively, as in many cases, the sites for fish collections did not coincide with the intensive survey sites. Additional effort had to be allocated to process the samples (i.e., labelling bags/tags) and to ensure that samples were kept frozen. A full-time expeditor was required to expedite samples back to Edmonton and to deliver dry ice, etc. to the field crews.

To ensure that sufficient time is available for thorough sampling and mapping, an inventory program such as that conducted on the mainstem Athabasca River should be unhindered by other components. During spring 1992, two to three days were available for each intensive survey site; thus only basic presence and absence of species and overview habitat assessments could be completed. The requirements of these major study components cannot be accomplished in such a short time frame. They require separate studies to provide credible data. If funding is to be a problem, the most important tasks need to be identified and study efforts focussed on these.

2) Logistic and Site Difficulties

The size of the mainstem study area (1278 km of river) was very large, and difficult to sample effectively in the allocated time frame (i.e., 4 weeks). Distances between sites were long, in some instances 150 to 185 km, which meant that travel between sites often required a full day. Access (for large riverboats) was also limited throughout the study area. At the time of sampling in early spring, access sites along the Athabasca River were often blocked by pan ice resulting from break-up, making these areas inaccessible for launching. River

travel and sampling in the upper study sites (i.e., between Jasper Lake and Whitecourt) was hindered due to low water levels during early periods of the survey. In lower reaches, road access to Sites 7 and 10 was not available; therefore, arrangements had to be made for alternate transportation (i.e., aircraft charter) and logistic support.

Because of the overall size of the study area, and the need to collect information during the same seasonal time period from all reaches of the river, changes in the sampling effort for the study area should be considered for subsequent studies. One alternative would entail increasing sampling effort (i.e., two crews working simultaneously in upstream and downstream reaches of the study area). Another alternative would be to reduce the size of the present study area by avoiding duplications. Two reaches of the Athabasca River (Sites 6 and 7) were being studied under environmental programs funded by ALPAC. Information sharing programs may allow elimination of these sites from the NRBS study area, or at least allow a substantial change in effort. Considerable data has already been accumulated (e.g., AOSERP programs) for the lower Athabasca, and additional baseline sampling of this area is not cost effective.

3) Sampling Methodologies

Owing to limited numbers of snyes and deep backwaters, the gillnetting program was not effective during early spring on the Athabasca River. In the future, an alternative to gillnetting may be to increase the number of setlines utilized at each site. This technique was effective in the present study. Unlike gill nets, setlines can be used in a variety of habitats and at various depths; current velocities are not as critical with this sampling method. Electrofishing by a dedicated electrofishing jetboat was effective in most reaches of the study area. However, in the shallow areas of the upstream reaches (i.e., Jasper Park) during spring and fall, a lightweight inflatable drift-boat, equipped with a boat electrofisher unit, generator, and dual anodes, could be a more effective alternative. This system has been used successfully in other studies on small or shallow rivers (i.e., Crowsnest River) conducted by R.L. & L. Environmental Services Ltd. More focus on backpack electrofishing would also allow a greater diversity of shallow-water habitats to be sampled and provide more data on young-of-the-year fish species (e.g., distribution, life history information, and young-of-the-year habitat associations).

4) Specific Recommendations for Subsequent Sampling Programs

Recommendations for subsequent sampling programs on the Athabasca River are as follows.

a) Objectives

Additional work is required to define mainstem fall spawning habitats. This may entail concentrating effort on different species in different reaches of the river. The species of primary interest would be mountain whitefish in the upper and middle reaches and bull trout in the upper reaches.

The larger tributaries require individual studies to determine their importance and association with mainstem fish populations. This is important for species such as bull trout, which may migrate long distances to critical spawning habitat in tributaries.

Fish habitat associations should focus on late-fall (i.e., pre-winter) conditions to identify critical habitats and potential selection of areas during the low-flow, low-oxygen periods of winter.

Subsequent sampling programs should also focus on ground truthing the habitat mapping that was initiated in the spring survey at intensive survey sites. Hildebrand (1990) verified his findings of the first field survey in two subsequent sampling trips, and this ensured that the habitat mapping was "fine-tuned." Modifications to the mapping system may be required in the upper reaches of the Athabasca River above Smith, as bankside habitats in these areas are quite different from those developed for the Peace River mapping.

At the present inventory level, sampling programs in the lower reaches (i.e., Fort McMurray area), other than for contaminant data collection, are redundant. Most of this area has received the benefit of intensive AOSERP research. In contrast, the upstream reaches have rarely been investigated.

Based on the spring sampling program, reach selections in the upper portion of the Athabasca River should be revised. To better define habitat/fish associations, the upper reaches (Jasper Lake to Lesser Slave River) should be sub-divided, and new intensive survey sites established in each reach.

b) Timing

Terms of Reference should be available at an earlier date. If the mission of the NRBS is to provide credible scientific data, then the study design has to be defensible, and sufficient time allowed to prepare and implement field programs. A minimum of 10 days is required to prepare proposals, and if successful, at least two weeks lead time is necessary to prepare for the field work.

Sampling for species such as bull trout requires that crews be in the field no later than the first week of September. As mountain and lake whitefish spawn later in the fall (i.e., mid-October), work on these species could be initiated at a later date.

c) Planning

Development of future study programs for the Athabasca River requires a departure from the objectives and methodologies that may be appropriate for other systems, such as the Peace River. Relative to the Peace River, the planning process must realize that the Athabasca River (1) is unregulated and, therefore, shows extensive flow fluctuations; (2) has a different bank structure; and (3) morphologically changes from a high-gradient mountain stream to a low-gradient large river.

Planning should identify and address one objective at a time and must also consider safety in the time and logistic requirements placed on the study contractor. At the present time, there is also no clear differentiation between potential monitoring and technical or inventory studies.

SECTION 6 LITERATURE CITED

- Bond, W.A. 1980. Fishery resources of the Athabasca River downstream of Fort McMurray, Alberta. Vol. I. Prep. for Alberta Oil Sands Environmental Research Program by Department of the Environment, Edmonton. AOSERP Project AF 4.3.2 158 p.
- Bovee, K.D., and T. Cochnauer. 1977. Development and evaluation of weighed criteria, probability-of-use curves for instream flow assessments: fisheries. Instream Flow Inf. Pap. 3.FWS/OBS 77/63. Cooperative Instream Flow Service Group, Fort Collins, Colorado. 131 p.
- Dempsey, H.V. 1945. A fisheries survey of the Athabasca River Watershed 1945. Alta. Govt., Unpub. Rept. 20 p.
- Environment Canada. 1992. Historical streamflow summary. Alberta. to 1990. Inlands Waters Directorate, Water Resour. Br., Water Survey of Can. Ottawa, Can. 571 p.
- Hildebrand, L. 1990. Investigations of fisheries and habitat resources of the Peace River in Alberta. Prep. for Alta. Environ. and Alta. Fish and Wildl. Div., by R.L. & L. Environ. Serv. Ltd. 148 p. + app.
- Hynes, H.B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of the food of fishes. J. Animal Ecol. 19(1): 36-58.
- Mackay, W., G. Ash, H. Norris. (eds.). 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in assoc. with Alta. Fish and Wildl. Div., and Univ. of Alta., Edmonton. 113 p.
- Machinak, K. 1975. The effects of hydroelectric development on the biology of northern fishes (reproduction and population dynamics) II. Northern Pike *Esox lucius* (Linnaeus). A literature review and bibliography. Env. Can. Fish and Mar. Ser. Tech. Rep. No. 528. 82 p.
- McCart, P., W. Grant, and T. Dickson. 1982. Preliminary impact assessment aquatic resources. Coalspur/Robb Block Lease. Consultant Report Prepared for Denison Mines. Aquatic Environments Ltd. 100 p.
- Miller, R.B. 1955. Notes on Lesser Slave River. Unpub. Ms. Rept., Alta. Fish and Wildlife Division.
- Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Bd. of Can. 966 p.

- Thompson, R.B. 1959. Food of the squawfish, *Ptychocheilus oregonensis* (Richardson) of the Columbia River. U.S. Dep. of Int., Fish. Wildl. Serv. Fish. Bull. 158(69): 43-58.
- Trihey, E.W. 1979. The IFG incremental methodology. *IN*: G.L. Smith (ed.), Proceedings, workshop in instream flow, habitat criteria and modelling. Colorado Water Resour. Res. Inst., Fort Collins, Colorado.
- Tripp, D., and P. McCart. 1979. Investigations of the spring spawning fish populations in the Athabasca and Clearwater rivers upstream from Fort McMurray. Vol. I. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Report 84. 128 p.
- Wallace, R., and P. McCart. 1984. The fish and fisheries of the Athabasca River Basin. Status and Environmental Requirements. Prep. for Alta. Environ. Plan. Div. 325 p. + app.
- Watters, D. 1975. Preliminary survey of Solomon Creek. Recreation, Parks and Wildl., Fish and Wildl. Division.
- Westworth, D.A. 1990. Significant natural features of the eastern boreal forest region of Alberta. Prep. for Alta. For., Lands, and Wildl. Tech. Report. 135 p + app.

APPENDIX A TERMS OF REFERENCE

...

NORTHERN RIVER BASINS STUDY

TERMS OF REFERENCE - SCHEDULE A PROJECT 31 FISH/FISH HABITAT INVENTORIES

SUB-PROJECT 3117 - GENERAL FISH INVENTORIES - ATHABASCA RIVER

Objectives

- A. To conduct a baseline fish/fish habitat inventory with major emphasis on:
 - 1. Documentation of the distribution and relative abundance of fish species and fish habitat on the mainstem Athabasca River and its major tributaries (Schedule Al) in the spring season.
 - 2. Identification of known or suspected critical fish habitats and characterization of these habitats.
 - 3. Fish collection to assess habitat associations, migration and general life history in the study area.
 - 4. Documentation of young-of-year fish distribution on the mainstem Athabasca River and the lower reach of its major tributaries.
 - 5. Habitat characterization of the mainstem Athabasca River and the lower reach of its major tributaries.
 - 6. Identification of sites where large numbers of fish can be efficiently marked for future follow-up inventories.
- B. To provide recommendations and strategies for follow-up inventories and fish migration studies during subsequent seasons and years of the Northern River Basins Study.
- C. To integrate and update fish/fish habitat inventory data gathered from this study with existing information on the fish/fish habitat of the Athabasca River drainage basin (Refer to the Fish/Fish Habitat Database File).

The contractor will:

- 1. Prior to initiating any field work, determine, in cooperation with Study Office staff, all details relating to sampling design (inclusive of statistical confidences) and analytical methods to be utilized by the contractor during the course of the study. Sampling and analytical methods may become the standard for subsequent studies.
- 2. Provide an overview of the Athabasca River and the lower reach of its major tributaries (including those tributaries identified in Schedule Al from the outlet of Jasper Lake in Jasper National Park to its confluence with Lake Athabasca, describing the physical characteristics of the river and the parameters used to differentiate and describe the various reaches of the river.

- 3. Divide the mainstem river into reaches in consultation with the Study Office. Define the boundaries of the first reach of each major tributary immediately above the influence of flooding from the Athabasca River. Establish representative sampling stations for each reach for this study in accordance with the conditions outlined in Schedule A2. The general characteristics of each reach are to be described.
- 4. Determine the frequency and percent abundance of habitat types in the Athabasca River and the lower reach of its major tributaries through field reconnaissance, aerial photos and maps. The habitat types to be considered are described in Schedule A3. Habitat sampling efforts in the mainstem Athabasca River should be concentrated in areas where fish are found and should be conducted in a fashion that will provide representative evaluation of river reaches in the study area and facilitate comparison of fish utilization of habitat types. Sample station location and methods are to be standardized to enable repetitive comparable sampling in various seasons and years.

Habitat documentation will include but not be limited to:

- a description of stream channel profile longitudinally, horizontally and vertically, for the habitat area being described,
- descriptions and aerial photographs of each habitat type, ie. depth profile, velocities, refuge, substrates (Bovee and Cochnauer 1977) and other distinguishing features,
- providing self-descriptive line drawings for each habitat section showing pertinent characteristics, sample sites, and relative depth details.
- maintain photographic record of habitats sampled.
- 5. Sample fish populations during the spring using a variety of the following methods; electrofishing(boat and backpack), multi-mesh gill nets, large and small seines, dip-nets, traps, baited hooks, drift nets. Capture methods, including sonar, are to be used in a manner that will ensure a representative sample of the fish community within each reach and enable comparisons of fish abundance, size, and occurrence between reaches, habitat types, and for different sampling periods.
- 6. Collect specified fish species for subsequent contaminant analysis at the locations and according to the processing and transportation protocols outlined in Schedule A4.
- 7. Identify to species and enumerate all fish captured. Record the general condition and health of each fish sampled.
- 8. Conduct Young-of-Year (y-o-y) investigations within the general synoptic survey during the spring, considering:
 - all fish species with emphasis on sport, domestic and commercial fish
 - characterize habitats where y-o-y are found

- use y-o-y distribution data to identify potential mainstem and tributary spawning sites
- assess and prioritize tributaries with respect to their importance in providing critical habitats (ie. spawning, rearing) for mainstem fish populations. All tributaries having (or thought to have) significant migrations of fish are to be identified
- 9. Determine the length-frequency distribution for each fish species by gear type and by reach. These will be based on total catch or where large numbers are taken, on a maximum of 50 individuals per sampling site.
- 10. Initiate fish movement studies, through the use of conventional tagging techniques, to support long-term Northern River Basins Study of fish migration. All northern pike, walleye, whitefish, bull trout, goldeye and burbot of sufficient size not required for other study needs outlined in these Terms of Reference are to be conventionally tagged, measured and released alive. Information to be recorded includes: species, unique tag number, location, date of capture and length.
- 11. All incidental mortalities of sport, domestic and commercial fish inclusive of burbot, long nose and common suckers are to be sampled for length and weight, sex and maturity, field identification of stomach contents and the appropriate ageing structure (McKay et al.) retained.
- 12. Cross reference all fish sample data to life stage, habitat type, reach, date, location and gear used. All captures should be related to time of capture, legal land description, Universal Transverse Mercator coordinates for Zone 11, the national hydrometric watershed code and habitat type location.
- 13. Ensure that the Athabasca River study is integrated into the overall Northern River Basins Study program and that study data and samples are provided to other basin studies in a timely and competent fashion.
- 14. The draft and final reports are to contain recommendations on areas requiring follow-up inventories, as well as improvements in sampling methods.
- 15. Endeavour to utilize local contractors and services for the field studies,
- 16. Make every effort to minimize fish mortality. All sacrificed fish are to be disposed of in a manner acceptable to the Alberta Fish & Wildlife Division. Appropriate non-lethal capture methods will be used in a manner that will enable comparisons of abundance, size and occurrence during the sampling period.
- 17. Progress reports, final manuscripts, electronic data files, samples and photographic materials are to be delivered to the Study Office as per Schedule B. The format for the final report will follow the editorial style of the Canadian Journal of Fisheries and Aquatic Sciences.
- 18. Utilize statistical methods that achieve the highest level of confidence and power based on possible limited sample sizes.

- 19. Jointly prepare, with consultants hired to do similar work on other portions of the Peace, Athabasca and Slave Rivers and their major tributaries, a summary report on their findings. The report is to include an assessment of the species composition, abundance, habitat, rearing areas, movements and aggregations, and recommendations on the design and direction of further studies.
- 20. Develop a photographic record of equipment and techniques to sample. Include photographs of the habitat types for each reach, sampling equipment, unique features, equipment while in use and fish. Use some measure in photographs to differentiate size when the subject material would merit this need. Use 35 mm, 200 ASA Fuji slide film in a camera having a 50-55 mm lens. Maintain records to associate photographs with sample material.
- ** THE CONTRACTOR IS EXPECTED TO DESIGN AN INVENTORY APPROACH THAT BEST SERVES THE OVERALL NORTHERN RIVER BASINS STUDY OBJECTIVE, WHICH IS TO ASSESS THE CUMULATIVE IMPACTS OF DEVELOPMENT CURRENTLY AND FOR THE FUTURE.

INVENTORY AND STATISTICAL METHODS WILL BE SUBJECT TO SCIENTIFIC AND PUBLIC REVIEW AND THEREFORE SHOULD BE DEFENSIBLE WITHIN THE FRAMEWORK OF THE NORTHERN RIVER BASINS STUDY **

NORTHERN RIVER BASINS STUDY SUB-PROJECT 3117 - GENERAL FISH INVENTORIES - ATHABASCA RIVER

SCHEDULE A1

LIST OF MAJOR TRIBUTARIES

Major tributaries to be sampled:

RIVER	LAND DESCRIPTION
Rocky River	48-28-W5
Indian River	48-28-W5
Moosehorn Creek	49-27-W5
Fiddle River	49-27-W5
Solomon Creek	49-27 -W 5
Maskuta Creek	51-25-W5
Oldman Creek	55-22-W5
Berland River	58-20- W 5
Nosehill Creek	58-20- W 5
Pine Creek	60-18-W5
Marsh Head Creek	60-18-W5
Pass Creek	61-16-W5
Two Creek	61-15-W5
Oldman Creek	60-14 - W5
Sakwatamau River	60-12-W5
McLeod River	60-12-W5
Christmas Creek	60-10-W5
Corbett Creek	61-7-W5
Goose Creek	61-6- W 5
Freeman River	61-6-W5
Horse Creek	61-5-W5
Clearwater Creek	63-4-W5
Timeu Creek	63-3 - W5
Pembina River	66-2-W5
Chisholm Creek	68-2 - W5
Rourke Creek	70-1-W5
Unnamed (right bank)	8-72-25 - W4
Baptiste Creek	67-23-W4
Tawatinaw River	66-22- W 4
Calling River	70-19-W4
La Biche River	69-18-W4
La Petite Riviere Jailan	71-19-W4
Duncan Creek	73-18-W4
Parallel Creek	78-17-W4
Pelican River	79-17-W4
House River	83-16-W4
Loon Creek	84-17-W4
Livock River	86-18- W 4

SCHEDULE A1

LIST OF MAJOR TRIBUTARIES

RIVER	LAND DESCRIPTION
Buffalo Creek Algar River Hangingstone River Little Fishery River Clearwater River Steepbank River MacKay River Muskey River Ells River Tar River Pierre River Firebag River	87-17-W4 87-14-W4 89-9-W4 89-9-W4 89-9-W4 92-10-W4 94-11-W4 94-10-W4 96-11-W4 97-10-W4 101-9-W4
Grayling Creek	104-9-W4

NORTHERN RIVER BASINS STUDY SUB-PROJECT 3117 - GENERAL FISH INVENTORIES - ATHABASCA RIVER

SCHEDULE A2

CRITERIA FOR ESTABLISHING REPRESENTATIVE FISH SAMPLING STATIONS

Each Sample station shall:

- 1. Be a representative of the river reach in which it is located.
- 2. Provide pertinent biological and hydraulic information of relevance to the study.
- 3. Be large enough to provide a range of representative habitats yet small enough to permit efficient analysis using relatively simple sampling techniques.
- 4. Be assessable by road wherever possible to facilitate logistical support.
- 5. Be situated within one day boat to and from adjacent sites.

NORTHERN RIVER BASINS STUDY SUB-PROJECT 3117 - GENERAL FISH INVENTORIES - ATHABASCA RIVER

SCHEDULE A3

HABITAT CLASSIFICATION AND DOCUMENTATION SYSTEM FOR USE IN FISHERIES SURVEYS CONDUCTED UNDER THE NORTHERN RIVER BASINS STUDY

1. CHANNEL TYPES

TYPE U - UNOBSTRUCTED CHANNEL

only one main channel; permanent islands absent; side bars occasionally present with only limited development of exposed midchannel bars during low flows.

TYPE S - SINGULAR ISLAND

presence of two channels around single, permanent island; side bars and mid-channel bars often present at low flows.

TYPE M - MULTIPLE ISLAND

- more than two channels and permanent islands present; generally exhibit extensive side bar and mid-channel bar development during low flows.

TYPE F - FALLS

a special channel type used to identify the unique habitat at Vermilion Falls.

2. SPECIAL HABITAT FEATURES

Tributary Confluences (TC)

- confluence area of tributary entering mainstem; classified according to flow at time of survey and wetted width at mouth
- T1 intermittent flow (dry/trickle); ephemeral stream

T2 - flowing; width at mouth <5.0 m

T3 - flowing; width at mouth 5-15 m

T4 - flowing; width at mouth 15-30 m

T5 - flowing; width at mouth 30-60 m

T6 - flowing: width at mouth >60 m

Shoal (SH)

shallow (<1.0 m depth), submerged areas of coarse (SHC) or fine (SHF substrates generally found in mid-channel areas or associated with depositional areas around islands and side bars. Shoal boundaries are to be visually assessed and approximate locations mapped.

Backwater (BW)

discrete, localized area of variable size, exhibiting a reversed flow direction relative to the main current; generally produced by bank irregularities; velocities variable but generally lower than in adjacent main flow; substrate similar to that in adjacent channel although usually with a higher percentage of fines. For the purposes of this study, only BW areas larger than 15 m in length and 10 m width are to be mapped; maximum depths will be determined by sonar along the eddy line between BW and mainstem flows.

Rapid (RA)

area characterized by turbulent, broken surface (i.e., standing waves, chutes, whirlpools, etc.); water velocity high (greater than 1.5 mes⁻¹); substrates consist of large boulder or bedrock with low fines deposition.

Snye (SN)

area characterized by a non-flowing body of water (generally within a side channel) which retains a connection to a flowing channel at its downstream end; most commonly associated with braided channel areas but also occur in singular channels in association with point or sidebar development; substrate mainly silt/sand maximum depth at the mouth to be recorded by sonar; depths within the snye proper to be recorded for snyes within fish sampling areas.

Slough (SL)

a non-flowing body of water located in the flood plain but completely isolated from flowing waters except during annual or irregular flood events. Often exhibit more extensive littoral development in comparison to snye areas (dependant upon frequency of inundation); substrate of silt and organic material; water levels maintained by seepage, springs, precipitation, etc.; slough identification was based primarily on air photo interpretation.

The classification of major habitat units Type U, Type S, and Type M is to be based on field observations and air photo interpretation. For example, in instances where a single permanent island is present, but one of the channels around the island is dry, the habitat classification could be either Type U (Unobstructed channel) or Type S (Singular Island) depending on conditions within the dry channel. If the dry channel exhibits a low relief at the inlet and is devoid of permanent vegetation, suggesting it contained annual flows during some portion of the open water season (e.g., during spring run-off or freshet flows), the area is to be classed as Type S habitat. If, however, the entrance to the dry channel is at a level near the high water mark, well vegetated with either grasses or willows and appears to contain flows only during extreme flood events, the channel will be classed as Type U. These criteria are also to be used to differentiate between Type S and Type M channel habitats.

3. BANK HABITAT TYPES

Category Code Description

A1

Armoured/Stable

Banks generally stable and at repose with cobble/small boulder/gravel substrates predominating; uniform shoreline configuration with few/minor bank irregularities; velocities adjacent to bank generally low-moderate, instream cover limited to substrate roughness (i.e., cobble/small boulder interstices); overhead cover provided by turbidity.

- A2 Banks generally stable and at repose with cobble/small boulder and large substrates predominating: irregular shoreline configuration generally consisting of a series armoured cobble/boulder outcrops produce Backwater habitats; velocities adjacent to bank generally moderate with low velocities provided in BW habitats: instream cover provided by BW areas and substrate roughness: overhead cover provided by depth and turbidity: occasionally associated with C1. E4. and E5 banks.
- **A3** Similar to A2 in terms of bank configuration and composition although generally with higher composition of large boulders/bedrock fractures; very irregular shoreline produced by large boulders and bed rock outcrops: velocities adjacent to bank generally moderate to high; instream cover provided by numerous small BW areas, eddy pools behind submerged boulders, and substrate interstices; overhead cover provided by depth and turbidity; exhibits greater depths offshore than found in Al or A2 banks: often associated with C1 banks.

Canyon

- C1 Valley walls forming banks; bank substrate consists primarily of large cobble/boulder/bedrock fractures; generally stable at bank-water interface although on upper bank slumps/rock falls common; typically deep with high current velocities offshore; abundant velocity cover provided by substrate roughness and frequent bank irregularities.
- C2 Steep, stable bedrock banks associated with canyon cliffs or bedrock outcrops; deep to moderate depths offshore with generally moderate to fast current velocities; regular bank form; velocity cover occasionally provided by bedrock fractures in channel.

Code Description Category D1 Low relief, gently sloping bank type with Depositional shallow water depths offshore: substrate consists predominantly of fines sand/silt); low current velocities offshore; instream cover generally absent or, if present, consisting of shallow depressions produced by dune formation (i.e., in sand substrates) or embedded cobble or boulders and vegetative debris; this bank type is generally associated with bar formations. **D2** Low relief, gently sloping bank type with shallow water depths offshore: substrate of consists coarse materials (i.e.. gravels/cobbles); low-moderate current velocities offshore: areas with higher velocities usually producing riffle areas; overhead cover provided by surface turbidity or surface turbulence in riffle areas; instream cover provided by substrate roughness: often associated with bar formations; and shoal habitat. Erosional **E**1 High, steep, eroding banks often with terraced profile; banks unstable, frequently slumping and eroding; substrate consists of sand/silt materials; moderate to high off-shore current velocities; steep bank profile extends under surface water resulting in deep immediately offshore; instream cover provided by abundant submerged bankside vegetation (i.e., trees, shrubs, root wads, etc.) that has fallen into the channel from the eroding bank crest; overhead cover provided by partially submerged vegetation, depth and turbidity. **E2** Similar to Al except without the high amount of instream vegetative debris (i.e., generally clean); depths offshore generally shallower than along El banks. **E3** High, steep and eroding banks, substrate consists of loose till deposits (i.e., gravel/cobble/sand mixture); moderate to high current velocities offshore; moderate depths offshore; instream cover availability limited

by turbidity.

to substrate roughness; overhead cover provided

<u>Category</u> <u>Code</u> <u>Description</u>

Steep, eroding or slumping high wall bank; substrates variable but primarily consisting of fines (i.e., clays/silts); moderate to high current velocities offshore; depths offshore generally moderate to deep; instream cover limited to occasional BW formed by bank irregularities; overhead cover provided by depth and turbidity.

Low, steep banks, often with terraced profile; predominantly composed of silt/sand substrates; generally low current velocities offshore; depths offshore variable but generally shallow to moderate; instream cover usually absent; this bank type is often associated with BW habitats in Al and A2 bank types; overhead cover provided by turbidity.

Composite e.g., A2/C2

These classifications are used in situations where the bank-water interface (i.e., nearshore bank) is predominantly one bank type but was still strongly influenced by the adjacent far shore bank (e.g., A2/C2 used where the nearshore bank is type A2 but was produced by active bedrock fracturing from the far shore bank type C2). In these composite bank types, the first bank type given is the dominant type at the bank-water interface.

4. **SUBSTRATE ANALYSIS**

Substrate Classes

Plant detritus/organic material Mud/Soft Clay Silt Sand Gravel (0.2 - 5.0 cm diameter) Cobble (5.1 - 20.0 cm diameter) Boulder (>20.0 cm diameter) Bedrock

Where substrates can be visually identified, the percentage composition of each substrate type is to be estimated. In deeper areas, bottom type will be determined by "feeling" the bottom or from echo sounder tracing. Substrate classification in these areas will generally be limited to the identification of the dominant/co-dominant types (e.g., sand/silt, cobble or boulder etc.).

5. ESTABLISHING WATER LEVELS

To assist in evaluating habitat conditions associated with or produced by differing flow regimes comparative water level data will be collected. A temporary benchmark (TBM) will be established above the high water mark at each study site. The benchmark is to be marked with orange surveyors tape and identified as the contractor's benchmark. Water surface elevations will be determined by differential levelling using an automatic level and surveyors rod. Assumed or local elevations of 100 m are to be used at each site with water surface elevations being surveyed once at each site during each sample period.

Discharge data are to be obtained for each site during each sample period from the nearest Water Survey of Canada (WSC) gauging stations.

6. <u>DESCRIPTION OF CHANNEL MORPHOMETRY</u>

Within intensive survey sites, channel cross sectional profiles and bankside habitat configurations will be determined. Transects of selected habitat types will be surveyed using sonar to provide a better definition of habitat characteristics. Additional transects will be conducted outside study sites in areas where large concentrations of fish are identified. Photographic records of water level conditions and habitat conditions occurring at each site will also be maintained.

NORTHERN RIVER BASINS STUDY SUB-PROJECT 3117 - GENERAL FISH INVENTORIES - ATHABASCA RIVER

SCHEDULE A4

A. FISH SAMPLING PROTOCOL - CONTAMINANT ANALYSIS

- 1. Fish may be collected using a variety of techniques including:
 - Electro-shocking
 - Gill nets
 - Seines
 - Drift nets
 - Set lines
 - Angling
- 2. All samples must be submitted as intact whole fish.
- 3. All fish samples are to be frozen as soon as possible after collection.
- 4. Details of species, length, date, location and the collector's name must be recorded with the sample number for each sample.
- 5. All fish must either be:
 - (a) immediately processed (length) and directly placed into Department of Fisheries and Oceans recommended contaminant free plastic bags and the bags specifically labelled, or
 - (b) placed into stainless steel buckets or basins (rinsed for each site with a solvent series as described in the "Instrument and Equipment Cleaning Procedure" provided below) and kept cool until processed, and then placed into Department of Fisheries and Oceans recommended contaminant free plastic bags and the bags specifically labelled.

Instrument and Equipment Cleaning Procedures:

- i) washed with tap water and laboratory detergent,
- ii) rinsed with tap water and deionized water (18 meg-ohm),
- iii) rinsed with pesticide grade acetone, hexane, dichloromethane and hexane, respectively, and
- iv) air dried and heated to 325°C for six hours. All cleaned instruments and equipment to be wrapped in heat treated (325°C) aluminum foil until required.
- N.B. Placing fish in ordinary plastic bags will contaminate the samples.

- 6. Pack small forage fish in composite groups of 10 or more for each species.
 - 7. Pack large fish individually as per (5) above. Place ten (10) individually bagged fish of each major size class, for each important species, in a large bag. Record date, species, size class and sample number, and attach specific label. <u>Important species for the various parts of the study area are:</u>

Peace River

- i) Upper reaches (above Peace River)
 - Mountain whitefish, northern pike and longnose suckers.
- ii) Middle reaches (Peace River to Vermilion Chutes)
 - Goldeye, walleye, northern pike and long nose suckers.
- iii) Lower reaches (Vermilion Chutes to Confluence with Slave River)
 - Goldeye, walleye, northern pike and longnose suckers.

Slave River (All Reaches)

- Lake whitefish, goldeye, northern pike, and longnose suckers.

Athabasca River

- i) Upper reaches (above Whitecourt)
 - Mountain whitefish, bull trout and northern pike.
- ii) Middle reaches (Whitecourt to Cascade Rapids)
 - Goldeye, walleye, northern pike and longnose suckers.
- iii) Lower reaches (below Cascade Rapids).
 - Goldeye, walleye, northern pike, longnose suckers and lake whitefish.
- 8. The use of dry ice for initial freezing and shipping is the approved method. Alternatives are ice packs and then ice, and may be used only as a secondary means on occasion where there may exist a shortfall in available dry ice.
- 9. The use of sturdy styrofoam coolers is most practical and is recommended. Styrofoam coolers of weak construction may not assure constant freezing and may break down during shipping. Coleman type coolers may be used but may not necessarily be returned immediately for repetitive use; include return address for these.

10. Place dry ice both on top and bottom of coolers to assure that no freeze-thaw cycles will occur.

N.B.

Any freeze-thaw, however moderate it may be, will cause contaminant migration within a sample and this may affect contaminant concentration levels in tissues.

11. Ship samples as soon as possible or, if not possible, samples must be kept frozen in a freezer at -20°C until shipping.

Any contractor/consultant or government personnel that is transporting fish to Edmonton must contact one of the following people before leaving place of origin:

Earle Baddaloo Work: (403) 427-6102

Home: (403) 434-8967

Sub Ramamoorthy Work: (403) 427-6102

Home: (403) 435-8137

If the above personnel are not in. a message indicating fish is on its way and approximate time of arrival in Edmonton <u>must</u> be left with the secretary (in office) between 8:15 a.m. and 4:30 p.m., or on an answering machine (home) after 4:30 p.m., before leaving place of origin.

Upon arrival in Edmonton with specimens from Northern River Basins Study projects, contractor(s) or consultant(s) should contact one of the above personnel again.

If the above personnel cannot be contacted on a weekday (Monday to Friday), contractor(s)/consultant(s) should proceed directly to VERSACOLD only between 8:00 a.m. and 4:00 p.m. Drop cargo (fish) off at VERSACOLD under the name of Earle Baddaloo, Alberta Environment. DO NOT LEAVE FISH OUTSIDE OF VERSACOLD!!

<u>VERSACOLD IS OPEN BETWEEN 0800 AND 1600 HOURS. MONDAY THROUGH</u> FRIDAY.

ADDRESS: 9002 - 20 Street

Edmonton, Alberta

TELEPHONE: (403) 464-1770 CONTACT: Mr. Merve Permann

If fish tissue arrive after 4:00, contractor(s)/consultant(s) must make <u>every effort</u> to contact Mr. Baddaloo or Dr. Ramamoorthy so that alternate storage for the night or weekend may be found.

It is, therefore, imperative to call contacts before leaving place of origin so that they (contacts) will be aware of the transport activity and can make arrangements for the arrival of the specimens.

WEEKEND TRANSPORT

If fish has to be transported to Edmonton on the weekend (Saturday, Sunday or public holiday), the contractor(s)/consultant(s) or government personnel should contact Mr. Baddaloo or Dr. Ramamoorthy on the last working day before the weekend or public holiday. (If contacts are not available, messages must be left with the secretary.) Again, before leaving place of origin, please call contacts at home and leave a message if they are not there; and upon arrival in Edmonton, please call contact again.

12. Any deviation from the above established protocol/procedure should be justified and accounted for in writing and a detailed description of what was done is to be submitted with the fish sample; this is to assure credibility and validity of results.

B. <u>FISH SAMPLING LOCATIONS - CONTAMINANT ANALYSIS</u>

Athabasca River

- 1. Weldwood Mill, Hinton, zone of influence from effluent.
- 2. Alberta Newsprint, Whitecourt, zone of influence from effluent.
- 3. Millar Western, Whitecourt, zone of influence from effluent.
- 4. Alberta Energy Company Mill, Lesser Slave River zone of likely influence from effluent.
- 5. Alberta Pacific Mill, zone of likely influence from effluent.
- 6. Fort McMurray area mid-point.
- 7. Fort McKay Indian Reserve area mid-point.
- 8. Athabasca Delta.
- 9. Athabasca Lake.
- 10. Lesser Slave Lake or Lac La Biche.
- 11. Gregoire Lake.
- 12. Brule Lake.

NORTHERN RIVER BASINS STUDY SUB-PROJECT 3117 - GENERAL FISH INVENTORIES - ATHABASCA RIVER

SCHEDULE B

DUE DATES FOR DELIVERABLES

1. Joint Presentation of Progress and Results (meeting) June 15, 1992 with first cut of recommendations

2. Draft Report

July 2, 1992

3. Draft - Summary Report

July 2, 1992

- 4. Final Project Report and Joint Summary Report incorporating review comments two weeks after receipt of the reviewed draft reports.
- 5. Supply ten (10) copies and the camera-ready original of the final draft and reports as well as electronic disks
- 6. Report compiled data in the electronic and written protocols agreed to with the study office.

Payment

- 1. Subject to prior approval from the Department, payment will be made based on monthly invoices submitted up to the maximum contract amount of \$129,966.
- 2. (a) Travel expenses incurred in performing the services will be paid as follows:
 - (i) accommodation at cost on submission of receipts;
 - (ii) transportation at cost on submission of receipts:
 - (iii) meals at cost on submission of receipts or as specified below without receipts:
 - Breakfast \$5.80
 - Lunch \$7.40
 - Dinner \$13.50
 - (b) Incidental expenses incurred in performing the services will be reimbursed at cost on submission of receipts.
 - (c) Travel by private vehicle will be reimbursed at the rate of \$0.27 per kilometre and this shall include fuel and maintenance.

APPENDIX B

HABITAT CLASSIFICATION AERIAL PHOTOGRAPH SERIES

		<u> </u>

APPENDIX B1 MAJOR HABITAT TYPES - CLASSIFICATION SYSTEM

CHANNEL TYPES

TYPE U - UNOBSTRUCTED CHANNEL

- only one main channel; permanent islands absent; side bars occasionally present with only limited development of exposed mid-channel bars during low flows.

TYPE S - SINGULAR ISLAND

- presence of two channels around single, permanent island; side bars and mid-channel bars often present at low flows.

TYPE M - MULTIPLE ISLAND

- more than two channels and permanent islands present; generally exhibited extensive side bar and mid-channel bar development during low flows.

TYPE R - RAPIDS

- a special channel type used to identify the unique habitat at Grand Rapids area.

SPECIAL HABITAT FEATURES

Tributary Confluences (TC)

- confluence area of tributary entering mainstem; classified according to flows at time of survey and wetted width at mouth
- T1 intermittent flow (dry/trickle); ephemeral stream
- T2 flowing; width at mouth <5.0 m
- T3 flowing; width at mouth 5-15 m
- T4 flowing; width at mouth 15-30 m
- T5 flowing; width at mouth 30-60 m
- T6 flowing; width at mouth >60 m

Shoal (SH)

- shallow (<1.0 m depth), submerged areas of coarse (SHC) or fine (SHF) substrates generally found in mid-channel areas or associated with depositional areas around islands and side bars. Shoal boundaries were visually assessed and approximate locations mapped; the occurrence of shoals was likely underestimated due to the inability to examine all available mainstem areas.

Backwater (BW)

- discrete, localized area of variable size, exhibiting a reversed flow direction relative to the main current; generally produced by bank irregularities; velocities variable but generally lower than in adjacent main flow; substrate similar to that in adjacent channel although usually with a higher percentage of fines. For the purposes of this study, only BW areas larger than 15 m in length and 10 m width were mapped; maximum depths were determined by sonar along the eddy line between BW and mainstem flows.

Rapid (RA)

- area characterized by turbulent, broken surface (i.e., standing waves, chutes, whirlpools, etc.); water velocity high (greater than 1.5 m·s-1); substrate consisted of large boulder or bedrock with low fines deposition.

Snye (SN)

- area characterized by a non-flowing body of water (generally within a side channel) which retained a connection to a flowing channel at its downstream end; most commonly associated with braided channel areas but also occurred in singular channels in association with point or side-bar development; substrate mainly silt/sand; depths within the snye proper were only recorded at snyes in intensive study sites.

Slough (SL)

- a non-flowing body of water located in the flood plain but completely isolated from flowing waters except during annual or irregular flood events. Often exhibited more extensive littoral development in comparison to snye areas (dependent upon frequency of inundation); substrate of silt and organic material; water levels maintained by seepage, springs, precipitation, etc.; slough identification was based primarily on air photo interpretation.

Log Jam (LJ)

- accumulation of woody debris generally located on upstream or downstream tips of islands, heads of side channels or stream meanders; depths offshore variable; velocities offshore variable; provide excellent instream cover.

The classification of major habitat units Type U, type S, and Type M was subjectively based on field observations and air photo interpretation. For example, in instances where a single permanent island was present, but one of the channels around the island was dry, the habitat classification could be either Type U (Unobstruction channel) or Type S (Singular Island) depending on conditions within the dry channel. If the dry channel exhibited a low relief at the inlet and was devoid of permanent vegetation, suggesting it contained annual flows during some portion of the open water season (i.e., during spring run-off or freshet flows), the area was classed as Type S habitat. If, however, the entrance to the dry channel was at a level near the high water mark, well vegetated with either grasses or willows and appeared to contain flows only during extreme flood events, the channel was classed as Type U. These criteria also were used to differentiate between Type S and Type M channel habitats.

APPENDIX B2 BANK HABITAT TYPES - CLASSICATION SYSTEM

Category	Code	Description
Armoured/ Stable	A1	Banks generally stable and at repose with cobble/small boulder/gravel substrates predominating; uniform shoreline configuration with few/minor bank irregularities; velocities adjacent to bank generally low-moderate, instream cover limited to substrate roughness (i.e., cobble/small boulder interstices); overhead cover provided by turbidity or occasional deadfall/sweeper.
	A2	Banks generally stable and at repose with cobble/small boulder and large boulder substrates predominating; irregular shoreline configuration generally consisting of a series of armoured cobble/boulder outcrops that produce Backwater habitats; velocities adjacent to bank generally moderate with low velocities provided in BW habitats; instream cover provided by BW areas and substrate roughness; overhead cover provided by depth and turbidity and woody occasionally associated with C1, E4, and E5 banks.
	A3	Similar to A2 in terms of bank configuration and composition although generally with higher composition of large boulders/bedrock fractures; very irregular shoreline produced by large boulders and bed rock outcrops; velocities adjacent to bank generally moderate to high; instream cover provided by numerous small BW areas, eddy pools behind submerged boulders, and substrate interstices; overhead cover provided by depth and turbidity; exhibits greater depths offshore than found in A1 or A2 banks; often associated with C1 banks.
	A4	Rip-rap substrates consisting of angular boulder-sized materials; may be native rock or concrete debris; often associated with high velocity areas; generally with deep water situated immediately offshore; instream cover provided by substrate roughness; overhead cover provided by depth and turbulence; similar in many ways to A3 habitat but generally with smooth bank profile.
Canyon	C1	Valley walls forming banks; bank substrate consists primarily of large cobble/boulder/bedrock fractures; generally stable at bank-water interface although on upper bank slumps/rock falls common; typically deep with high current velocities offshore; abundant velocity cover provided by substrate roughness and frequent bank irregularities.

- C2 Steep, stable bedrock banks associated with canyon cliffs or bedrock outcrops; deep to moderate depths offshore with generally moderate to fast current velocities; regular bank form; velocity cover occasionally provided by bedrock fractures in channel.
- C2B Similar to C2 but bank is regular with no instream cover.
- C3 Valley wall forming banks, bank substrate consists primarily of fines with some gravel/cobble at base; moderately eroding at bankwater interface, slumping on upper bank common. Moderate-high velocities no instream cover.

Depositional D1

- Low relief, gently sloping bank type with shallow water depths offshore; substrate consists predominantly of fines (i.e., sand/silt); low current velocities offshore; instream cover generally absent or, if present, consisting of shallow depressions produced by dune formation (i.e., in sand substrates) or embedded cobble/boulders and vegetative debris; this bank type was generally associated with bar formations.
- D2 Low relief, gently sloping bank type with shallow water depths offshore; substrate consists of coarse materials (i.e., gravels/cobbles); low-moderate current velocities offshore; areas with higher velocities usually producing riffle areas; overhead cover provided by surface turbidity or surface turbulence in riffle areas; instream cover provided by substrate roughness; often associated with bar formations; and shoal habitat.
- D3 Similar to D2 but with coarser substrates (i.e., large cobble/small boulder) more dominant; boulders often embedded in cobble/gravel matrix; generally found in areas with higher average flow velocities than D1 or D2 banks; instream cover abundantly available in form of substrate roughness; overhead cover provided by surface turbulence; often associated with fast riffle or rapid areas offshore; generally moderate to high velocities offshore; transitional bank type that exhibits characteristics of both Armoured and Depositional bank types.

Erosional

High, steep eroding banks often with terraced profile; banks unstable, frequently slumping and eroding; substrate consists of sand/silt materials; moderate to high off-shore current velocities; steep bank profile extends under water surface resulting in deep water immediately offshore; instream cover provided by abundant submerged bankside vegetation (i.e., trees, shrubs, root wads, etc.) that have fallen into the channel from the eroding bank crest; overhead cover provided by partially submerged vegetation, depth

and turbidity.

E2 Similar to E1 except without the high amount of instream vegetative debris (i.e., banks generally clean); depths offshore generally shallower than along E1 banks.

E3 High, steep and eroding banks, substrate consists of loose till deposits (i.e., gravel/cobble/sand mixture); moderate to high current velocities offshore; moderate depths offshore; instream cover availability limited to substrate roughness; overhead cover provided by turbidity.

E4 Steep, eroding or slumping highwall bank; substrates variable but primarily consisting of fines (i.e, clays/silts); moderate to high current velocities offshore; depths offshore generally moderate to deep; instream cover limited to occasional BW formed by bank irregularities; overhead cover provided by depth and turbidity.

E4B Same as E4, but instream cover also provided by LJ and woody debris.

Low, steep banks, often with terraced profile; predominantly composed of silt/sand substrates; generally low current velocities offshore; depths offshore variable but generally shallow to moderate; instream cover usually absent; this bank type is often associated with BW habitats in A1 and A2 bank types; overhead cover provided by turbidity.

Low slumping/eroding bank, substrates may be either cobble/gravel or silt with occasional cobble/gravel patches; depths offshore moderate; velocities moderate-high instream cover provided by abundant woody debris or occasional boulder; overhead cover provided by overhanging trees and depth and turbidity; numerous small BW often with A1 or A2 habitats right at bank interface.

Composite

e.g., These classifications were used in situations where the bank-water A2/C2 interface (i.e., nearshore bank) was predominantly one bank type but was still strongly influenced by the adjacent farshore bank (e.g., A2/C2 used where the nearshore bank was type A2 but was produced by active bedrock fracturing from the farshore bank type C2). In these composite bank types, the first bank type given is the dominant type at the bank-water interface.

APPENDIX B3 HABITAT CLASSIFICATION AND RATING SYSTEM

- A) <u>Riffle</u> Portion of channel with increased velocity relative to Run and Pool habitat types; broken water surface due to effects of submerged or exposed bed materials; relatively shallow (less than 25 cm) during moderate to low flow periods.
 - Riffle (RF) Typical riffle habitat type; limited submerged or overhead cover for juveniles and adult life stages; coarse substrate

<u>Riffle-Boulder Garden</u> (RF/BG) - Riffle habitat type with significant occurrence of large boulders; availability of significant instream cover for juveniles (to lesser extent adults) at moderate to high flow events.

- B) Rapids (RA) Portion of channel with highest velocity relative to other habitat types. Deeper than Riffle (ranging from 25-50 cm); often formed by channel constriction. Substrate extremely coarse; dominated by large cobble and boulder material. Instream cover provided in pocket eddies (P3) and associated with cobble/boulder substrate.
- C) Run Portion of channel characterized by moderate to high current velocity relative to Pool and Flat habitat; water surface largely unbroken. Deeper than Riffle habitat type. Can be differentiated into four types; deep-slow, deep-fast, shallow-slow, and shallow-fast.

Run (Class 1) (R1) - Highest quality Run habitat type. Maximum depth exceeding 1.5 m; average depth 1.0 m. High instream cover at all flow conditions (submerged boulders/bedrock fractures, depth). Generally of deep-slow type (to lesser extent deep-fast) and situated proximal to upstream food production area (i.e., RF, R3).

Run (Class 2) (R2) - Moderate quality Run habitat type. Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High instream cover during all but low flow events (baseflow). Generally of either deep-fast type or moderately deep-slow type.

Run (Class 2)/Boulder garden (R2/BG) - Moderate quality Run habitat type; presence of large boulders in channel; high instream cover (boulder, bedrock fractures, turbulence) at all but low-flow events (baseflow). Depth characteristics similar to R2; however, required maximum depth lower due to cover afforded by boulders.

Run (Class 3) (R3) - Lowest quality Run habitat type. Maximum depth of 0.75 m, but averaging <0.50 m. Low instream cover at all but high flow events. Generally of shallow-fast or shallow-slow types.

Run (Class 3)/Boulder garden (R3/BG) - Similar to R3 in depth and velocity characteristics; presence of large boulders in channel offers improved instream cover during moderate and high flow events.

D) Flat (FL) - Area of channel characterized by low current velocities (relative to RF and Run cover types); near-laminar (i.e., non-turbulent) flow character. Depositional area featuring predominantly sand/silt substrate. Differentiated from Pool habitat type on basis of high channel uniformity and lack of direct riffle/run association. More depositional in nature than R3 habitat (sand/silt substrate, lower food production, low cover, etc.).

Flat (Class 1) (F1) - High quality Flat habitat type. Maximum depth exceeding 1.5 m; average depth 1.0 m or greater.

Flat (Class 2) (F2) - Moderate quality Flat habitat type. Maximum depth exceeding 1.0 m; generally exceeding 0.75 m.

Flat (Class 3) (F3) - Low quality Flat habitat type. Maximum depth of 0.75 m, averaging less than 0.50 m.

E) <u>Pool</u> - Discrete portion of channel featuring increased depth and reduced velocity (downstream oriented) relative to Riffle and Run habitat types.

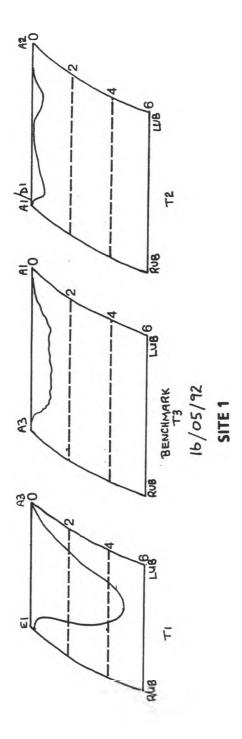
<u>Pool (Class 1)</u> (P1) - Highest quality Pool habitat type. Maximum depth exceeding 1.5 m; average depth 1.0 m or greater; high instream cover at all flow-conditions (submerged boulder, bedrock fractures, depth, bank irregularities). Generally featuring high Riffle and/or Run association (i.e., food input). Often intergrades with deep-slow type of R1.

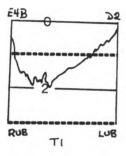
<u>Pool (Class 2)</u> (P2) - Moderate quality Pool habitat type. Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High instream cover at all but low flow events (baseflow).

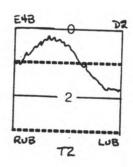
Pool (Class 3) (P3) - Low quality pool habitat type. Maximum depth of 0.75 m, averaging <0.50 m. Low instream cover at all but high flow events. Includes small pocket eddy type habitat.

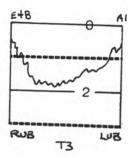
F) Features - Includes the following instream features:

<u>Chutes</u> (CH) - Area of channel constriction; generally resulting in channel deepening and increased velocity. Associated habitat types are R1, R2.

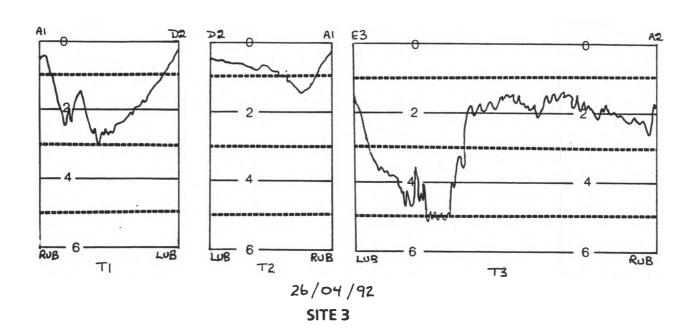

<u>Ledges</u> (LG) - Areas of bedrock intrusion into the channel; often creates Chutes and Pool habitat.

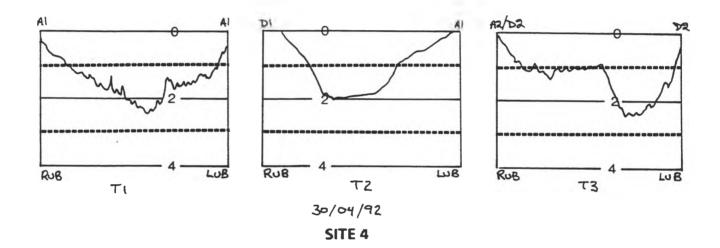

Other - Miscellaneous features (fallen tree, large boulder, etc.)

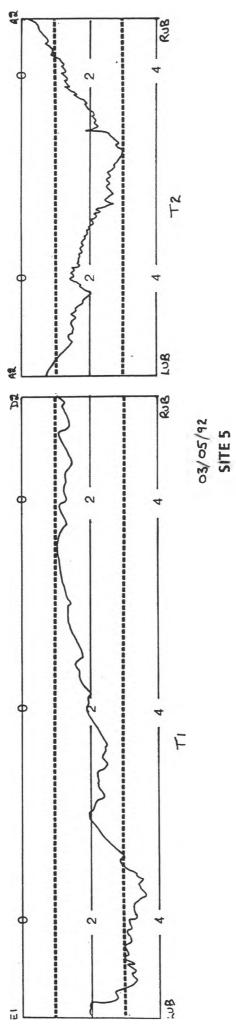

Appendix B4 Air photo coverage of Athabasca River in Alberta.

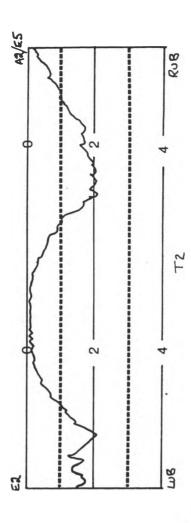

SITE	RIVER LOCATION	DATE FLOWN	NTS MAP SHEET	SCALE	ROLL NO.	JOB NO.	РНОТО NO.
1	km 1236.8 to 1232.3	85-06-17	83F/5	1:60 000	AS 3143	85-123	257
2	km 1108.2 to 1099.5	85-05-13	83K/2	1:60 000	AS 3139	85-123	72
3	km 1008.0 to 1000.4	71-10-07	83J/3	1:60 000	AS 4209	91-274	158
4	km 829.5 to 819.5	91-09-27	83J/16	1:60 000	AS 4208	91-274	91
5	km 782.0 to 773.0	83-08-07	83P/4	1:60 000	AS 2790	83-143P	26
	km 782.0 to 773.0	83-07-31	83P/4	1:60 000	AS 2790	83-143P	104
6	km 634.2 to 626.0	83-08-07	831/15	1:60 000	AS 2776	83-143P	152
7	km 462.9 to 452.2	84-06-25	84A/2	1:60 000	AS 3056	84-102P	92
	km 462.9 to 452.2	84-09-16	84A/2	1:60 000	AS 3056	84-102P	227
8	km 305.0 to 296.0	84-06-22	74D/12,11	1:60 000	AS 3059	84-102P	234
9	km 239.2 to 229.3	84-09-15	74E/4	1;60 000	AS 3051	84-102P	30
10	km 136.0 to 128.2	84-06-26	74E/14,74L/3	1:60 000	AS 3050	84-102	37

APPENDIX C CHANNEL PROFILES IN METRES

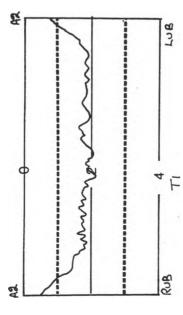


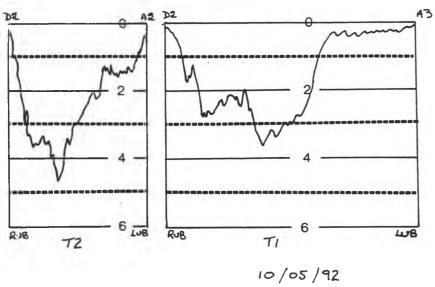


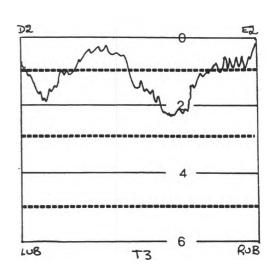


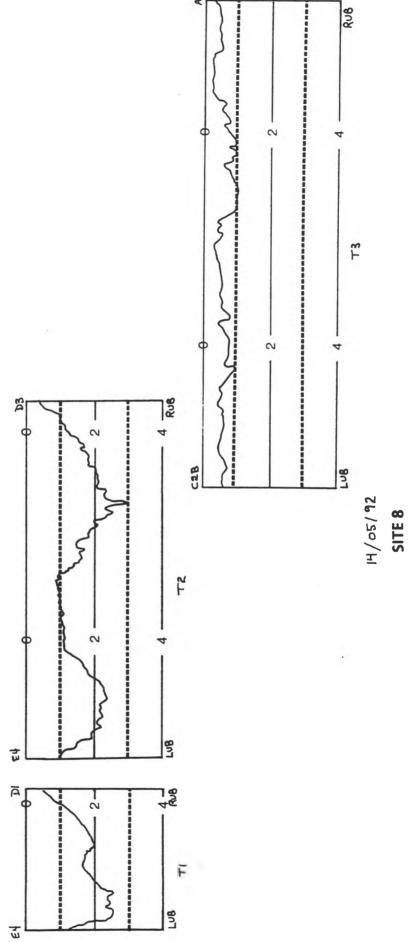

23 /04 /92

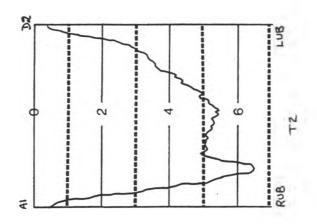
SITE 2

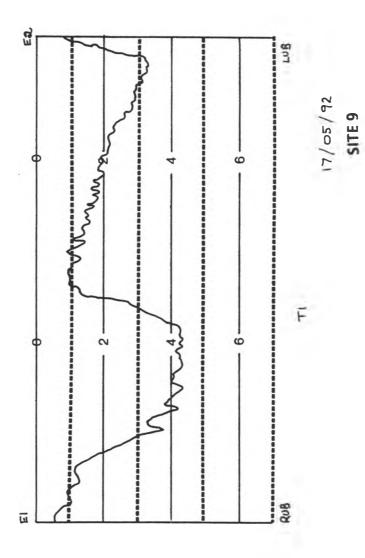


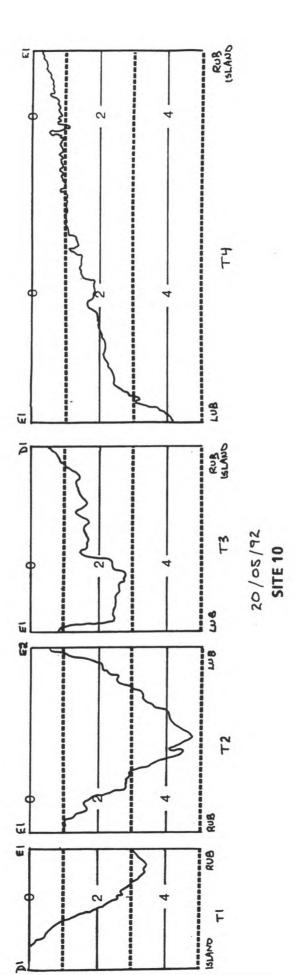





06/05/92 SITE 6







SITE 7

APPENDIX D FISHERIES DATA

Table D1 Boat electrofishing summary for spring survey period, Athabasca River, 1992.

Г	Scul.	T				T												Γ	Ξ												Ξ
	Cyprinid S Unid.	╀	_					_		_	_			_	_				_		_				_			_	_	_	Ĭ
		+	_					_	_	_	_		_			_			_		_		_		_	_	_			_	
	I FTMN	L											_																		
	ГКСН	-				+	_	_		_			1(5)				1(5)					7					_				2
	TRPR					9					,						(E)			-				-							2
	SPSH																														
	EMSH																														
	LNDC																						1								-
	FLCH																														
VEDY	Sucker spp.						(2)	(3)		(4)		(1)	(1)	(5)	(3)		(61)				(14)				(17)	(2)		(3)		(3)	(38)
CATCH (OBSERVED)	WHSC						-									Ī	_		3	4(5)	1		1(18)		1		2(2)	-	3		2000
VTCH (LNSC	4(2)	15(6)	8(3)	27(11)		4	7	1(1)	2				-		3	21(1)	Ξ	1(5)		1(5)	4(5)	4(8)		9	2	2(8)	2	-	3	26(32) 16(25)
C	GOLD				2																								_		2
		H	_			H		_	_	_	_	_	_	_	_	_				_		_		_		-	_		_		
	BURB	L						Ξ		Ξ							(2)				Ξ						-	Ξ		(E)	(6)
	WALL	L																(E)									7				3(1)
	NPRK						-						Ξ				(1)			(3)				7				-			3(3)
	ARGR							5(2)	(2)	3(1)		7	1	3(1)	-	2	20(6)														
	BLTR															-															
	RNTR		7		2								7				7														
	LKWH																														
	MNWH	12(6)	22(7)	30(15)	64 (28)	-	8(3)	35(21)	4(1)	3(4)	2(1)	13(10)	(1)	17(12)	(01)21	25	(69)/21	6(4)	(21)9	(5)	2(3)	1(7)	8(7)		(223)	5(9)	11(21)	7(5)	11(8)	16(12)	98(115)
FFORT		794	1476	828		463	_	2090	849	509		582 1	737	683 1	886 1	1037		-	_	_		_	-	_	938 1	293	1051	999		531 1	6
SAMPLE EFFORT	Distance (fcm)	_	2.2	1.4	4.8	0.4	1.0	_	_	1.6	1.0	=	_	-	_	0.0	17.3	0.5	_	-	_	_	0.7	_	2.5	0.4	1.9	6.0	0.5	-	10.5
	D. D.	_	_	7		-	-	-	-	-	-	-	-	-	-	-		-	7	3	7	7	_	7	7	7	7	7	7	-	
1	DAIR	26 April	26 Arpil	26 April		22 April	23 April	23 April	23 April	23 April	3 April		25 April	26 April	26 April	S April															
-	z	ES1 26	ES2 26	ES3 20	ED	ES1 22					ES6 22		ES8 23	ES9 23		ES11 23	CE									ES9 25	ES10 25			ES13 26	ED
-	SIIE	1 E	H	H	COMBINED	2 E	H	щ	H	H	H	H	Щ	щ	田田	Щ	COMBINE	3 E	щ	щ	TI.	щ	Щ	Щ	Щ	ш	回	页	西	四	COMBINED
_	0				Ŭ				_	_							Ü		_		_										Ö

Table D1 continued on next page ...

Table D1 continued on next page ...

Table D1 Concluded

Г	Scul.					-			T	Г				=		T		-			Τ	Γ				T
	Cyprinid Unid.								T												\dagger					\vdash
	NME				-				+							\vdash	\vdash				+	╁	_	_		\vdash
	LKCJI						_		-	-				_		\vdash					+	\vdash	_			\vdash
	\vdash								\vdash	\vdash				_		_	-	_	6		5)					
	TRPR								L			(2)		1(2)		1(4)	(24)	16(51)	20(200)		36(275)		3(2)		-	4(2)
	HSAS																								_	-
	ЕМЅН		-						-									2	2		4					
	LNDC																									
	FI,CH	9	5(3)	8(6)	۳	2(3)	8(6)	3(2)	35(20)	=	17(12)	9		14(12)	8(12)	50(42)	(12)	28(18)	(6)8	ල	36(42)	€		2(3)	6(2)	(9)6
RVEDY	Sucker spp.	(3)					(6)		(12)	(3)						(3)										
CATCH (OBSERVED)	WHSC		€						(1)	-						-		2(4)	3(3)	Ξ	\$(8)		2(1)		-	3(1)
CATCH	LNSC		<u>=</u>	2(4)	11(6)	2(8)	2	2(4)	23(23)	7						7		(1)			(1)		_			-
	GOLD								-			7(4)	Ξ	2(10)	13(15)	25(30)	ල	7	_		8(3)	2(1)	_		1	3(1)
	BURB														_	7										
	WALE	(2)	-						1(2)			14(6)		20(8)	8(15)	43(29)	Ξ	3(2)	Ξ		3(4)	(2)	(1)		1	(3)
	NFRK				0				€			7	(E)	2(2)		4(3)		_	-		2	9	3(2)	•		3(6)
	ARGR																									
	BLTR												•													
	RMA							_																		
	LKWH																	_			-					
	MWWH	3(3)		s	1(2)	4	1(4)		14(9)		_		_													
EFFORT	Time	1263	1396	1000	1005	802	086	9001		664	788	905	454	696	1191		1484	2570	3548	664		5290	4107	571	473	
SAMPLE EFFORT	(lam)	5.2	3.9	1.4	2.5	1.9	1.3	2.8	0.61	6.0	2.0	1.2	0.5	1.0	2.3	6.7	3.2	8.0	6.3	1.3	11.6	7.6	0'9	1,3	0.2	15.1
144		က	7	2	2	2	2	2		2	_	_	_	_	_		Ξ	7	_	_		2	7	-	2	
DATE		9 May	9 May	9 May	9 May	9 May	9 May	9 May		13 May	13 May	13 May	13 May	14 May	14 May		16 May	16 May	17 May	' May		19 May	19 May	20 May	20 May	
STATION		ESI	ES2	ES3	ES4	ESS	ES6	ES7	INED	ESI	ES2	ES3	ES4	ESS	ES6	INED	ESI	ES2	ES3	ES4	INED	ESI	ES2	ES3	ES4	INED
stre		7							COMBINED	8						COMBINED	6				COMBINED	01	1			COMBINED

For species code explanation, see Table 3.4 b 1 = high; 4= low

Gill net summary, Athabasca River, spring 1992. Table D2.

SITE	STN		DATE/TIME	SET	SAMPLE	MESH	MAJOR CHANNEL TYPE		WATER TEMP. (°C)	WATER CLARITY	EFF.		CAI	САТСН		TOTAL
		SET	PULL	(h)	(m,)	(cm)	(Habitat type)	SET	PULL	(cm)		WHSC	LNSC	NRPK	MNWH	
-	GN1	GNI 26-04 @ 1730h 27-04 @ 1130h	27-04 @ 1130h	18.0	109.44	3.8/8.9/11.4	S (BW)		6.5	46	4		7		1	80
TOTAL	1L			18.0	109.44	2-1							7		1	80
7	GNI	GNI 22-04 @ 1830h 23-04 @ 1120h	23-04 @ 1120h	16.8	36.48	6.4	U (BW)	6.5	0.9	80	1					
TOTAL	1,			16.8	36.48											
3	GNI	GN1 25-04 @ 1035h 26-04 @ 1100h	26-04 @ 1100h	24.4	109.44	3.8/8.9/11.4	M (SN[D2/E4])	7.0	0.6		2	2	2			4
	GN2	GN2 25-04 @ 1950h 26-04 @ 0938h	26-04 @ 0938h	13.8	36.48	6.4	S (D2)	7.0	0.6	44	2	2		1		3
TOTAL	4L			38.2	145.92					,		4	2	1		7
2	GNI	GN1 02-04 @ 1530h 03-04 @ 0948h	03-04 @ 0948h	18.3	36.48	6.4	M (BW)	0.6	0.6	25	2					
TOTAL	٩Ľ			18.3	36.48											
GRA	GRAND TOTAL	TAL		91.3	36.48							4	6	1	1	

^{*} Efficiency (1 = high, 4 = very low)

* For speciency code explanation see Table 3.4

Table D3. Beach seine summary, Athabasca River, spring 1992.

		Т	-		-			~		_	1					T		-					Г					
TOTAL		24	43	75		-			7	145	12	-	٣	-	21	38	6	7	7	4	6	25	53	200	57	S	23	338
	Sucker Cyprinid spp. unid.			91	5					16											en	3	-	2	4			7
	Sucker spp.										4			_	14	19	2	4	_	-	_	6	21	81	19	-	-	09
	BRST FTMN					-			•																			
	BRST																											
	FLCH								•																			
	EMSH			_																				48	31		Ξ	90
	LNDC					•														-		-	4		-		4	6
±	SCUL			-						-									-	1		2						
CATCH	TRPR LKCH		-	-						-					2	2					S	5	20	56	-			47
	TRPR				1								-		7	9							4	00	-	4	9	23
	SPSH												2			2		^						86				86
	WHSC						_																-					-
	LNSC	2	_	00		_			•	13			•		Э	3					-							
	BURB										Г							_				1			•			
	WALL										Г																	
	MNWH	22	42	49					1	114	88	_				6	-	2		-		4	2				-	3
SAMPLED	(m)	099	099	099	450	460	450	200	380	4220	474	139	229	396	360	1598	436	436	436	436	436	2180	396	396	436	436	436	2100
SITE STATION SAMPLED		BS1	BS2	BS3	BS4	BSS	BS6	BS7	BS8	COMBINED	BS1	BS2	BS3	BS4	BS5	COMBINED	BSI	BS2	BS3	BS4	BSS	COMBINED	BS1	BS2	BS3	BS4	BSS	COMBINED
ITE		-								<u>U</u>	2					<u> </u>	3					_	4		-			۲

Table D3 Continued on next page ...

TOTAL		23	34	34	39	20	150	50	23	78	57	69	772	17	77	86	26	15	233	10	00	46	99	40	160
TO	Þi	H	_	_			-	-					7	-					2	F		4		_	-
	FLCH BRST FTMN Sucker Cyprinid spp. unid.	-	7	9	5		19		-		2		3		3	2			∞					7	,
	Sucker spp.	9		2		4	12	-		2	7		5					-	-		-	3	3	4	=
	FTMN																					10	-		=
	BRST																			-				-	,
	FLCH	-		7	10	2	23	2	2				4	6	14	99	15	6	103	7	9	10	20	28	7.1
	EMSH	S	1		2	-	12	6	7	11	27	19	73	1	35	4	7	-	43	2		7	3	1	0
	LNDC		-	13	10	00	32		2	2	9	3	13	-		2	_	2	9			2	5		2
	SCUL	-			-	-	3							-					-		-		-		,
CATCH*	ГКСН	3					3	22	7	85	00	56	121	1				1	2			2			,
	TRPR	1	12	5	00	.1	27	16	4		10	15	45	4	25	31	00	1	69			91	23	3	42
	SPSH	2	=				13			2	7		7												
	WHSC		-				-																		
	LNSC		_	_			2					-	-									-		1	2
	BURB																								
	WALL											5	5												
	MNWH	3					3																		1
AMPLED		396	396	396	396	396	1980	396	396	396	396	396	1980	396	396	396	396	396	1980	396	396	396	396	396	1980
SITE STATION SAMPLED		BSI	BS2	BS3	BS4	BSS	COMBINED	BSI	BS2	BS3	BS4	BSS	COMBINED	BSI	BS2	BS3	BS4	BSS	COMBINED	BS1	BS2	BS3	BS4	BSS	COMBINED
SITE		S				_	0	9				_	0	7					O			_	_	_	0

Table D3 Concluded.

N	STATION SAMPLED								CATCH	3H4								TOTAL
	AREA (m²)	MNWH WALL BURB LNSC WHSC	WALL	BURB	LNSC	WHSC	SPSH	TRPR	TRPR LKCH SCUL LNDC EMSH FLCH BRST FTMN	SCUL 1	NDC E	MSH 1	LCH	BRST		Sucker Cyprinid	Cyprinid	
																spp.	unid.	
	396							39			2					-		42
	396							-		_			86					66
	396							12	14		S		7		2			35
	396							21	16		1		-			-		40
BSS	396							53	7	2	-	22						80
COMBINED	1980							126	32	2	6	22	101		2	2		296
BS1	396							25					170					195
BS2	396							00					92					84
BS3	396							7					25					27
BS4	396										1		129					130
BSS	396							2					20					22
COMBINED	1980					F		37			-		420					458
GRAND TOTAL	21978	133	5	1	21	2	120	372	215	11	78	248	722	2	13	119	28	2120

* For species code explanation, see Table 3.4

Table D4. Set line summary, Athabasca River, spring 1992.

SITE	STN		AJOR	DATE	/TIME	SET	NO.	ноок		CAT	CH*		TOTAL
		1	ANNEL TYPE	SET	PULL	DURATION (h)	HOOKS	HOURS	BURB	BLTR	NRPK	WALL	
<u> </u>		(Habi	itat Type)										
1	SL 1	U	(A2)	26-04 @ 1700h	27-04 @ 1200h	19.0	12	228.0	3	2			5
	SL 2	U	(A2)	26-04 @ 1800h	27-04 @ 1230h	18.5	12	222 .0		1			1
	COMBINED					37.5	54	450 .0	3	3			6
2	SL 1	U	(D3)	22-04 @ 1855h	23-04 @ 1040h	15.8	5	78.8	2				2
	SL 2	М	(D2)	22-04 @ 1830h	23-04 @ 1000h	15.5	5	77.5	2	_ 1	L		3
	COMBINED					31.3	10	156.3	4	1			5
3	SL 1	M	(SN)	25-04 @ 1755h	26-04 @ 0950h	15.9	20	318.4	1		1	1	3
	SL 2	М	(D1)	25-04 @ 1930h	26-04 @ 1030h	15.0	5	75.0	3				3
	SL 3	M	(E5)	25-04 @ 2000h	26-04 @ 1110h	15.2	6	91.0	1				1
	COMBINED					46.1	31	484.4	5		1	1	7
4	SL 1	Ŭ	(BW)	28-04 @ 1835h	29-04 @ 1415h	19.7	24	472.1					
	SL 2	U	(D2/D1)	28-04 @ 1530h	29-04 @ 1100h	19.5	6	117.0					
	SL 3	U	(D1)	29-04 @ 1113h	30-04 @ 1415h	27.0	6	162.2				1	1
	COMBINED					66.2	36	751.3				1	1
5	SL 1	U	(D1)	02-05 @ 1805h	03-05 @ 1012h	16.1	5	80.6				2	2
	COMBINED					16.1	5	80.6				2	2
6	SL 1	S	(D2)	05-05 @ 1720h	06-05 @ 1010h	16.8	5	84.2			1	1	2
	SL 2	S	(E5)	05-05 @ 1730h	06-05 @ 1100h	17.5	20	350.0				1	1
	COMBINED					34.3	25	434.2			1	2	3
7	SL 1	U	(D1)	09-05 @ 1645h	10-05 @ 1214h	19.5	20	389.6	2			2	4
	COMBINED					19.5	20	389.6	2			2	4
8	SL 1	U	(B1)	13-05 @ 1830h	14-05 @ 1800h	23.5	20	470.0	2			8	10
	COMBINED					23.5	20	470.0	2			8	10
9	SL 1	S	(D1)	16-05 @ 1630 h	17-05 @ 1400h	21.5	20	430.0			1	4	5
	COMBINED					21.5	20	430.0	1		1	4	5
10	SL 1	M	(E5)	19-05 @ 1745h	20-05 @ 1230h	18.85	20	375.0	_		2	2	4
	SL 2	M	(E5)	19-05 @ 1840h	20-05 @ 1115h	16.6	6	99.5				2	2
	COMBINED					35.3	26	474.5			2	4	6
GRANI	TOTAL			<u>-</u> -		331.3	217	4120.9	16	4	5	24	49
													

^{*} For species code explanations, see Table 3.4

Table D5. Drift net summary, Athabasca River, spring 1992.

SITE	STATION		MAJOR	DAT	Е/ТІМЕ	SET		CA	гсн,	 	TOTAL
			NNEL TYPE abitat Type)	SET	PULL	DURATION (h)	WALL	SPSC	LNSC	UNID	
2	DF la	U	(100% A2)	22-04 @ 1656h	22-04 @ 2130h	4.7					
	DF 1b	υ	(100% A2)	23-04 @ 1600h	24-04 @ 0930h	17.5					
	DF 2a	U	(100% A2)	22-04 @ 1720h	22-04 @ 2132h	4.2					
	DF 2b	U	(100% A2)	22-04 @ 2132h	23-04 @ 0930h	11.9					
	TOTAL					38.3					
3	DF 1	S	(100% D2)	25-04 @ 1155h	25-04 @ 1900h	7.1					
	DF 2	M	(100% D1)	25-04 @ 1245h	25-04 @ 1920h	6.6					
	TOTAL					13.8					
4	DF 1	S (90%	6 E4, 10% D2)	28-04 @ 1230h	29-04 @ 1030h	22.0					
	DF 2	s	(100% D2)	28-04 @ 1550h	29-04 @ 1045h	18.9					
	TOTAL					40.9					
5	DF I	М	(100% D2)	02-05 @ 1215h	03-05 @ 0930h	21.3					
	DF 2	М	(100% D2)	02-05 @ 1615h	03-05 @ 0950h	17.6					
	TOTAL					38.9					
6	DF 1	υ	(100% D2)	05-05 @ 1540h	06-05 @ 1035h	18.9				-	
	DF 2	S	(100% D2)	05-05 @ 1025h	05-05 @ 1900h	8.6					
	TOTAL					27.5					
7	DF 1	U	(100% A2)	09-05 @ 0830h	10-05 @ 1030h	26.0					
	DF 2	U	(100% D4)	09-05 @ 1700h	10-05 @ 1035h	17.6					
	TOTAL					43.6					
8	DF 1	U (60%	6 D2, 40% D1)	13-05 @ 1305h	lost						
	DF 2	U	(100% D2)	13-05 @ 1620h	14-05 @ 1800h	25.7					
	TOTAL		·			25.7					
9	DF 1	M	(100% E5)	16-05 @ 1620h	17-05 @ 1200h	19.7	4	6	4	3	17
	DF2	S	(100% D1)	16-05 @ 1800h	17-05 @ 1608h	22.1					
	TOTAL					41.8	4	6	4	3	17
10	DF 1	M	(100% D1)	19-05 @ 1100h	20-05 @ 1057h	24.0					
	DF2	S	(100% D1)	19-05 @ 1520h	20-05 @ 1037h	19.3					
	TOTAL					43.3					
GRAN	D TOTAL					313.8	4	6	4	3	17

No drift nets were set at Site 1 due to high turbidity ^a For species code explanations, see Table 3.4

Table D6. Dip net summary, Athabasca River, spring 1992.

H				_		
2	BANK	IA	A2	DI	A2	A1
CATCH LENGTH	(III)	45	46	45	50	35
САТСН						
	SA					
*(%)		40	20	100	20	20
TE (PE					
STRA	GR					
SUBSTRATE (%)*	CO GR PE SI	09	80		80	80
	ВО					
DEPTH (m)	RANGE	0.30 to 0.50	0.20 to 0.20	0.20 to 0.20	0.20 to 0.20	0.30 to 0.30
DEI	MEAN	0.40	0.20	0.20	0.20	0.30
VELOCITY (m/s)	RANGE	0.00 to 0.00	0.05 to 0.10	0.10 to 0.20	0.05 to 0.10	0.05 to 0.10
VELO	MEAN	00.0	80.0	0.13	80.0	80.0
STATION		DN 1	DN 2	DN 3	DN 4	DN 5
SITE DATE/TIME		27-04 @ 1430h				
SITE		-				

^{*} For substrate code classification, see Table 2.2 Data for Site 1 only

Table D7. Backpack electrofishing summary, Athabasca River, spring 1992,

SITE	STATION	DATE	SAMPLE	SAMPLE EFFORT				CATCH (OBSERVED)*	SERVED)*			
			Time (s)	Length (m)	TRPR	ГКСН	LNSC	FLCH	SPSH	LNDC	FTMN	Sucker spp.
2	EF 1	23 April	329	120	(1)							
	EF 2	23 April	648	120								
COMBINED			21.6	240	(1)							
3	EF 1	26 April	463	120	1(3)	3						
	EF 2	26 April	419	99		2	00					2
COMBINED			882	185	1(3)	\$	8					2
5	EF 1	3 May	339	100		2		7	4	2	.5	
COMBINED			339	100		2		7	4.	2	5	
GRAND TOTAL	TAL		2198	525	2(4)	7	00	7	*	2	5	2

^{*} For species code explanation, see Table 3.4

Table D8. Summary of habitat characteristics at seine haul sites, Athabasca River, spring 1992.

SITE	DATE	STATION		LOCITY (m/s)	1	DEPTH (m)	SU	JBSTF		COM	POSIT	ION'	ADJACENT BANK
			MEAN	RANGE	MEAN	RANGE	во	СО	GR	PE	SI	SA	TYPE
1	16 May	BS 1	0.03	0.00 to 0.08	0.58	0.28 to 0.87			20		80		A1/D2
		BS 2	0.32	0.10 to 0.42	0.33	0.14 to 0.48		50	20	30			A1
		BS 3	0.21	0.00 to 0.44	0.78	0.48 to 1.04				20	80		A2
	27 April	BS 4	0.00	0.00 to 0.00	0.43	0.30 to 0.56		60			40		A1
		BS 5	0.32	0.05 to 0.70	0.34	0.02 to 0.60		80			20		A2
		BS 6	0.13	0.08 to 0.20	0.24	0.02 to 0.40					100		D1
		BS 7	0.17	0.10 to 0.30	0.27	0.02 to 0.50		80			20		A2
		BS 8	0.23	0.10 to 0.40	0.27	0.02 to 0.50		80			20		A1
2	22 April	BS 1	0.46	0.20 to 0.66	0.44	0.23 to 0.57		50	50				D2
		BS 2	0.55	0.00 to 1.25	0.33	0.18 to 0.55		20	80				D2
		BS 3	0.18	0.00 to 0.83	0.67	0.43 to 1.00	30	70					A1
		BS -	0.23	0.00 to 1.00	0.50	0.24 to 0.75	60	40					D2
		BS 5	0.32	0.14 to 0.67	0.63	0.40 to 0.82	55	45			L		A2
3	25 April	BS 1	0.49	0.25 to 0.76	0.35	0.21 to 0.48		70	15	10	5		D2
		BS 2	0.41	0.26 to 0.55	0.34	0.23 to 0.43	20	50		5	25		D2
	i	BS 3	0.18	0.00 to 0.56	0.49	0.16 to 0.80	40	40	5	10	5		A2
		BS 4	0.42	0.23 to 0.66	0.35	0.16 to 0.68	5	60	10	10	15		D2
		BS 5	0.29	0.13 to 0.50	0.48	0.07 to 0.67					50	50	D1
4	28 April	BS 1	0.30	0.05 to 0.47	0.22	0.13 to 0.36	5	70	5	5	15		D2
		BS 2	0.00	0.00 to 0.00	2.61	0.15 to 0.42			1		50	50	Dl
	İ	BS 3	0.09	0.00 to 0.23	0.30	0.16 to 0.45		30	25	30	15		A1
		BS 4	0.07	0.00 to 0.20	0.54	0.23 to 0.95	20	60	5	5	10		A2
		BS 5	0.31	0.00 to 0.51	0.49	0.21 to 0.80	20	60	5	5	10		D2
5	02 May	BS 1	0.48	0.00 to 0.77	0.23	0.14 to 0.33		30	20	20	30		D2
		BS 2	0.01	0.00 to 0.04	0.48	0.16 to 0.76					50	50	F5
		BS 3	0.29	0.00 to 0.69	0.39	0.19 to 0.65	10	40	15	20	15		E5
		BS 4	0.46	0.00 to 1.26	0.28	0.12 to 0.72		40	20	20	20		D2
		BS 5	0.38	0.00 to 0.72	0.40	0.25 to 0.57	10	30	20	20	20		D2
6	16 May	BS 1	0.20	0.00 to 0.70	0.42	0.17 to 0.65	15	40	20	20	5		A2
		BS 2	0.14	0.13 to 0.25	0.35	0.21 to 0.52					50	50	E5
		BS 3	0.23	0.17 to 0.31	0.31	0.15 to 0.45					50	50	Dl
		BS 4	0.28	0.07 to 0.39	0.24	0.12 to 0.39	10	25	5	10	50		E5
		BS 5	0.23	0.00 to 0.34	0.33	0.12 to 0.63		30	30	30	10		E5b

Table D8 Concluded.

SITE	DATE	STATION	VE	LOCITY (m/s)		DEPTH (m)	SU	BSTF		COM. %)	POSIT	ION*	ADJACENT BANK
			MEAN	RANGE	MEAN	RANGE	во	СО	GR	PE	SI	SA	TYPE
7	09 May	BS 1	0.29	0.00 to 0.94	0.39	0.16 to 0.72	40	30	10	10	10		A2
		BS 2	0.06	0.00 to 0.19	0.32	0.08 to 0.63	5	5			90		D3
		BS 3	0.11	0.00 to 0.25	0.34	0.13 to 0.75	5		5	10	80		D4
		BS 4	0.13	0.00 to 0.44	0.33	0.14 to 0.58	15	50	10	15	10		A2
		BS 5	0.21	0.16 to 0.33	0.20	0.08 to 0.35	10	20	20	25	12.5	12.5	D2
8	13 May	BS 1	0.12	0.00 to 0.33	0.31	0.13 to 0.62		20	10	20	50		A2
		BS 2	0.26	0.00 to 0.61	0.24	0.07 to 0.46	20	20	10	10	40		A2
		BS 3	0.26	0.01 to 0.44	0.23	0.10 to 0.43	20	20	15	15	30		D1/D3
		BS 4	0.16	0.00 to 0.25	0.20	0.10 to 0.36	10	30	15	15	30		D1/D3
		BS 5	0.29	0.15 to 0.55	0.32	0.14 to 0.46	10	10			80		D1
9	15 May	BS 1	0.07	0.00 to 0.17	0.41	0.20 to 0.66		5	80		15		D2
		BS 2	0.17	0.04 to 0.33	0.21	0.11 to 0.29						100	Di
		BS 3	0.22	0.05 to 0.34	0.41	0.16 to 0.66		80		5	15		E5b
		BS 4	0.20	0.01 to 0.40	0.19	0.12 to 0.31		20	60		5	15	D2
		BS 5	0.26	0.17 to 0.35	0.47	0.15 to 0.75			80		20		A1
10	19 Ma y	BS 1	0.26	0.09 to 0.40	0.41	0.19 to 0.87					100		Dl
		BS 2	0.16	0.06 to 0.26	0.32	0.11 to 0.56						100	Dl
		BS 3	0.11	0.02 to 0.23	0.36	0.13 to 0.72						100	D1
		BS 4	0.07	0.00 to 0.18	0.15	0.07 to 0.24						100	Dl
		BS 5	0.01	0.00 to 0.04	0.32	0.12to 0.51						100	Dl

^a For substrate code classifications, see Table 2.2.

Table D9. Summary of habitat characteristics at drift net sites, Athabasca River, spring 1992.

SITE	DATE	STATION	VELOCITY (m/s)	DEPTH (m)	SU	/BSTRA	TE (%	_	OSITI	ON,	ADJACENT BANK
					во	со	GR	PE	SI	SA	TYPE
2	22 April	DF la	0.24	0.34	20	40	20	10	10		A2
1		DF 1b	0.24	0.34	20	40	20	10	10		A2
يد ا		DF 2a	0.99	0.22		5	50	40	5		D3
		DF 2b	0.99	0.22		5	50	40	5		D3
3	25 April	DF 1	0.68	0.25		70	15	5	10		D2
		DF 2	0.53	0.50	20	50		5	25		D2
4	28 April	DF 1	0.39	0.41		85	5	5	5		D2
		DF 2	0.47	0.26		50	20	25	5		D 1
5	02 May	DF 1	0.05	0.23		10		20	70		D2
		DF 2	0.31	0.16		40	20	20	20		D2
6	05 May	DF 1	0.52	0.27	20	30	20	25	5		A2
		DF 2	0.17	0.13	10	25	5	10	20		E5
7	09 May	DF 1	0.11	0.26	10	40	10	20	20		A2
		DF 2	0.25	0.25	15	30	20	30	5		D4
8	13 May	DF 1	1.41	0.10	20	20	10	10	40		A2
		DF 2	0.03	0.26	10	30	15	15	30		D2
9	16 May	DF I	0.14	0.32		75		5	20		ESb
		DF 2	0.16	0.10						100	D1
10	19 May	DF 1	0.28	0.35						100	Dl
		DF 2	0.02	0.19						100	D1

^a For substrate code descriptions, see Table 2.2 No drift nets were set at Site 1 due to high turbidity

Table D10. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 1, Athabasca River, spring 1992.

Sample	CPUE				Fish Species ^b	occies ^b				All
Method*		MNWH	BLTR	RNTR	BURB	LNSC	ГКСН	Sculp. spp.	Cyprinid Unid.	Species
ES	No. fish/km	13.33		0.42		5.63				19.38
R	No. fish/net unite	0.61				4.26				4.87
BS	No. fish/100 m ²	2.70				0.31	0.02	0.02	0.38	3.44
SL	No. fish/100 hook hours		0.67		29.0					1.33

^{*} ES = boat electrofishing, GN = gillnet, BS = beach seine, SL = set line

Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 2, Athabasca River, spring 1992. Table D11.

Sample	CPUE						Ē	Fish Species ^b						All
Method*		ARGR	MNWH	BLTR	RNTR	NRPK	BURB	LNSC	WHSC	Sucker spp.	ГКСН	SPSH	TRPR	Species
ES	No. fish/km	1.16	7.34	90'0	0.12	90.0		1.21	90.0		90.0		90.0	10.12
ND	No. fish/net unite													
BS	No. fish/100 m ²		0.56					0.19		1.19	0.13	0.13	0.19	2.38
SF	No. fish/100 hook hours			0.64			2.56							3.20
DF	No. fish/hour													
EF	No. fish/s													

^{*} ES = boat electrofishing, GN = gillnet, BS = beach seine, SL = set line, DF = drift net, EF = backpack electrofisher

b For species code explanation, see Table 3.4

One net unit = 100 m² of gill net fished for the equivalent of 12 hours

^b For species code explanation, see Table 3.4

 $^{^{\}circ}$ One net unit = 100 m² of gill net fished for the equivalent of 12 hours

Table D12. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 3, Athabasca River, spring 1992.

			-	_	_		_
All	Species	14.48	1.51	1.15	1.45		0.02
	Sculp. Cyprinid spp. Unid.			0.14			
	Sculp.			60.0			
	TRPR	0.19					<0.01
	Sucker LKCH LNDC TRPR spp.	0.10		0.05			<0.01
	ГКСН	0.19		0.23			<0.01
ecies ^b	Sucker spp.			0.41			<0.01
Fish Species ^b	WHSC	1.52	98.0				
	LNSC	2.48	0.43				
	BURB	01.0		0.05	1.03		
	NRPK WALL	0.29			0.21		
	NRPK	0.29	0.22		0.21		
	MNWH	9.33		0.18			
CPUE		No. fish/km	No. fish/net unite	No. fish/100 m ²	No. fish/100 hook hours	No. fish/hour	No. fish/s
Sample	Method*	ES	ND	BS	SL	DF	EF

^{*} ES = boat electrofishing, GN = gillnet, BS = beach seine, SL = set line, DF = drift net, EF = backpack electrofisher b For species code explanation, see Table 3.4

Table D13. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 4, Athabasca River, spring 1992.

All		17.37	16.10	0.13	
	Cyprinid Unid.		0.33		
	Sculp. Cyprinid spp Unid.	0.05			
	TRPR	0.91	1.10		
	SPSH		4.67		
	EMSH	99.0	4.29		
	FLCH LKCH LNDC EMSH	0.05	0.43		
	ГКСН	0.35	2.24		
ies	FLCH	4.24			
Fish Species ^b	WHSC Sucker spp.	0.35	2.86		
	WHSC	1.46	0.05		
	LNSC	5.05			
	GOLD BURB LNSC	0.25			
		0.45			
	MNWH LKWH NRPK WALL	0.81		0.13	
	NRPK	0.05 0.10 0.81			
	LKWH				
	MNWH	2.58	0.14		
CPUE		No. fish/km	No. fish/100 m ²	No. fish/100 hook hours	No. fish/hour
Sample	Method*	ES	BS	SL	DF

^{*} ES = boat electrofishing, BS = beach seine, SL = set line, DF = drift net,

One net unit = 100 m2 of gill net fished for the equivalent of 12 hours

For species code explanation, see Table 3.4

Table D14. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 5, Athabasca River, spring 1992.

Sample	CPUE								Fish (Fish Species ^b									All
Method*		MNWH NRPK WALL GOLD BURB	NRPK	WALL	GOLD		LNSC	WHSC	LNSC WHSC Sucker FLCH LKCH LNDC EMSH SPSH FTMN TRPR Sculp. Cyprinid spp. Unid.	FLCH	ГКСН	LNDC	EMSH	BPSH 1	TWIL	TRPR	Sculp.	Cyprinid Unid.	Species
ES	No. fish/km	3.91	0.19	0.43	0.37	0.25	2.98	2.61	0.37	3.66	90.0		0.19		90.0	0.12			15.22
GN	No. fish/net unite																		
BS	No. fish/100 m ²	0.15					0.10	0.05	0.61	1.16	0.15	1.62	19.0	99.0		1.36	0.15	96.0	7.58
SL	No. fish/100 hook hours			2.48															4.96
DF	No. fish/hour																		
EF	No. fish/s									0.05	<0.01 <0.01	<0.01		10.0	0.01				90.0

^{*} ES = boat electrofishing, GN = gillnet, BS = beach seine, SL = set line, DF = drift net, EF = backpack electrofisher

Table D15. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 6, Athabasca River, spring 1992.

Sample	CPUE							Fish	Fish Species ^b								All
Method*		MNWH NRPK WALL GOLD	NRPK	WALL	GOLD	BURB	LNSC	WHSC	Sucker FLCH LKCH LNDC EMSH spp.	FLCH	ГКСН	LNDC	EMSH	SPSH	TRPR	TRPR Cyprinid Unid.	Species
ES	No. fish/km	0.13	0.19	1.09	0.45	90.0	96.0	0.58		6.79	0.32		0.19	06:0	0.13		11.79
BS	No. fish/100 m ²			0.25			0.05		0.25	0.20	6.11	99.0	3.69	0.35	2.27	0.15	14.00
SI	No. fish/100 hook hours		0.23	0.46													69.0
DF	No. fish/hour																

^{*} ES = boat electrofishing, BS = beach seine, SL = set line, DF = drift net, b For species code explanation, see Table 3.4

b For species code explanation, see Table 3.4

^o One net unit = 100 m² of gill net fished for the equivalent of 12 hours

Table D16. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 7, Athabasca River, spring 1992.

Sample	CPUE						Fish Species ^b	ecies ^b						All
Method*		MNWH	WALL	BURB	MNWH WALL BURB LNSC	Sucker spp.	FLCH	ГКСН	LNDC	EMSH	TRPR	Sculp. spp.	FLCH LKCH LNDC EMSH TRPR Sculp. Cyprinid spp. Unid.	Species
ES	No. fish/km	0.74	0.05		1.21		1.84			0.05				3.89
BS	No. fish/100 m ²					0.05	5.20	0.10	0:30	2.17	3.48	0.02	0.40	11.77
SI	No. fish/100 hook hours		0.51	0.51										1.03
DF	No. fish/hour													

^{*} ES = boat electrofishing, BS = beach seine, SL = set line, DF = drift net

Table D17. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 8, Athabasca River, spring 1992.

All		16.58	80.8	2.13	
	Sculp. Cyprinid spp. Unid.		0.10		
	Sculp. spp.		0.10		
	BRST		0.10		
	TRPR	0.13	2.12		
	FTMN		0.56		
	Sucker FLCH LKCH LNDC EMSH FTMN spp.		0.40		
	LNDC		0.35		
	ГКСН		0.10		
	FLCH	6.33	3.59		
	Sucker spp.		0.56		
	LNSC WHSC	0.13			
	LNSC	0.89	0.10		
	BURB			0.43	
	GOLD	3.16			
	NRPK WALL GOLD	5.44		1.70	
	NRPK	0.51			
CPUE		No. fish/km	No. fish/100 m ²	No. fish/100 hook hours	No. fish/hour
Sample	Method*	ES	BS	SL	DF

* ES = boat electrofishing, BS = beach seine, SL = set line, DF = drift net, b For species code explanation, see Table 3.4

For species code explanation, see Table 3.4

Table D18. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 9, Athabasca River, spring 1992.

Sample Method*	CPUE								Fish S	Fish Species ^b								All
		СКМН	NRPK	LKWH NRPK WALL	GOLD	LNSC	WHSC	GOLD LNSC WHSC Sucker FLCH LKCH LNDC EMSH FTMN TRPR SPSH spp.	FLCH	ГКСН	LNDC	EMSH	FTMN	TRPR		Sculp. spp.	Cyprinid Unid.	
ES	No. fish/km	60.0	0.17	0.26	69.0		0.43		3.10			0.34		3.10		3.10		8.19
BS	No. fish/100 m ²							0.10	5.10	1.62	0.45	1.11	0.10	6.36		0.10		14.95
SI	No. fish/100 hook hours		0.23	0.93														1.16
DF	No. fish/hour			0.10		0.10									0.14		0.07	0.41

^{*} ES = boat electrofishing, BS = beach seine, SL = set line, DF = drift net b For species code explanation, see Table 3.4

Table D19. Summary of CPUE (Catch-per-unit-effort) for the major sampling methods at Site 10, Athabasca River, spring 1992.

Sample	CPUE											All
Method*		NRPK	NRPK WALL GOLD LNSC WHSC	GOLD	LNSC	WHSC	FLCH	FLCH LNDC EMSH	EMSH	SPSH	TRPR	Species
ES	No. fish/km	0.20		0.20	0.07	0.20	09'0			0.07	0.26	1.59
BS	No. fish/100 m ²						21.21	0.05			1.87	23.13
SI	No. fish/100 hook hours	0.42	0.84									1.26
DF	No. fish/hour											

^a ES = boat electrofishing, BS = beach seine, SL = set line, DF = drift net, ^b For species code explanation, see Table 3.4

LENGTH FREQUENCY SUMMARIES FOR INDIVIDUAL SPECIES

Hard copy provided for sites and all sampling methods combined.

Disk copy provided for individual sites by sampling methods.

Boat Electrofisher

- 334biges.asc
- 334 medes.asc
- 334smes.asc

Gillnet

- 334biggn.asc
- 334medgn.asc

Setline

- 334bigsl.asc
- 334medsl.asc

Beach Seine

- 334bigbs.asc
- 334medbs.asc
- 334smlbs.asc

Backpack electrofisher

- 334medef.asc
- 334smlef.asc

LENGTH FREQUENCY SUMMARY FOR SMALL-SIZED FISH SITES AND ALL SAMPLING METHODS COMBINED

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = BRST

LOCATION= ATHAB SITE(S)= 0.8

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 1

LENGTH FREQUENCY DISTRIBUTION

]	ALL	GROUPE			M/	ALES			FE	MAL	ES		SE	X INDE	TERMI	NABL	Ε
CLASS INTERVAL UNITS = MM	 # FISH	*	MEAN CF	N	 # FISH	*	ME	AN F N	 #			MEAN CF	N	#	*		AN	ă.
ON113 - PM	1							r 19	1	on <i>A</i>		Lr	N	FISH	٨		F	N
50- 54	 1	100.0	.00	0	0	.0		00 0		0 .0)	.00	0	0	.0		00	0
TOTALS	1 1	100.0		0	0	.0	-	0		0 .0)		0	0	.0			0
	İ				i				i					i				
COND. FACTORS	İ	MEAN	=	.0000	İ	MEAN	=	.0000	j	MEAN	=		0000	i	MEAN	=	.0	000
SUMMARY	!	STDDEV	=	.0000	ĺ	STDDEV	=	.0000	1	STDDEV	' =		0000	İ	STDDEV	=	.0	000
	ł	COEVAR	=	.0000		COEVAR	=	.0000	1	COEVAR	=		0000	1	COEVAR	=	.0	000
	1	STDERR	=	.0000		STDERR	=	.0000		STDERR	=		0000	1	STDERR	=	.0	000
	 	N	= 0			N	=	0		N	=	0			N	=	0	
MEDIAN SIZE]		53 MM				0 M	M			(1)	MM		1		0 M	IM	

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = EMSH

LOCATION= ATHAB SITE(S)= 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 270

LENGTH FREQUENCY DISTRIBUTION

			ALL GI	ROUPED		 	MAL	ES		 	FEMA	LES		SEX	INDETER	MINAB	LE
CLASS	INTERVAL	 #		MEAN		 #		MEAN		; #		MEAN		i i #		MEAN	
	S = MM	FISH	*	CF	N	FISH	*	CF	N	FISH	*	CF	N	FISH	*	CF	N
20-	- 24	 4	1.5	.00	0	0	.0	-00	0	0	.0	.00	0	 0	.0	.00	0
25	- 29	22	8.1	.00	0	i o	.0	.00	0	i o	.0	.00	0	0	.0	.00	0
30-	- 34	40	14.8	.00	0	1 0	.0	.00	0	i o	.0	.00	0	0	.0	.00	0
35-	39	55	20.4	.00	0	0	.0	-00	0	0	.0	.00	0	i o	.0	_00	0
40-	- 44	40	14.8	.00	0	j o	.0	.00	0	0	.0	.00	0	0	.0	_0 0	0
45-	49	14	5.2	.00	0	0	.0	.00	0	0	.0	.00	0	jo	.0	-00	0
50-	- 54	9	3.3	1.01	4] 0	.0	.00	0	0	.0	-00	0	0	.0	-00	0
55-	59	14	5.2	1.06	5	0	.0	.00	0	0	.0	.00	0	, 0	.0	.00	6
60-	64	30	11.1	.76	15	0	.0	.00	0	0	.0	.00	0	j 0	.0	.00	(
65-	69	16	5.9	.84	9	0	.0	.00	0	0	.0	.00	0	j 0	.0	_00	(
70-	74	12	4.4	.82	8	0	.0	.00	0	0	.0	-00	0	0	.0	.00	(
75-	79	6	2.2	.81	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
80-	84	3	1.1	.84	1	0	.0	.00	0] 0	.0	-00	0	0	.0	.00	(
85-	89	4	1.5	.86	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
90-	94	1	.4	.00	0	0 	.0	.00	0	0	.0	.00	0	0	.0	.00	C
тот	ALS	270	100.0	-	49	0	.0		0	0	.0	-	0	0	.0	-	0
2011														!			
	FACTORS	 	MEAN =		3490 2424		MEAN =		000	Í	MEAN =		0000	i 	MEAN =		0000
SUMM	MKT		STDDEV = COEVAR =				STDDEV = COEVAR =		0000	!	TDDEV =		000		TDDEV =		0000
		1	CUEVAR = STDERR =)148	!	STDERR =		000		OEVAR = TDERR =		000	!	OEVAR =		0000
			310EKK = N =		140		N =			ı s İ	N =		000	S	TDERR =	0	JUUL
						1 	- 7			1 	- 7			! !	N =		
MEDIA	N SIZE		,	2 MM		1		O MM		1		0 MM		1		MM	

		 	ALL G	OUPED		ļ	MAL	ES			FEMA	LES		SE	X INDET	ERMINA	BLE
CLASS INTE	PVAI	 #		MEAN		 #		MEAN		#		MEAN		 #		MEAN	
UNITS =		FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N
0-	1	7	14.3	.53	7	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0
2-	3	34	69.4	.90	34	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
4-	5	7	14.3	.89	7	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
6-	7	1 	2.0	1.14	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	C
TOTALS		49	100.0		49	0	.0	-	0	0	.0	-	0	0	.0		0
COND. FAC	TORS		MEAN =		8490	į į	MEAN =		0000	į	MEAN =		0000	, 	MEAN	= .	.0000
SUMMARY			STDDEV =		2424	i	STDDEV =		0000	i	STDDEV =		0000	i :	STDDEV		0000
	ĺ		COEVAR =	28.	5515	İ	COEVAR =		0000	İ	COEVAR =		0000	j (COEVAR	Ξ,	0000
	[STDERR =		0148		STDERR =		0000		STDERR =		0000		STDERR	= ,	0000
			N =	49		1	N =	0			N =	0			N	= 0	
MEDIAN SI	7F			4 G		1		0 G		1		0 G		1		0 G	

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = LNDC

.....

LOCATION= ATHAB SITE(S)= 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 85

LENGTH FREQUENCY DISTRIBUTION

		i 	ALL GR	OUPED		j 	MA	LES			FEM/	ALES		SEX	INDETE	RMINAB	LE
CLASS IN	TERVAL	 #		MEAN		 #		MEAN		 #		MEAN		 #		MEAN	
UNITS	= MM	FISH	%	CF	N	FISH	%	CF	N	FISH	*	CF	N	FISH	%	CF	N
20-	24	12	14.1	.00	0	0	.0	.00	0	0	.0	.00	0	 0	.0	.00	0
25-	29	16	18.8	.00	0	0	.0	.00	0	j 0	.0	.00	0	0	.0	.00	0
30-	34	28	32.9	.00	0	0	.0	.00	0	j o	.0	.00	0	0	.0	.00	0
35-	39	15	17.6	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
40-	44	9	10.6	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
45-	49] 2	2.4	.00	0	0	.0	.00	0	jo	.0	.00	0	0	.0	.00	0
50-	54	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0
55-	59	2	2.4	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
60-	64	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
65-	69	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
70-	74	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
<i>7</i> 5-	79	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	_00	0
80-	84	1	1.2	.36	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
TOTAL	LS	85	100.0		1	0	.0		0	0	.0	8	0	0	.0	-	С
						 			•••••		•••••			 			
COND. FA	ACTORS		MEAN =	. 3	3627		MEAN =	ا. =	0000	ĺ	MEAN =		0000	į	MEAN =		0000
SUMMAR	RY		STDDEV =		0000	S	TDDEV =	ا. =	0000	s	TDDEV =		0000	s	TDDEV =	1	0000
			COEVAR =	.1	0000	0	OEVAR =	1	0000	C	OEVAR =	. :	0000) c	OEVAR =	1	0000
			STDERR =	.1	0000	l s	TDERR =		0000	s	TDERR =		0000	s	TDERR =	- 1	0000
		 	N =	1		 	N =	= 0			N =	. 0			N =	. 0	
MEDIAN	SIZE		37	3 MM				O MM		1		O MM		1		0 MM	

										1					1					
		ALL G	ROUP	ED		M/	ALES				FEM	ALES	3		SE	X INDE.	TERM	INAB	LE	*
	 									 										*
CLASS INTERVAL	#		ME	AN	#		M	EAN		#		ME	AN		#		М	EAN		
UNITS = G	FISH	%	C	F N	FISH	%		CF	N	FISH	%		F	N	FISH	%		CF	N	
2- 3	1	100.0		36 1	0	.0	3	.00	0	0	.0		00	0	0	.0		.00	0	1
TOTALS	1	100.0	-	1	0	.0		-	0	0	.0			0	0	.0			0	1
																				1
COND. FACTORS		MEAN	=	.3627		MEAN	=		0000		MEAN	=		000	ĺ	MEAN	=		0000	1
SUMMARY		STDDEV	=	.0000		STDDEV	=		0000]	STDDEV	=	.0	000	1 :	STDDEV	=		0000	1
		COEVAR	=	.0000		COEVAR	=		0000	1	COEVAR	=	.,0	000	į (COEVAR	=		0000	4
		STDERR	=	.0000		STDERR	=		0000		STDERR	=	.,0	000	1	STDERR	=	_1	0000	4
	 	N	=	1		N	=	0		 	N	=	0			N	=	0		•
MEDIAN SIZE			4 G				0 (3		1		0 6			1		0 (G		•

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE*** **********************************

SPECIES = SCUL

LOCATION= ATHAB SITE(S) = 0.10.3 0.4 0.5 0.7 0.8 0.9

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 10

LENGTH FREQUENCY DISTRIBUTION

		 	ALL GI	ROUPED		ļ 	MAI	LES			FEMA	LES	• • • • • •	SEX	K INDETE	RMINAE	BLE
CLASS IN		 # FISH	*	MEAN CF	N	 # FISH	*	MEAN CF	N	 # FISH	*	MEAN CF	N	 # FISH	*	MEAN CF	M
				•••••													
40-	44	1	10.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
45-	49	1	10.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
50-	54	2	20.0	_00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
55-	59	1	10.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
60-	64	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
65-	69	2	20.0	.73	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
70-	74	2	20.0	.84	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
7 5-	79	1	10.0	.81	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
TOTA	LS	10	100.0	7.	4	0	.0		0	0	.0		0	0	.0	-	0
COND. F	ACTORS		MEAN =	: .8	3045	i	MEAN =		0000	i	MEAN =		0000	i	MEAN =		.0000
SUMMA	RY		STDDEV =	= .()599	į	STDDEV =		0000	į s	STDDEV =	0	0000	i s	STDDEV =		0000
		ĺ	COEVAR =	7.4	504	į	COEVAR =	= .	0000	j d	COEVAR =		0000	i d	OEVAR =		0000
		İ	STDERR =	: .(190	į :	STDERR =	= .	0000	į :	STDERR =		0000	į s	TDERR =		0000
			N =	= 4			N =	= 0		İ	N =	0		İ	N =	. 0	
MEDIAN	SIZE			6 MM		1		O MM	•••••			0 MM				0 MM	

WEIGHT FREQUENCY DISTRIBUTION

	!				[
	ALL 4	SROUPED	MAI	LES	FEMALES	SEX IN	DETERMINABLE
CLASS INTERVAL	 #	MEAN	 #	MEAN	 # MEAN	j #	MEAN
UNITS = G	FISH %	CF N	FISH %	CF N	FISH % CF	1 "	% CF N
2- 3	3 75.0	.80 3	0 .0	.00 0	0 .0 .00	0 0	.0 .00 0
4- 5	1 25.0	.81 1	0.0	.00 0	0 .0 .00	0 0	.0 .00 0
TOTALS	4 100.0	- 4	0 .0	- 0	0 .0 -	0 0	.0 - 0
COND. FACTORS	MEAN	= .8045	MEAN =	.0000	MEAN = .00	000 ME	AN = .0000
SUMMARY	STDDEV	= .0599	STDDEV =	.0000	STDDEV = .08	000 STDD	EV = .0000
	COEVAR	= 7.4504	COEVAR =	.0000	COEVAR = .00	000 COEV	AR = .0000
	STDERR		STDERR =		STDERR = .00	000 STDE	RR = .0000
	N 	= 4	N =	: 0	N = 0 		N = 0
MEDIAN SIZE		4 G		0 G	0 G		0 G

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = SPSH

LOCATION= ATHAB SITE(S)= 0.2 0.4 0.5 0.6 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 43

LENGTH FREQUENCY DISTRIBUTION

r			 	ALL G	ROUPED			MA	LES			FEMA	LES	•••••	SEX	INDETER	MINAB	LE
	LASS II	ITERVAL	, #		MEAN		 #		MEAN		' #		MEAN		 #		MEAN	
•	UNITS		FISH	*	CF	N	FISH	%	CF	N	FISH	%	CF	N	(** FISH	*	CF	N
															j			
	20-	24] 1	2.3	.00	0	0	-0	.00	0	0	.0	-00	0	0	.0	.00	0
	25 -	29	1	2.3	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	30-	34	4	9.3	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	3 5-	39	16	37.2	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	40-	44	9	20.9	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
	45-	49	4	9.3	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	50-	54	4	9.3	1.05	2	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0
	55-	59	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	60-	64	1	2.3	.84	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	65-	69 74	1	2.3	.64	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
	70-	74 79	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	75-		1	2.3	2.32	1	0	.0	.00	0	[0	.0	.00	0	0	.0	.00	0
_	80-	84	1	2.3	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
_	TOTA	LS	43	100.0	-	5	0	.0		0	j 0	.0		0	0	.0	-	С
-							 				 		• • • • • • • • • • • • • • • • • • • •					
	COND. F	ACTORS		MEAN :	= 1.1	781	i	MEAN :	= _1	0000	 	MEAN =		0000	i I	MEAN =		0000
	SUMMA		:	STDDEV :		920	' I s	TDDEV :		0000	' I s	TDDEV =		0000	l s	TDDEV =	_	0000
		i		COEVAR :	= 58.7	363	i c	OEVAR =		0000		OEVAR =		0000		OEVAR =		0000
		j		STDERR =	- 1	055		TDERR =		0000		TDERR =		0000		TDERR =		0000
				N =	= 5			N =	= 0		İ	N =	0			N =	0	
٠	MEDIAN	C175			O MM				D MM				 O MM				MM	

WEIGHT FREQUENCY DISTRIBUTION

******	****	****	****	*****	*****	*****	****	****	*****	****	****	****	*****	****	*****	****	rww
*	1	***			1				!								*
*	1	ALL GF	KOUPED		 	MAL	ES			FEMA	LES		SEX	INDETE	RMINAB	LE	1
*	ļ				 				1								
* CLASS INTERVAL	#		MEAN		#		MEAN		! #		MEAN		! ! #		MEAN		
* UNITS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	
*					ļ				j								
* 0- 1	1	20.0	.75	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 2- 3	3	60.0	-94	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 4- 5	0	.0	.00	0] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 6- 7	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 8- 9	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 10- 11	1	20.0	2.32	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* TOTALS	 5	100.0	Ġ	5	 0	.0	-	0	0	.0	-	0	0	.0		0	*
*								• • • • • •									-*
*	ļ																•
* COND. FACTORS		MEAN =		781		MEAN =	-	0000	!	MEAN =		0000	!	MEAN =		0000	*
* SUMMARY		STDDEV =		920	!	STDDEV =		0000	-	STDDEV =		0000		IDDEV =	-	0000	*
•		COEVAR = STDERR =		363 055		COEVAR = STDERR =	-	0000		COEVAR =		0000	-	DEVAR =	• -	0000	*
*] 3	N =		000) ; 	N =	0	JUUU) S	STDERR = N =		0000	l S	rderr = n =		0000	
*	 	- n			 	- n			I 	PI =			l 1	= N	0		-*
* MEDIAN SIZE			4 G				0 G			(G				0 G		•

****NOTE*** SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = TRPR

LOCATION= ATHAB SITE(S)= 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 391

LENGTH FREQUENCY DISTRIBUTION

			 	ALL G	ROUPED			MAL	.ES	•••••		FEMA	LES		SEX	INDETE	RMINAB	LE
CLA	ISS IN	TERVAL	#		MEAN		#		MEAN		#		MEAN		 #		MEAN	
L	INITS	= MM	FISH	%	CF	N	FISH	%	CF	N	FISH	*	CF	N	FISH	*	CF	N
	20-	24	3	.8	.00	0	0	.0	.00	0	0	.0	.00	0		.0	.00	C
	25-	29	16	4.1	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	30-	34	27	6.9	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	35-	39	57	14.6	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	40-	44	83	21.2	1.17	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	45-	49	87	22.3	1.29	13	0	.0	-00	0	0	.0	.00	0	0	-0	.00	(
	50-	54	47	12.0	1.06	18	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	55-	59	26	6.6	1.33	18	0	.0	.00	0	0	.0	.00	0	0	.0	.00	- (
	60-	64	9	2.3	1.43	5	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	65-	69	11	2.8	1.15	7	0	.0	.00	0	0	.0	.00	0	0	-0	.00	- 1
	70-	74	7	1.8	.96	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	- 1
	75- 80-	79 84	8 8	2.0	1.44	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	85-		8	2.0 .5	1.47 1.47	7 2	0 0	.0 .0	.00 .00	0	0 0	.0	.00	0	0 0	.0 .0	.00	(
	TOTA	LS	391	100.0	-	79	0	.0	-	0] [0	.0	-	0	 0	.0	<i>(</i> -	
••	•••••										 		•	••••	 			
		ACTORS		MEAN =		2529		MEAN =		0000	ļ	MEAN =		000	!	MEAN =		000
	SUMMA	KT		STDDEV =		650	!	TDDEV =		0000	•	TDDEV =		000		TDDEV =		0000
			,	COEVAR =				OEVAR =		0000		DEVAR =		000		DEVAR =		0000
				STDERR = N =		185	i s	TDERR = N =		0000	S	TDERR = N =		000	s	TDERR = N =		0000
 M	EDIAN	6175			6 MM		 		0 MM				 D MM				0 MM	

				ALL G	ROUPED			МА	LES			FEM/	LES		SEX	INDETE	RMINAB	LE
CLASS	INT	TERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN	
UNI	TS =	= G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N
	0-	1	19	24.1	.88	19	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
;	2-	3	40	50.6	1.32	40] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	4-	5	9	11.4	1.37	9	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	6-	7	2	2.5	1.37	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
i	8-	9	7	8.9	1.58	7	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
1	0-	11	2	2.5	1.74	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
T(OTAL	_S	79	100.0	-	79	0	.0	-	0	0	.0	-	0	0	.0	-	C
COND	. FA	ACTORS	 	MEAN :	= 1.	2529	[MEAN	= ,	.0000		MEAN =		0000	 	MEAN =	او	0000
SUI	MMAR	RY	İ	STDDEV :		3650	İ	STDDEV	= ,	.0000	İ	STDDEV =		0000	J s	TDDEV =		0000
			1	COEVAR :	= 29.	1325	ĺ	COEVAR	= ,	.0000	1	COEVAR =		0000	C	OEVAR =		0000
				STDERR =		0185		STDERR	= ,	.0000		STDERR =		0000	s	TDERR =		0000
			 	N =	- 79			N :	= 0		1	N =	0			N =	0	
MED	IAN	SIZE			4 G				D G		1		0 6				0 G	

LENGTH FREQUENCY SUMMARY FOR MEDIUM-SIZED FISH SITES AND ALL SAMPLING METHODS COMBINED

SPECIES = ARGR

LOCATION= ATHAB SITE(S)= 0.2

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 19

LENGTH FREQUENCY DISTRIBUTION

.....

		ALL G	ROUPED		 	MAL	ES		 	FEM	LES		SE)	INDETE	RMINAB	LE
CLASS INTERVA	 #		MEAN		#		MEAN		 #		MEAN		 #		MEAN	
UNITS = MM	FIS	H %	CF	N	FISH	*	CF	N	FISH	*	CF	N	FISH	%	CF	N
200- 209	3	15.0	1.17	3	0	.0	.00	0	 0	.0	.00	0		.0	.00	
210- 219	j o	.0	.00	0	j o	.0	.00	0	i 0	.0	.00	0	1 0	.0	.00	
220- 229	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	(
230- 239	2	10.0	1.26	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
240- 249	1	5.0	1.22	1	0	.0	.00	0	1	100.0	1.22	1	j 0	.0	.00	(
250- 259] 3	15.0	1.23	3	0	.0	-00	0	0	.0	.00	0	0	.0	.00	(
260- 269	1	5.0	1.34	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
270- 279	2	10.0	1.24	2	0	.0	.00	0] 0	.0	.00	0	0	.0	.00	(
280- 289	3	15.0	1.33	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	- (
290- 299	2	10.0	1.38	2	0	.0	.00	0	0	-0	.00	0	0	.0	.00	- (
300- 309	1	5.0	1.37	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	- (
310- 319	1	5.0	1.28	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
320- 329	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	- 1
330- 339	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
340- 349	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	(
350- 359 360- 369	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
370- 379	0	.0 5.0	.00	0	0 1	.0 .0	.00	0	[0 0	.0 .0	.00	0	0	-0	.00	(
370- 379		5.0	.00		0 		.00		0		.00	0	0	.0	.00	(
TOTALS	20	100.0	-	19	0	.0	-	0	1	100.0	-	1	0	.0	-	(
COND. FACTOR	3	MEAN :	= 1.3	2719		MEAN =	.0	0000	1	MEAN =	1.2	2240	l	MEAN =		0000
SUMMARY	1	STDDEV :		0936	1	STDDEV =	.0	0000	:	STDDEV =		0000	s	STDDEV =		0000
		COEVAR =		3602		COEVAR =		0000		COEVAR =	.0	0000	0	OEVAR =		0000
		STDERR =		0209		STDERR =		0000	:	STDERR =	.0	0000	s	TDERR =	- 61	0000
		N =	= 19		 	N =	0		 	N =	1		 	N =	0	
MEDIAN SIZE	1	27	71 MM		l		0 MM		1	2/	6 MM) MM	

******	****	*****	*****	****	*****	*****	*****	****	****	******	*****	****	*****	*****	****	****	le de de
*	1				1				1				1				*
*		ALL G	ROUPED		1	MAI	LES			FEM.	ALES		SE	X INDETE	RMINAB	LE	*
*																	*
*													1				*
* CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN		*
* UNITS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	*
*																	*
* 80- 99	2	10.5	1.19	2	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
* 100- 119	1	5.3	1.13	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 120- 139	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 140- 159	1	5.3	1.23	1	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
* 160- 179	2	10.5	1.19	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 180- 199	1	5.3	1.22	1	0	.0	.00	0	1	100.0	1.22	1	0	.0	.00	0	*
* 200- 219	2	10.5	1.30	2	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
* 220- 239	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 240- 259	2	10.5	1.26	2	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
* 260- 279	2	10.5	1.23	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 280- 299	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 300- 319	1	5.3	1.41	1	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
* 320- 339	2	10.5	1.39	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 340- 359	1	5.3	1.39	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 360- 379	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
* 380- 399	1	5.3	1.37	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 400- 419	1	5.3	1.28	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*																	
* TOTALS	19	100.0	-	19	0	.0		0	1 1	100.0	-	1	0	.0	-	0	*
*						• • • • • • • •											*
*					!												*
* COND. FACTORS		MEAN :	= 1.3	2719	1	MEAN =		0000		MEAN =	1.2	2240	!	MEAN =	.0	0000	*
* SUMMARY		STDDEV =	= .51	0936) :	STDDEV =		0000		STDDEV =	(0000	5	STDDEV =	-0	0000	*
*		COEVAR =	7.3	3602	1 (COEVAR =		0000		COEVAR =	= .0	0000) (COEVAR =	.0	0000	*
*		STDERR =	=	0209	:	STDERR =		0000	1	STDERR =	= _(0000] 9	STDERR =	.0	0000	*
*		N =	= 19		1	N =	. 0			N =	: 1			N =	0		*
*																	
* MEDIAN SIZE		24	6 G				0 G			19	21 G		İ		0 G		*
*************	*****	******	*****	*****	*****	******	*****	****	*****	*****	*****	****	******	******	*****	****	**

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE*** **********************

SPECIES = BLTR -----

LOCATION= ATHAB SITE(S)= 0.1 0.2

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 4

LENGTH FREQUENCY DISTRIBUTION

	ļ Į	ALL GR	ROUPED		1	MAL	ES		 	FEM	ALES		i SEX	(INDETE	ERMINAB	LE
	' 			• • • • • •					 							
CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN	
UNITS = MM	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N
310- 319	1	20.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
320- 329	0	.0	.00	0	0	.0	.00	0] 0	.0	.00	0	0	.0	.00	0
330- 339	0	.0	.00	0] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
340- 349	1	20.0	1.18	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
350- 359	0	.0	.00	0	0	.0	_00	0	0	.0	.00	0	1 0	.0	+00	0
360- 369	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	+00	0
370- 379	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
380- 389	2	40.0	1.07	1	0	.0	.00	0	1	100.0	1.07	1	0	.0	-00	0
390- 399	0	.0	-00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
400- 409	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0
410- 419	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
420- 429	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	-00	0
430- 439	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
440- 449	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
450- 459	0	.0	.00	0	[0	.0	.00	0	0	.0	.00	0] 0	.0	.00	C
460- 469	0	_0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
470- 479	0	.0	_00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
480- 489	0	.0	+00	0	0	.0	+00	0	0	.0	-00	0	0	.0	-00	0
490- 499	0	-0	.00	0	0	.0	+00	0	0	.0	.00	0	0	.0	+00	0
500- 509	0	.0	00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
510- 519	1	20.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
TOTALS	5	100.0	-	2	0	.0	-	0	 1 	100.0	-	1	0	.0	-	0
				1250	İ	MEAN -		0000		MEAN		0700				0000
COND. FACTORS		MEAN =		1250	ļ .	MEAN =		0000		MEAN		0700	!	MEAN =		0000
SUMMARY		STDDEV =		777	!	STDDEV =		0000	1	STDDEV		0000	:	STDDEV =		0000
		COEVAR =		9109	!	COEVAR =		0000	I	COEVAR		0000	!	COEVAR =		0000
	! 	STDERR =		0348	; 	STDERR = N =		0000	1	STDERR		0000		STDERR = N =		0000
MEDIAN SIZE									1	3					0 MM	

		ALL G	ROUPED			MAL	.ES			FEM	ALES		SEX	K INDETE	RMINAB	LE
CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN	
UNITS = G	FISH	%	CF	N 	FISH	%	CF	N 	FISH	%	CF	N	FISH	%	CF	N
460- 479	1	50.0	1.18	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
480- 499	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0] 0	.0	.00	0
500- 519	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
520- 539	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
540- 559	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
560- 579	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
580- 599] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
600- 619	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
620- 639	1 1	50.0	1.07	1	0	.0	.00	0	1	100.0	1.07	1	0	.0	-00	0
TOTALS	2 2	100.0	-	2	0	.0	-	0	1	100.0	¥	1	0	.0		0
]			
COND. FACTORS	!	MEAN :		1250	ļ	MEAN =	_	0000		MEAN =		700	1	MEAN =		0000
SUMMARY		STDDEV :	-	0777		STDDEV =		0000	!	STDDEV =		0000		STDDEV =	_	0000
	•	COEVAR :		9109	1	COEVAR =		0000	!	COEVAR =		0000	!	OEVAR =	_	0000
]	STDERR :		0348	! !	STDERR =		0000	1	STDERR =		0000	l s	STDERR =	_	0000
	 	N =	= 2		 	= N	0		 	N =	: 1		 	N =	0	
MEDIAN SIZE	l I	45	21 G		I I		0 G			47	1 G		1) G	

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE*** *************************************

SPECIES = FLCH

LOCATION= ATHAB SITE(S)= 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 844

LENGTH FREQUENCY DISTRIBUTION

*----

		 	ALL G	ROUPED			MA	LES		 	FEM	ALES		SEX	INDET	ERMINAB	LE
	INTERVAL	#		MEAN		#		MEAN		 #		MEAN		 #		MEAN	
UNI	rs = MM	FISH	%	CF	N	FISH	*	CF	N	FISH	%	CF	N	FISH	%	CF	N
ı)- 9	1	.1	.00	0	0	.0	_00	0	0	_0	.00	0	0	.0	.00	0
11) - 19	2	.2	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
2)- 29	105	12.4	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
3	39	142	16.8	.00	0	0	.0	_00	0	0	.0	.00	0	0	.0	-00	0
4)- 49	28	3.3	1.26	5	0	.0	-00	0	0	.0	.00	0] 0	.0	.00	0
5)- 59	56	6.6	1.00	19	0	.0	_00	0	0	.0	.00	0	0	.0	.00	0
6	0- 69	69	8.2	.82	40	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
7)- 7 9	46	5.5	.92	28	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
8)- 89	31	3.7	.97	25	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
9)- 99	13	1.5	.92	8	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
100)- 109	11	1.3	1.01	9	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
110)- 119	17	2.0	1.10	12] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
120)- 129	16	1.9	1.03	11	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
130	- 139	11	1.3	1.14	10	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
140)- 149	12	1.4	1.05	11	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
150	- 159	17	2.0	1.12	11	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
160	- 169	10	1.2	1.11	5	0	.0	.00	0	0	.0	.00	0	j 0	.0	.00	0
170	- 179	18	2.1	1.12	11	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
180	- 189	18	2.1	1.12	11	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
190	- 199	24	2.8	1.15	15	0	.0	.00	0	0	.0	.00	0] 0	.0	.00	0
200	- 209	31	3.7	1.15	18	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
210	- 219	28	3.3	1.15	19	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
220	- 229	43	5.1	1.20	31	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	- 239	32	3.8	1.20	19	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
	- 249	29	3.4	1.17	23	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
	- 259	18	2.1	1.21	13	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	- 269	8	.9	1.27	5	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
	1- 279	3	.4	1.12	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	- 289	2	.2	1.25	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	C
290	- 299	3	-4	1.18	2	0	.0	.00	0	0	.0	.00	0] 0	-0	-00	C

									- -								4
*		İ			ĺ				İ				i				*
*	COND. FACTORS	MEAN	=	1.0685		MEAN	=	.0000	Ì	MEAN	=	.0000	i	MEAN	=	.0000	*
*	SUMMARY	STDDEV	=	.2112		STDDEV	=	.0000	ļ	STDDEV	=	.0000	İ	STDDEV	Ξ	.0000	*
*		COEVAR	=	19.7610		COEVAR	=	.0000		COEVAR	=	.0000	ĺ	COEVAR	=	.0000	*
*		STDERR	=	.0073	l	STDERR	=	.0000		STDERR	=	.0000		STDERR	=	.0000	*
W.		N	=	363		N	=	0		N	=	0		N	=	0	*
*.									- -								*
*	MEDIAN SIZE	1	75	MM			C	MM C	1		0	MM			0) MM	*
ww	******	*****	***	****	****	****	k##	******	r#r#	****	rstrak	*****	***	*****	***	****	rie de

********		*******	*****	*****	******	******	*****	*****	******	*******	*****	*****	******	******	*****	****	***
*	İ	ALL GR	OUPED		İ	MAL	.ES			FEMA	LES		SEX INDETERMINABLE				
*	 																*
* CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN		*
* UNITS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	*
* 0- 19	 150	41.3	.94	150	l 0	.0	.00	D]	.0	.00	0	 0	_0	.00	n	*
* 20- 39	30	8.3	1.06	30	0	.0	.00	0	0	.0	.00	0	0	.0	.00		*
* 40- 59	23	6.3	1.17	23	j 0	.0	.00	0	, 0	.0	.00	0	0	.0	.00	0	*
* 60- 79	14	3.9	1.14	14	0	.0	.00	0	j 0	.0	.00	0	j o	.0	.00	0	*
* 80- 99	24	6.6	1.12	24	0	.0	.00	0	1 0	.0	.00	0	jo	.0	.00	0	*
* 100- 119	21	5.8	1.17	21	0	.0	.00	0	0	.0	.00	0] 0	.0	.00	0	*
* 120- 139	32	8.8	1.17	32	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 140- 159	21	5.8	1.20	21	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 160- 179	23	6.3	1.18	23] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 180- 199	10	2.8	1.21	10	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 200- 219	7	1.9	1.27	7	0	.0	.00	0	0	.0	.00	0] 0	.0	.00	0	*
* 220- 239	2	.6	1.17	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	•
* 240- 259	2	.6	1.38	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 260- 279	2	.6	1.24	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 280- 299	1	.3	1.25	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 300-319	1	.3	1.25	1	0	-0	.00	0	0	.0	.00	0	0	.0	.00	0	
* TOTALS	363	100.0	-	363	 0 	.0	-	0	 0 	.0	-	0	 0 	.0	-	0	*
*									1				ĺ				*
* COND. FACTORS		MEAN =		0685		MEAN =		0000	1	MEAN =		0000	l	MEAN =	.0	0000	•
* SUMMARY		STDDEV =		2112		STDDEV =	-	0000	l s	TDDEV =		0000	s	TDDEV =	.0	0000	
•		COEVAR =		7610		COEVAR =		0000		OEVAR =		0000) c	OEVAR =		0000	•
•		STDERR =		0073		STDERR =		0000	l s	TDERR =		0000	s	TDERR =	.0	0000	*
* *		N =	363		 	N =	0		 	N =	0		 	N =	0		*
MEDIAN SIZE		4	2 G				0 G				0 G				0 G		*

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = GOLD

LOCATION= ATHAB SITE(S)= 0.4 0.5 0.6 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 13

LENGTH FREQUENCY DISTRIBUTION

		ALL G	ROUPED		 	MA	LES		 	FEM	ALES		SE	X INDETE	RMINAB	LE
LASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		 #		MEAN	
UNITS = MM	FISH	%	CF	N	FISH	*	CF	N	FISH	*	CF	N	FISH	%	CF	N
200- 209	2	3.3	.95	1	l 0	.0	.00	0	0	.0		 0	0	.0	.00	• • •
210- 219	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	1 0	.0	.00	
220- 229	2	3.3	.97	1	io	.0	-00	0	0	.0	.00	0	0	.0	.00	
230- 239	j 1	1.7	.00	0	0	.0	.00	0	j o	.0	-00	0	ĺ	.0	.00	
240- 249	2	3.3	.92	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
250- 259	j 3	5.0	.86	2	0	.0	.00	0	1	5.0	.68	1	0	.0	.00	
260- 269	1	1.7	.00	0	1	3.7	.00	0	0	.0	.00	0	0	.0	.00	
270- 279	2	3.3	.00	0	0	.0	-00	0	0	.0	-00	0	0	.0	.00	
280- 289	3	5.0	.00	0	2	7.4	.00	0	0	.0	-00	0	0	.0	.00	
290- 299	2	3.3	1.07	1	0	.0	.00	0	2	10.0	1.07	1	0	.0	.00	
300- 309	2	3.3	1.16	1	2	7.4	1.16	1	0	.0	-00	0	0	.0	.00	
310- 319	9	15.0	1.06	4	7	25.9	1.02	3] 1	5.0	1.15	1	0	.0	.00	
320- 329	4	6.7	1.10	3	3	11.1	1.07	2	1	5.0	1.18	1	0	.0	-00	
330- 339	4	6.7	1.13	3	4	14.8	1.13	3	0	.0	.00	0	0	.0	.00	
340- 349	2	3.3	1.11	2	1 1	3.7	1.12	1	1	5.0	1.11	1	0	.0	.00	
350- 359	4	6.7	1.12	4	4	14.8	1.12	4	0	.0	.00	0	0	-0	.00	
360- 369	5	8.3	1.14	3	2	7.4	1.00	1	3	15.0	1.21	2	0	.0	-00	
370- 379	6	10.0	1.23	5	1 1	3.7	1.16	1	5	25.0	1.25	4	0	.0	-00	
380- 389 390- 399	1 5	1.7 8.3	1.17	1) 0 1 0	.0 .0	.00	0	1 5	5.0 25.0	1.17 1.20	1	0 0	.0 .0	.00 .00	
TOTALS	 60	100.0		 37	 27	100.0		16	 20	100.0		16	 0	.0		
OND. FACTORS	! 	MEAN :	= 1.	1063	1	MEAN :	= 1.0	0963	! 	MEAN :	= 1.1	1619	i 	MEAN =		000
SUMMARY		STDDEV :		1290	1	STDDEV :	=	0773] :	STDDEV :		1511	5	STDDEV =		000
		COEVAR :	= 11.0	6620	1	COEVAR :	= 7.0	0482	(COEVAR :	= 13.0	0037	0	COEVAR =		000
	l	STDERR :		0167		STDERR :		0149	1	STDERR =	= 1	338	5	STDERR =		000
	 	N :	= 37		 	N :	= 16		 	N =	= 16			N =	0	
MEDIAN SIZE		7	23 MM			3:	26 MM			7.	73 MM	O MM				

		ALL GI	ROUPED			MAI	LES			FEMA	LES		SE)	K INDETE	RMINABI	LE
LASS INTERVAL UNITS = G	 # FISH	*	MEAN CF	N	 # FISH	%	MEAN CF	N	 # FISH	%	MEAN CF	N	 # FISH	*	MEAN CF	N
80- 99] 1	2.7	.95	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
100- 119	2	5.4	.83	2	0	.0	.00	0] 1	6.3	-68	1	0	.0	.00	-
120- 139	2	5.4	.92	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	١
140- 159	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	
160- 179	1	2.7	1.04	1	0	.0	.00	0	0	.0	-00	0	0	.0	-00	
180- 199	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	-0	.00	1
200- 219	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	-00	
220- 239	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
240- 259	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	
260- 279	0 ! 1	.0	.00	0	0	.0	.00	0	[0	.0	.00	0	0	.0	.00	
280- 299 300- 310	; 1 2	2.7	1.07	1	0	.0	1.00	0	1 1	6.3	1.07	1] 0	.0	.00	
300- 319 320- 339		5.4 2.7	1.00	2	2 1	12.5	1.00	2	0	.0	.00	0	0	.0	.00	
340- 359	1 2		1.16	1	1 2	6.3	1.16	1	0	.0	.00	0	0	.0	.00	
360- 379	2	5.4 8.1	1.08 1.07	2 3	1 2	12.5 12.5	1.08	2	¦ 0 1	.0 6.3	.00	0	0	.0	.00	
380- 399	ם ו	.0	.00	0	1 0	.0	.00	0	l 0	.0	1.15	1	[0 [0	.0	.00	
400- 419	i 1	2.7	1.18	1	1 0	.0	.00	0	1 1	6.3	1.18	0 1	0 0	.0 .0	.00	
420- 439	l ' I 1	2.7	1.12	1	l 1	6.3	1.12	1	1 0	.0	.00	0	0 0	.0	.00	
440- 459	! ' ! 1	2.7	1.11	i	1 0	-0	.00	0	1 1	6.3	1.11	1	, 0 1 0	.0	.00	
460- 479	i '	13.5	1.11	5	i 5	31.3	1.11	5	, ' 0	.0	.00	0	1 0 1 0	.0	.00	
480- 499	1 0	.0	.00	Ó	1 0	.0	.00	0	l 0	-0	.00	0	1 0	.0	.00	
500- 519	1 1	2.7	1.18	1	1 1	6.3	1.18	1	l 0	.0	.00	0	i 0	.0	.00	
520- 539	1 1	2.7	1.16	1	1 1	6.3	1.16	1	1 0	-0	.00	0	i a	.0	.00	
540- 559	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	. 0	.0	.00	
560- 579	3	8.1	1.17	3	. 0	.0	.00	0	3	18.8	1.17	3	io	.0	.00	
580- 599	1 1	2.7	1.16	1	1	6.3	1.16	1	1 0	.0	.00	0	1 0	.0	.00	
600- 619	1 1	2.7	1.20	1	0	.0	.00	0	1 1	6.3	1.20	1	0	.0	.00	
620- 639	0	.0	.00	0	0	.0	.00	0	, . 0	.0	.00	0	1 0	.0	.00	
640- 659	1	2.7	1.17	1	i o	.0	.00	0	1	6.3	1.17	1	l o	.0	.00	
660- 679	1	2.7	1.14	1	j 0	.0	.00	0	1	6.3	1.14	1	0	.0	.00	
680- 699	1	2.7	1.32	1	0	.0	.00	0	1	6.3	1.32	1	0	.0	.00	
700- 719	1	2.7	1.38	1	0	.0	.00	0	1	6.3	1.38	1	0	.0	.00	
720- 739	1	2.7	1.19	1	0	.0	.00	0	1	6.3	1.19	1	0	.0	.00	
740- 759	1	2.7	1.27	1	0	.0	.00	0	1	6.3	1.27	1	0	.0	.00	
760- 779	1	2.7	1.22	1	0	.0	.00	0	1	6.3	1.22	1	0	.0	.00	
TOTALS	37	100.0		37	 16	100.0	-	16	16	100.0		16	 0	.0		
								••••				•••••				
OND. FACTORS		MEAN =	. 11	063	 	MEAN =	. 1 .	963]]	MEAN =	4 4	1619	1	MEAN =		ากก
SUMMARY	! 	STDDEV =		290	l I	= STDDEV		773	•	STDDEV =		1511	 e	TDDEV =		000
		COEVAR =			!	COEVAR =		482		COEVAR =		0037	:	OEVAR =		000
		STDERR =		1167	!	STDERR =		1149	:	STDERR =		3338	:	TDERR =		000
		N =			i '	N =				N =			,	N =		
		••			1								:		Ī	

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = LKCH

LOCATION= ATHAB SITE(S)= 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 158

LENGTH FREQUENCY DISTRIBUTION

7.0 .00 0 8.9 .00 0 17.7 2.22 5 25.3 .93 27 20.3 .97 29 8.9 1.11 12 10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0	# # FISH 0 0 0 0 0 0 0 0 0	MEAN % CF .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# FISH	.0 .0 .0 .0 .0 .0 .0	MEAN CF .00 .00 .00 .00 .00 .00 .00	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# FISH 0	.0 .0 .0 .0 .0 .0 .0	MEAN CF	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.0 .00 0 8.9 .00 0 17.7 2.22 5 25.3 .93 27 20.3 .97 29 8.9 1.11 12 10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0 0 0	FISH 	.0	.00 .00 .00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	FISH 0 0 0 0 0 0 0 0 0	.0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00	
8.9 .00 0 17.7 2.22 5 25.3 .93 27 20.3 .97 29 8.9 1.11 12 10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .00	0 0 0 0
8.9 .00 0 17.7 2.22 5 25.3 .93 27 20.3 .97 29 8.9 1.11 12 10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .00	
25.3 .93 27 20.3 .97 29 8.9 1.11 12 10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00	
20.3		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0	.00 .00 .00 .00 .00 .00 .00	
8.9 1.11 12 10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0	.00 .00 .00 .00 .00	
10.1 1.05 14 .6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0 0	0 0 0	.0	.00 .00 .00 .00 .00	0 0 0 0 0	0 0 0	.0	.00 .00 .00 .00	
.6 1.05 1 .6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0	0 0 0	.0	.00 .00 .00 .00	0 0 0	0 0 0	.0 .0 .0	.00 .00 .00 .00	0
.6 1.04 1 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0		.0 .00 .0 .00 .0 .00 .0 .00	0 0 0 0	0 0	.0 .0 .0	.00 .00 .00	0 0	0 0	.0 .0 .0	.00 .00 .00	0
.0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0	0 0 0	.0 .00 .0 .00 .0 .00	0 0	0 0	.0 .0 .0	.00	0	0	.0	.00	0
.0 .00 0 .0 .00 0 .0 .00 0	0 0	.0 .00 .0 .00	0 0 0	0	.0 .0	.00	0	0	.0	.00 .00	C
.0 .00 0 .0 .00 0 .0 .00 0	0 0	.0 .00	0	0	.0	.00				.00	
.0 .00 0 .0 .00 0	0	.0 .00	0				0	0	.0		(
.0 .00 0	0			0	0						
		.0 .00			.0	.00	0	0	.0	.00	(
.0 .00 0	1 0	-	0	0	.0	.00	0	0	.0	.00	C
	1 0	.0 .00	0	0	.0	.00	0	0	.0	-00	0
.0 .00 0	0	.0 .00	0	0	.0	.00	0	0	-0	.00	0
.0 .00 0	0	.0 .00	0	0	.0	.00	0	0	.0	.00	C
.0 .00 0	0	.0 .00	0	0	.0	.00	0	0	.0	.00	C
.0 .00 0	0	.0 .00	0	0	.0	.00	0	0	.0	.00	C
.0 .00 0	0	.0 .00	0	0	.0	.00	0	0	.0	.00	C
.0 .00 0	0	.0 .00	0	0	.0	.00	0	0	.0	.00	C
	!					.00	0	0	.0	.00	C
	!		_			.00	- !	0	.0	.00	C
	! -		_			.00	0	0	.0	.00	•
	!		-			.00	0	0	.0	.00	C
.6 1.26 1	0 	.00.00	0	0 	.0	.00	0	0	.0	.00	
100.0 - 90	0	.0 -	0	0	.0	-	0	0	.0	-	(
-	.0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .0 .00 0 .6 1.26 1	.0 .00 0 0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .00 0 0 .0 .0 .00 .0 .00 0 0 .0 .0 .00 .0 .00 0 0 .0 .0 .00 .0 .00 0 0 .0 .0 .00 .0 .00 0 0 .0 .0 .00 .6 1.26 1 0 .0 .0 .00	.0 .00 0 0 .0 .00 0 .0 .00 0 0 .0 .00 0 .0 .00 0 0 0	.0 .00 0 0 .0 .0 .00 0 0 .0 .0 .0 .0 .0	.0 .00 0 0 .0 .0 .00 0 0 .0 .0 .0 .0 .0	.0 .00 0 0 0 .0 .00 0 0 0 .0 .00 .00 .0	.0 .00 0 0 .0 .0 .00 0 0 .0 .00 0 0 .0 .	.0 .00 0 0 0 .0 .00 0 0 .0 .00 0 0 0 .0 .	.0 .00 0 0 0 .0 .00 0 0 .0 .00 0 0 0 .0 .	.0 .00 0 0 0 .0 .00 0 0 .0 .00 0 0 .0 .0

*	1	COEVAR	=	65.2336	CO	DEVAR	=	.0000	COEV	R =	.0000	COEVAR	=	.0000	*
*		STDERR	=	.0551	ST	DERR	=	.0000	STDE	R =	.0000	STDERR	=	.0000	*
*	Į,	N	=	90		N	=	0		N =	0	l N	=	0	*
*															
* MEDIAN SIZE			57 M	IM			0	MM		0	MM		0	MM	*
******	*****	****	****	*****	*****	****	***	********	*******	***	******	******	***	*****	***

		ALL G	ROUPED			MA	.ES			FEM/	ALES		SEX 	INDETE	RMINAB	LE
CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		i #		MEAN	
UNITS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N
0- 19	89	98.9	1.06	89	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
20- 39	0	.0	.00	0	0	.0	.00	0	0	-0	.00	0	j 0	-0	.00	(
40- 59	0	.0	.00	0	0	.0	-00	0	0	.0	_00	0	0	-0	.00	(
60- 79	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	C
80- 99	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	(
100- 119	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	- (
120- 139	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
140- 159	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
160- 179	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	-
180- 199	0	.0	.00	0	0	-0	.00	0	0	-0	.00	0	0	.0	.00	
200- 219	0	.0	-00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	
220- 239	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
240- 259	1	1.1	1.26	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
TOTALS	90	100.0	-	90	0	.0	7	0	0	.0		0	0	.0	-	
,													 			
COND. FACTORS		MEAN :	= 1.0	0620	1	MEAN =		0000	1	MEAN =	(0000	1	MEAN =	.0	000
SUMMARY	:	STDDEV =	= .6	5928	s	TDDEV =		0000	s	TDDEV =	(0000	s:	IDDEV =	.0	000
] (COEVAR =	= 65.7	2336	0	OEVAR =	0	0000	C0	DEVAR =	(0000	C	DEVAR =	.0	000
	1 :	STDERR =	= .1	D551	s	TDERR =	0	0000	s	TDERR =		0000	s s	DERR =	.0	000
	!	N =	= 90			N =	0			N =	0		!	N =	0	
MEDIAN SIZE	1		11 G		[0 G		ļ		0 G			. (

SPECIES = LKWH

LOCATION= ATHAB SITE(S)= 0.4 0.9

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 2

LENGTH FREQUENCY DISTRIBUTION

* CLASS INTERVAL	****
* CLASS INTERVAL # MEAN	
* UNITS = MM	LE .
* UNITS = MM	*
* UNITS = MM	•
* 350- 359	•
* 360- 369 0	N *
* 360- 369 0	*
* 370- 379 0	0 •
* 380- 389 0	0
* 390- 399 0	0 *
* 400- 409 0	0 *
* 410- 419 0	0 +
* 420- 429 0 .0 .00 0 0 .0 .00 0 0 .0 .00 0 0 .0 .00 * 430- 439 0 .0 .00 0 0 .0 .00 0 0 .0 .00 0	0 =
* 430- 439 0 .0 .00 0 0 .0 .00 0 0 .0 .00 0 0 .0 .	0 *
	0 *
* 440-449 0 .0 .00 0 0 .0 .0 0 0 .0 .0 0 0 .0 .0	0 *
* 450- 459 0 .0 .00 0 0 .0 .00 0 0 .0 .00	0 *
* 460-469 0 .0 .00 0 0 .0 .00 0 0 .0 .00	0 *
* 470-479 0 .0 .00 0 0 .0 .00 0 0 .0 .00	0 *
* 480-489 0 .0 .00 0 0 .0 .00 0 0 .0 .00	0 *
* 490-499 1 50.0 1.05 1 0 .0 .00 0 0 .0 .00 0 0 .0 .00	0 *
* TOTALS 2 100.0 - 1 0 .0 - 0 0 .0 - 0 0 .0 -	*
*	*
•	*
* COND. FACTORS MEAN = 1.0476 MEAN = .0000 MEAN = .0000 MEAN =	0000 *
* SUMMARY STDDEV = .0000 STDDEV = .0000 STDDEV = .	0000 *
* COEVAR = .0000 COEVAR = .0000 COEVAR = .0000 COEVAR = .	0000 *
* STDERR = .0000 STDERR = .0000 STDERR = .0000 STDERR = .	0000 *
* N = 1 N = 0 N = 0 N = 0	*
* MEDIAN SIZE 491 MM 0 MM 0 MM 0 MM	*****

CLASS INTERVAL # UNITS = G FISH 1240-1259 1		MEAN CF N	# FISH	%	MEAN CF N	 # FISH	*	MEAN	#		MEAN	
1240-1259 1	100.0	1 OF 1					~	CF N	FISH	*	CF	N
		1.05	0	.0	.00 0	0	.0	.00 0	Q	.0	.00	Ö
TOTALS 1	100.0	- 1	0	.0	- 0	0	.0	- 0	0	.0		0
COND. FACTORS SUMMARY	MEAN = STDDEV = COEVAR = STDERR = N =	1.0476 .0000 .0000 .0000	STI COE	MEAN = DDEV = EVAR = DERR = N =	.0000 .0000 .0000	STI	MEAN = DDEV = EVAR = DERR =	.0000 .0000 .0000	İ	MEAN STDDEV COEVAR STDERR	0. = 0. =	000 000 000

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = LNSC

.....

LOCATION= ATHAB SITE(S)= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

LENGTH - WEIGHT ANALYSIS

......

NO. FISH NOT SEXED = 257

LENGTH FREQUENCY DISTRIBUTION

*	*******	*****	****	*****	*****	******	*****	*****	*****	*****	*****	******	*****	******	*****	******	****	**
*			ALL G	ROUPED			MA	LES			FEM/	ALES		SEX	INDET	ERMINABI	LE	
* * -	SI AGG THEFTHA			MEAN							*****		• • • • • •					
*	CLASS INTERVAL UNITS = MM	# FISH	%	MEAN CF	N	# FISH	%	MEAN CF	N	# FISH	%	MEAN CF	N	#		MEAN CF		
	ONTIS - MM		~									Ur	N	FISH	%	UF	N	
ŀ	30- 39	2	.7	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
r	40- 49	j o	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
ŀ	50- 59	j 4	1.4	.95	3	0	.0	-00	0	j o	.0	-00	0	0	.0	.00	0	
k	60- 69	j 3	1.0	.89	2	0	.0	.00	0	0	.0	.00	0	j o	.0	.00	0	
k	70- 79	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
ř	80- 89	4	1.4	1.04	4	0	.0	.00	0	0	.0	.00	0	jo	.0	.00	0	
ir	90- 99	4	1.4	1.28	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
ık	100- 109	6	2.0	1.17	6	0	.0	.00	0	0	-0	.00	0	0	.0	.00	0	
îr	110- 119	5	1.7	1.15	5	0	-0	.00	0	0	.0	.00	0	0	.0	.00	0	
	120- 129	1	.3	1.46	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	130- 139	3	1.0	1.29	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
•	140- 149	2	.7	1.12	1] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
•	150- 159	1	.3	1.31	1] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
,	160- 169	5	1.7	1.28	5	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	170- 179	2	.7	1.21	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	Ð	
	180- 189	4	1.4	1.29	4	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	
	190- 199	5	1.7	1.26	5	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	200- 209	8	2.7	1.27	8	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	210- 219 220- 229	7 6	2.4 2.0	1.31 1.24	7 6	0 0	.0	.00	0	0 [0	.0	.00	0	0	.0	.00	0	
	230- 239	° 5	1.7	1.13	4	l 0	.0	.00	0	, o	.0 .0	.00	0	0 0	.0	.00	0	
,	240- 249	1 6	2.0	1.28	6	I 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
,	250- 259	1 6	2.0	1.21	4	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
	260- 269	1 10	3.4	1.28	8	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0	
	270- 279	6	2.0	1.10	3	i o	.0	.00	0	. 0	.0	.00	0	0	.0	.00	0	
	280- 289	8	2.7	1.27	8	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	290- 299	5	1.7	1.17	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	300- 309	9	3.1	1.28	8	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	310- 319	10	3.4	1.25	8	0	.0	.00	0	0	.0	.00	0	, j o	.0	_00	0	
	320- 329	j 8	2.7	1.30	8	j 1	4.5	1.17	1	0	.0	.00	0	jo	.0	.00	0	
	330- 339	12	4.1	1.27	9	1	4.5	1.22	1	0	.0	.00	0	0	.0	.00	0	
1	340- 349	14	4.8	1.22	13	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	

MEDIAN SIZE		33	32 MM			37	71 MM			38	36 MM				O MM		1
		N =	= 239		 !	N =	= 15			N :	= 11			N =	0		*
	1	STDERR =		0084		STDERR =	= .(0207		STDERR :	ا. =	0268	İ	STDERR =		0000	*
	İ	COEVAR =	= 11.	5957	İ	COEVAR :	= 8.	0332	į	COEVAR :	= 7.0	5871	i	COEVAR =		0000	18
SUMMARY	i	STDDEV =	٠.	1445	i	STDDEV :	= .1	0972	i	STDDEV :	= .·	1039	i	STDDEV =		0000	1
COND. FACTORS	 	MEAN =	= 1.	2464		MEAN :	= 1.3	2106		MEAN :	= 1.3	3518	 	MEAN =		0000	4
**-*											•••••	• • • • •	.				- 4
TOTALS	294	100.0		239	22	100.0	de.	15	15	100.0	70	11	0	.0		0	1
450- 459 	1 	.3	.00	0	1	4.5	.00	0	0	.0	.00	0	0	.0	.00	0	
440- 449	3	1.0	1.37	1	1	4.5	.00	0	1	6.7	1.37	1	0	_0	.00	0	
430- 439	4	1.4	1.37	3	0	.0	.00	0	į 0	.0	.00	0	0	.0	.00	0	
420- 429	j 1	.3	1.27	1	0	.0	.00	0	į o	.0	.00	0	0	.0	.00	0	
410- 419	j 8	2.7	1.27	6	0	.0	.00	0	1 0		.00	0	0	.0	.00	0	
400- 409	1 12	4.1	1.23	10	1	4.5	1.01	1	1 1	6.7	.00	0	1 0	.0	.00	n	
390- 399	1 10	3.4	1.30	6	1 1	4.5	.00	0	1 3		1.42	2	1 0	.0	.00	n	
380- 389	24	8.2	1.31	19	1 2	9.1	1.33	1	1 5		1.36	2	1 0	.0	.00	0	
370- 379	1 25	8.5	1.24	18	1 5	22.7 22.7	1.27	4	1 3		1.21	2	0	.0	.00	0	
350- 359 360- 369	16	5.4 6.5	1.26	12 15	1 5	18.2	1.24	3	0		.00	0	0	.0	.00	0	

•	******	*****	*****	*****	****	*****	*****	*****	*****	*****	****	*****	*****	*****	*****	*****	****	**
*	•	1				1				1				I				*
1	•		ALL G	ROUPED		Ì	MA	LES		İ	FEMA	ALES		SEX	INDET	RMINABL	.E	*
*	•													j				
*	•					1				1				1				*
*	CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN		*
*	UNITS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	*
•																	•	*
*	0- 19	23	9.6	1.10	23	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
*	20- 39	4	1.7	1.29	4	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	*
*	40- 59	3	1.3	1.25	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
#	60- 79	8	3.3	1.27	8	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
-	80- 99	6	2.5	1.29	6	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	*
	100- 119	10	4.2	1.23	10	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
-	120- 139 140- 159	7 10	2.9 4.2	1.24 1.23	7 10) O	.0 .0	.00	0	0	.0	.00	0	0	.0	.00	0	Ī
*	160- 179	i 1	.4	1.04	10	1 0 1 0	.0	.00	0	1 0	.0 .0	-00	0	0 0	.0	.00	U	
*	180- 179	1	1.7	1.27	4	1 0	.0	.00	0	1 0	.0	.00 .00	0	1 0	.0	-00 -00	0	Ī
*	200- 219	" 4	1.7	1.13	4	1 0	.0	.00	0	0 1	.0	.00	0	1 0	.0	-00	n	*
*	220- 239	1 4	1.7	1.28	4	1 0	.0	.00	0	1 0	.0	.00	0	i 0	.0	.00	n	
*	240- 259	5	2.1	1.24	5	1 0	.0	.00	0	1 0	.0	.00	0) 0	.0	.00	0	*
*	260- 279	1 4	1.7	1.32	4	1 0	.0	.00	0	l 0	.0	-00	0	, o	.0	.00	n	*
*	280- 299	1 4	1.7	1.27	4		.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	*
*	300- 319	2	.8	1.27	2	0	.0	.00	0	1 0	.0	.00	0	i 0	.0	.00	0	*
*	320- 339	1 4	1.7	1.21	4	,	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	*
*	340- 359	6	2.5	1.24	6	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	360- 379	3	1.3	1.05	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	380- 399	1	-4	1.33	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	400- 419	8	3.3	1.29	8	1	6.7	1.17	1	0	.0	.00	0	0	.0	.00	0	*
*	420- 439	4	1.7	1.26	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	440- 459	4	1.7	1.20	4	1	6.7	1.22	1	0	.0	.00	0	0	.0	.00	0	*
*	460- 479	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
*	480- 499	6	2.5	1.30	6	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	500- 519	8	3.3	1.26	8	1	6.7	1.14	1	0	-0	.00	0	0	.0	.00	0	*
*	520- 539	10	4.2	1.22	10	1	6.7	1.21	1	0	.0	.00	0	0	.0	.00	0	*
*	540- 559	5	2.1	1.24	5	0	.0	.00	0	1	9.1	1.13	1	0	.0	-00	0	*
*	560- 579	3	1.3	1.21	3	1	6.7	1.13	1	0	.0	.00	0	0	.0	.00	0	*
*	580- 599	4	1.7	1.22	4	1	6.7	1.08	1	0	.0	.00	0	0	.0	.00	C	*
*	600- 619	7	2.9	1.29	7	3	20.0	1.30	3	1	9.1	1.29	1	0	.0	.00	0	ŵ
*	620- 639	9	3.8	1.22	9	3	20.0	1.24	3	0	.0	.00	0	0	.0	.00	0	*
*	640- 659	2	.8	1.09	2	1	6.7	1.01	1	0	.0	.00	0	0	.0	.00	0	*
#	660- 679	9	3.8	1.29	9	1	6.7	1.26	1	0	.0	.00	0	0	.0	.00	0	*
*	680- 699	2	.8	1.29	2	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
*	700- 719	3	1.3	1.36	3	0	.0	.00	0	1	9.1	1.38	1	0	.0	.00	0	*
*	720- 739	4	1.7	1.30	4	0	.0	.00	0	1	9.1	1.35	1	0	.0	.00	0	*
*	740- 759	8	3.3	1.29	8	1 1	6.7	1.33	1	1 7	9.1	1.35	1	0	.0	.00	0	*
*	760- 779	7	2.9	1.33	7	0	.0	.00	0	3	27.3	1.33	3	0	.0	.00	0	*
# -	780- 799	2	.8	1.31	2 3	[0 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	-
_	800- 819	3	1.3	1.40 1.25	2	0	.0	.00 .00	0	1 0	9.1	1.46	1 0	0	.0	.00	0	*
-	820- 839 840- 859	2	.8 2.1	1.24	5	0	.0 .0	.00	0	0 0	.0 .0	.00 .00	0	0 0	.0	.00 .00	0	*
*	860- 879	1 1	.4	1.27	1	0	.0	-00	0	0	.0	.00	0	0 0	.0	.00	0	
*	880- 899	1 1	.4	1.26	1	0	.0	-00	0	0	.0	.00	0	l 0	.0	.00	0	
*	900- 919	1	.4	1.38	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00		*
*	920- 939	0	.0	.00	0	0	.0	.00	0		.0	.00	0	0	.0	.00	0	
	//	•			- 1				-	-	- •		-				-	

MED	IAN SIZE		۵	17 G			 61	1 G			7/	54 G				 D G		
		! 		239	.0004	! 	N =		olo:	i	N :		0200	<u> </u>	N =			
		<u>[</u> 	COEVAR =		.5957 .0084	! [COEVAR = STDERR =		0332 0207	1	COEVAR :		6871 0268		COEVAR = STDERR =		0000	
SUI	MMARY		STDDEV =		1445		STDDEV =		0972		STDDEV :		1039		STDDEV =		0000	
	. FACTORS		MEAN =		2464		MEAN =		2106		MEAN :		3518		MEAN =		0000	
		 				 				1								
T	OTALS	239	100.0	-	239	15	100.0	-	15	11	100.0	<u>.</u>	11	0	.0	•	0	
130	0-1319	1	-4	1.55	1	0	.0	.00	0	j o	.0	.00	0	jo	.0	.00	0	
	0-1299	Ö	.0	_00	0	, 0	.0	.00	0	j 0	.0	.00	0	0	-0	00	0	
	0-1279	1 0	.0	_00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
_	0-1259	1 0	.0	.00	0	1 0	.0	-00	0	1 0	.0	.00	0	1 0	.0	.00	0	
	0-1219	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
	0-11 99 0-1219	1 0	.0	-00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
	0-1179 0-1199] 1 ! 0	.4 .0	1.37	0	1 0 1 0	.0	.00	0	'	.0	+00	0	1 0	.0	.00	n	
	0-1159	0	-0	.00	0	0	.0	.00	0	0	.0 9.1	_00 1.37	0 1] 0 I 0	.0 .0	.00	0	
	0-1139	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	
	0-1119	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	0-1099	1	.4	1.35	1	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	
106	0-1079	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	-0	.00	0	
104	0-1059	0	.0	+00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	
102	0-1039	0	.0	+00	0	0	.0	.00	0	0	.0	+00	0	0	.0	.00	0	
100	0-1019	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0] 0	.0	+00	0	
98	0- 999	1	.4	1.43	1	0	.0	400	0	0	.0	.00	0	0	.0	.00	0	
96	0- 979	3	1.3	1.34	3	0	.0	.00	0	1 1	9.1	1.55	1	0	.0	.00	0	

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = MNWH

LOCATION= ATHAB SITE(S)= 0.1 0.2 0.3 0.4 0.5 0.6 0.7

LENGTH - WEIGHT ANALYSIS

.....

NO. FISH NOT SEXED = 415

LENGTH FREQUENCY DISTRIBUTION

*						1								1			
*			ALL G	ROUPED			MAI	LES			FEM	ALES		SE	X INDET	ERMINAB	LE
*																	
k						}											
ľ	CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN	
	UNITS = MM	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	*	CF	N
	50- 59	1 1	.2	.00	0	0	.0	.00	0		.0	.00	0	 0	.0	.00	
	60- 69	1 1	.2	-00	0	1 0	.0	.00	0	0 0	.0	.00	0	l 0	.0	.00	
	70- 79	4	.9	.84	4	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	(
	80- 89	1 9	2.1	.83	9	io	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0
	90- 99	2	.5	.95	2	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	
	100- 109	- 9	2.1	1.06	9	1 0	.0	.00	0	0	.0	.00	0	1 0	-0	.00	ľ
	110- 119	1 19	4.4	1.07	18	1 0	.0	.00	0	1 0	.0	.00	0	2	25.0	1.18	2
	120- 129	21	4.9	1.09	18	1 0	.0	.00	0	, o	.0	.00	0	1	12.5	1.04	
	130- 139	1 12	2.8	1.01	12	1 0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	140- 149	1 5	1.2	1.01	5	0	.0	.00	0	i o	.0	.00	0	İ	.0	.00	ĺ
	150- 159	1 14	3.2	1.14	13	İ	.0	.00	0	0	.0	.00	0	İ	.0	.00	
	160- 169	17	3.9	1.09	17	i o	.0	.00	0	0	.0	.00	0	i o	.0	.00	
	170- 179	23	5.3	1.10	23	0	.0	.00	0	2	22.2	1.27	2	0	.0	-00	
	180- 189	39	9.0	1.14	39	0	.0	.00	0	0	.0	.00	0	2	25.0	1.19	
	190- 199	26	6.0	1.14	26	0	.0	.00	0	j 1	11.1	1.14	1	0	.0	.00	
	200- 209	24	5.6	1.13	24	0	.0	.00	0	j 1	11.1	1.07	1	1	12.5	1.28	
	210- 219	11	2.5	1.17	11	0	.0	.00	0	0	.0	.00	0	1	12.5	1.28	
	220- 229	27	6.3	1.15	27	0	.0	.00	0	1	11.1	1.15	1	1	12.5	1.31	
	230- 239	15	3.5	1.14	14	0	.0	.00	0	0	.0	.00	0	0	.0	.00	- (
	240- 249	16	3.7	1.20	16	0	.0	.00	0	0	.0	.00	0	0	.0	.00	1
	250- 259	14	3.2	1.20	14	0	.0	.00	0	0	.0	.00	0	0	.0	.00	1
	260- 269	13	3.0	1.23	12	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	270- 279	3	.7	1.20	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
	280- 289	9	2.1	1.24	9	0	.0	.00	0	0	.0	.00	0	0	.0	-00	1
	290- 299	7	1.6	1.28	7	0	.0	.00	0	0	.0	-00	0	0	.0	.00	1
	300- 309	10	2.3	1.21	9	0	.0	.00	0	1	11.1	1.36	1	0	.0	.00	
	310- 319	2	.5	1.20	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	-
	320- 329	4	.9	1.27	4	0	.0	.00	0	0	-0	-00	0	0	.0	.00	1
	330- 339	7	1.6	1.23	7	0	.0	.00	0	1	11.1	.97	1	0	.0	.00	1
	340- 349	3	.7	1.10	3	0	.0	.00	0	0	.0	.00	0	0	_0	.00	
•	350- 359	7	1.6	1.25	7	0	.0	.00	0	0	.0	.00	0	0	-0	.00	1
ľ	360- 369	7	1.6	1.33	6	0	.0	.00	0	0	.0	.00	0	0	.0	.00	- (

	370- 379] 11	2.5	1.34	11	0	.0	.00	0	0	.0	.00	0		0.0	.00	0	
	380- 389	7	1.6	1.30	7	0	.0	.00	0	0	.0	.00	0	1	0 .0	.00	0	
	390- 399	7	1.6	1.28	6	0	.0	.00	0	1	11.1	1.37	1		0.0	.00	0	
	400- 409	4	.9	1.25	3	0	.0	.00	0	0	.0	.00	0	İ	0.0	.00	0	í
	410- 419	9	2.1	1.32	8	0	.0	.00	0	0	.0	.00	0	İ	0 .0	.00	0	j
	420- 429	2	.5	1.12	2	0	.0	.00	0	0	.0	.00	0		0.0	.00	0	
	430- 439	4	.9	1.23	4	0	.0	.00	0	0	.0	.00	0	1	0 .0	.00	0	
	440- 449	3	.7	1.29	3	0	.0	.00	0	1	11.1	1.11	1	1	0.0	.00	0	
	450- 459	3	.7	1.46	2	0	.0	.00	0	0	.0	.00	0		0 .0	.00	0	
	460- 469	1	.2	1.46	1	0	.0	-00	0	0	.0	.00	0		0.0	.00	0	
-														-				
	TOTALS	432	100.0	-	417	0	.0		0	9	100.0	7	9		8 100.0	0	8	
-														.				
	COND. FACTORS	 	MEAN =	1	1527	 	MEAN	_	0000	1	MEAN	_ 1	1007	!	ME 0.11	_ 4	2075	
	SUMMARY	 	STDDEV =		1589	 	STDDEV		0000	!			1903	!	MEAN		2075	
	SUMMAKT	1						_			STDDEV	-	1430	!	STDDEV		1083	
		!	COEVAR =		7830	1	COEVAR		0000		COEVAR	_	0096	[COEVAR		9692	
		ļ.	STDERR =		0076	!	STDERR		0000		STDERR		0477		STDERR	= .	0383	
		!	N =	417			N	= 0		!	N :	= 9			N	= 8		
•														-				
	MEDIAN SIZE		20	6 MM		l		O MM			2	26 MM			1	186 MM		

						1								1			
			ALL G	ROUPED		1	MAI	LES			FEM.	ALES		SE	X INDET	ERMINAB	LE
		j								j				j			
CLASS	INTERVAL	 #		MEAN		 #		MEAN		 #		MEAN		 #		MEAN	
UNI	TS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N
	2 40		44.0														
	0- 19 D- 39	50	11.9 7.6	.96 1.09	50 32	} 0 I 0	.0	.00	0] 0 0	.0	.00	0] 3 1 0	37.5	1.13	3
	0- 59	32	9.8	1.07	41	1 0	.0	.00	0	1 0	.0	.00 .00	0	l o	.0	.00	0
	0- <i>39</i> 0- 79	1 48	11.5	1.14	48	1 0	.0	.00	0	2	18.2	1.27	2	1 1	12.5	1.07	1
	0- 99	37	8.8	1.15	37	1 0	.0	.00	0	2	18.2	1.11	2	1 1	12.5	1.32	1
	0- 119	26	6.2	1.13	26	0	.0	.00	0	i o	.0	.00	0	2	25.0	1.28	2
12	0- 139	20	4.8	1.17	20	0	.0	.00	0	1 1	9.1	1.15	1	io	.0	.00	0
14	0- 159	22	5.3	1.17	21	0	.0	.00	0	j 1	9.1	.00	0	j 1	12.5	1.31	1
16	0- 179	8	1.9	1.16	7	j o	.0	.00	0	1	9.1	.00	0	0	.0	-00	0
18	0- 199	10	2.4	1.17	10	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0
20	0- 219	13	3.1	1.27	13	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
22	0- 239	6	1.4	1.24	6	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
24	0- 259	4	1.0	1.15	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	0- 279	7	1.7	1.25	7	0	.0	-00	0	0	.0	.00	0	0	.0	-00	0
)- 299	5	1.2	1.28	5	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
_	0- 319	4	1.0	1.18	4	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	0- 339	2	.5	1.26	2	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
	0- 359	6	1.4	1.27	6	0	.0	.00	0	1	9.1	.97	1	0	.0	.00	0
)- 379	3	.7	1.17	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
)- 399	4	1.0	1.29	4	0	.0	.00	0	1 1	9.1	1.36	1	0	.0	.00	0
	0- 419 0- 439] 2 1	.5 .2	1.07 1.06	2	0 0	.0 .0	.00	0	[0 0	.0	.00	0	0	.0	.00	0
)- 439)- 459	4	1.0	1.20	1	l 0	.0	.00	0	, o	.0 .0	.00	0	0 0	.0 .0	.00 .00	0
)- 439)- 479	1 1	.2	1.23	1	l 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0
)- 499	1 0	.0	.00	Ö	l 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0
) - 519	1 0	.0	.00	0	l 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0
)- 539	1 4	1.0	1.37	4	,	.0	.00	0	. 0	.0	.00	0	1 0	.0	.00	0
)- 559	2	.5	1.25	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
560	- 579	i 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
580)- 59 9	3	.7	1.23	3	0	.0	.00	0	0	.0	.00	0	j 0	.0	_00	0
600	- 619	4	1.0	1.27	4	0	.0	.00	0	0	.0	.00	0	j o	.0	_00	0
620	- 639	3	.7	1.26	3	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
640	- 659	1	.2	1.30	1	0	.0	-00	0	0	.0	-00	0	0	.0	-00	0
	- 679	2	.5	1.26	2	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
)- 699	3	.7	1.30	3	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0
)- 719	4	1.0	1.23	4	0	.0	-00	0	0	.0	_00	0	0	.0	.00	0
)- 739	3	.7	1.39	3	0	.0	.00	0] 0	.0	.00	0	0	.0	-00	0
	- 759	4	1.0	1.32	4	0	.0	.00	0	0	.0	.00	0] 0	.0	.00	0
	779	3	.7	1.30	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	799	3	.7	1.34	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
	9- 819	3	.7	1.24	3	0	.0	.00	0	0 0	.0	.00	0	0	.0	.00	0
)- 839)- 850	2	.5 .2	1.36 1.37	2	0 0	.0 .0	.00 .00	0	1	.0 9.1	.00 1.37	0 1	0 0	.0 .0	.00 .00	0
)- 859)- 879	1 1	.2	1.05	1	0 0	.0	.00	0	0 1	.0	.00	0	1 0	.0	-00	0
)- 899	' 1	.2	1.39	1	0 0	.0	.00	0	l 0	.0	.00	0	0	.0	.00	0
)- 919	' 1	.2	1.14	1	0	.0	.00	0	l 0	.0	.00	0	1 0	.0	_00	0
)- 939	' 1	.2	1.25	1)	.0	.00	0	1 0	.0	.00	0) 0	.0	.00	0

*	980- 999 1000-1019	0 1	.0 .2	1.32	0 1	0	.0 .0	.00	0	0	.0 .0	.00	0	0	.0 .0	.00	0	
*	1020-1039	0	.0	-00	0	0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	
*	1040-1059	2	.5	1.38	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
*	1060-1079	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
*	1080-1099	0	-0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
*	1100-1119	2	.5	1.30	2	0	-0	.00	0	0	.0	+00	0	0	.0	.00	0	
*	1120-1139	0	-0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	1140-1159	0	.0	.00	0	0	.0	.00	0	0	.0	+00	0	0	.0	.00	0	
*	1160-1179	1	.2	1.38	1	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	
	1180-1199	1	.2	1.62	1	0	.0	+00	0	0	.0	.00	0	0	.0	.00	0	
*	1200-1219	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
*	1220-1239	1	.2	1.39	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	
*	1240-1259	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	
*	1260-1279	0	.0	-00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	
*	1280-1299	0 0	.0	-00	0	0	.0	-00	0	1 0	.0	.00	0] 0	.0	.00	0	
*	1300-1319	1 0	.0	-00	0	1 0	.0 .0	.00	0	1 0	.0	.00	0	0	.0	.00	0	
ric Mr	1320-1339 1340-1359	10	.0 .0	.00	0	0	.0	.00	0	1 0	.0 .0	-00	0	1 0	.0	.00	0	
r k	1360-1379	, o	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
*	1380-1379	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0 .0	.00	0	
r e	1400-1419	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
	1420-1439	1 0	.0	.00	0		.0	.00	0	1 0	.0	-00	0	1 0	.0	-00	0	
*	1440-1459	1 1	.2	1.46	1	0	.0	400	0	1 0	.0	-00	0	1 0	.0	.00	0	
fr.	1460-1479	, . I 0	.0	.00	0	1 0	.0	-00	0	0	.0	-00	0	1 0	.0	.00	0	
de .	1480-1499	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	
k	1500-1519	1 0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	
	1520-1539	l 0	.0	-00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	
de .	1540-1559	0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
de .	1560-1579	1 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
æ	1580-1599	. 0	.0	_00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
	1600-1619	1	.2	1.72	1	0	.0	+00	0	0	.0	.00	0	0	.0	+00	0	
	TOTALS	419	100.0	•	417	0	.0	-	0	11	100.0	-	. 9	8	100.0	-	8	
k											********							-
k (COND. FACTORS		MEAN :				MEAN =		0000			1.		•	MEAN =			
r	SUMMARY		STDDEV :			•	STDDEV =		0000	!	STDDEV =			!	STDDEV =			
	I		COEVAR :				COEVAR =		0000	ļ	COEVAR =				COEVAR =	8.	9692	
ŀ	!		STDERR :		0076		STDERR =		0000	ļ	STDERR =		0477		STDERR =		0383	
			N =	= 417			N =	= 0		[N =	9			N =			
						1				1		1 G		1				•

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = RNTR

MEDIAN SIZE

LOCATION= ATHAB SITE(S)= 0.1 0.2

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 4

LENGTH FREQUENCY DISTRIBUTION

***********	******	******	******	*****	*****	******	*****	*****	*****	******	*****	*****	*****	*****	*****	****	**
*		ALL G	ROUPED			MAL	ES			FEMA	LES		SE	X INDETE	ERMINAB	LE	*
*					 						•						
* CLASS INTERV	AL #		MEAN		#		MEAN		#		MEAN		#		MEAN		*
* UNITS = MM	FIS	1 %	CF	N	FISH	*	CF	N	FISH	*	CF	N	FISH	*	CF	N	*
* 180- 189	1	25.0	1.06	1	0	.0	_00	0	0	.0	-00	0	0	.0	.00	0	*
* 190- 199	0	.0	+00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	w
* 200- 209	0	.0	+00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 210- 219	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 220- 229	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
* 230- 239] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	Ħ
* 240- 249	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 250- 259	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0	0	.0	-00	0	*
* 260- 269	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 270- 279	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
* 280- 289	2	50.0	1.23	2	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	Ħ
* 290- 299] 0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
* 300- 309	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
* 310- 319	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	×
* 320- 329	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	1 0	.0	-00	C	×
* 330- 339	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0	*
* 340- 349	1	25.0	1.23	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	w
*																	*
* TOTALS	4	100.0	-	4	0	.0	-	0	0	.0	-	0	0	.0	-	0	*
*																	.*
*	1				1				1								*
* COND. FACTOR	s j	MEAN	= 1.	1863	1	MEAN =		0000	1	MEAN =	+	0000	l	MEAN =		0000	*
* SUMMARY	1	STDDEV		0840		STDDEV =		0000	j :	STDDEV =	+	0000	1	STDDEV =		0000	ŵ
*	1	COEVAR	= 7.	0803	1	COEVAR =		0000	1 (COEVAR =		0000	1	COEVAR =		0000	*
*	-	STDERR	=0	0420		STDERR =		0000	!	STDERR =		0000	:	STDERR =		0000	*
*	1	N	= 4			N =	0		1	N =	0			N =	= 0		*
*																	*

O MM

O MM

		ALL G	ROUPED		į	MAI	LES			FEM	ALES		SEX	K INDETE	ERMINAB	LE
CLASS INTERVAL UNITS = G	 # FISH	%	MEAN CF	N	 # FISH	*	MEAN CF	N	 # FISH	*	MEAN CF	N	 # FISH	%	MEAN CF	N
60- 79	1	25.0	1.06	1	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	
80- 99	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	
100- 119	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
120- 139	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
140- 159	0	.0	.00	0	jo	.0	.00	0	0	.0	.00	0	0	.0	.00	
160- 179	0	.0	.00	0] 0	.0	-00	0	0	.0	.00	0	0	.0	.00	
180- 199	0	.0	.00	0	0	.0	.00	0	jo	.0	.00	0	j o	.0	.00	
200- 219	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	j 0	.0	.00	
220- 239	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
240- 259	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
260- 279	1	25.0	1.22	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
280- 299	1	25.0	1.24	1	0	-0	.00	0	0	.0	.00	0	0	.0	.00	
300- 319	0	.0	.00	0) 0	.0	.00	0	0	.0	.00	0	0	.0	.00	
320- 339	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
340- 359	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
360- 379	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
380 - 399	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	
400- 419	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
420- 439	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
440- 459	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	ļ o	.0	.00	
460- 479	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
480- 499	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	
500- 519	1	25.0	1.23	1	0 	.0	.00	0	0 	.0	.00	0	0 	.0	.00	
TOTALS	4	100.0	-	4	0	.0	-	0	0	.0	-	0	0	.0	-	
COND. FACTORS		MEAN :	= 11	863	 	MEAN =	· r	0000		MEAN =		1000	ĺ	MEAN =		000
SUMMARY		STDDEV :		1840	! ! •	STDDEV =		0000	 e:	IDDEV =		1000	 e	TDDEV =		000
		COEVAR :		803		COEVAR =		0000		DEVAR =		000	-	OEVAR =		000
i		STDERR :		420		STDERR =		0000		DERR =		0000		TDERR =		000
ļ		N :			!	N =				N =				N =		.00

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = WALL

LOCATION= ATHAB SITE(S)= 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 74

LENGTH FREQUENCY DISTRIBUTION

k							1											
k			i	ALL G	ROUPED		İ	MAI	LES			FEM	ALES		SE	X INDET	ERMINAB	LE
												••••						
	CLASS IN	ITEDVAL	 #		MEAN		 #		MEAN		! ! #		MEAN		[#		MEAN	
	UNITS		i #	%	CF	N	! # FISH	*	CF	N	# FISH	%	CF	N	# FISH	%	MEAN CF	N
									•••••									
	20-	29	j 1	.8	.00	0	0	.0	.00	0	0	.0	.00	0	i o	.0	-00	
	30-	39	2	1.7	.00	0	0	.0	.00	0	0	.0	.00	0	j 0	.0	-00	
	40-	49	1	.8	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	50-	59	0	_0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	60-	69	0	_0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	70-	79	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	80-	89	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	90-	99	1	.8	.88	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	100-	109	1	.8	1.41	1	0	.0	.00	0	0	.0	.00	0	jo	.0	.00	
	110-	119	1	.8	.75	1	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	
	120-	129	3	2.5	.79	2	0	.0	.00	0	0	.0	.00	0	i o	.0	.00	
	130-	139	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	140-	149	0	.0	.00	0	0	.0	.00	0	jo	.0	.00	0	i o	.0	.00	
	150-	159	0	.0	.00	0	j 0	.0	.00	0	0	.0	.00	0	i o	.0	.00	
	160-	169	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	i o	.0	.00	
	170-	179	0	.0	.00	0	0	.0	.00	0	j o	.0	.00	0	i o	.0	.00	
	180-	189	0	.0	.00	0	0	.0	-00	0	j o	.0	.00	0	i o	.0	.00	
	190-	199	0	.0	.00	0	0	.0	.00	0	i o	.0	.00	0	i o	.0	.00	
	200-	209	0	.0	.00	0	0	.0	.00	0	, o	-0	.00	0	0	.0	.00	
	210-	219	1	.8	.00	0	0	.0	.00	0	i o	.0	.00	0	i o	.0	.00	
	220-	229	0	.0	.00	0	0	.0	.00	0	j o	.0	.00	0	. 0	.0	.00	
	230-	239	0	.0	.00	0	0	.0	.00	0	0	_0	.00	0	0	.0	.00	
	240-	249	0	.0	.00	0	0	.0	.00	0	i o	.0	.00	0	0	.0	.00	
	250-	259	2	1.7	1.30	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	260-	269	4	3.3	.97	4	0	.0	.00	0	0	.0	.00	0	, 0	.0	.00	
	270-	279 İ	3	2.5	-87	1	0	.0	.00	0	O	-0	-00	0	0	_0	.00	
	280-	289	1	-8	.97	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	290-	299	6	5.0	-93	5	0	.0	.00	0	j o	.0	-00	0	j 1	33.3	.95	
	300-	309	3	2.5	.94	2	0	.0	.00	0	j 0	.0	.00	0	0	.0	.00	
	310-	319	7	5.8	.96	6	1	2.6	.92	1	0	.0	.00	0	į o	.0	.00	
	320-	329	11	9.2	.98	8	2	5.3	.93	2	j 1	20.0	.93	1	1	33.3	.93	
	330-	339	9	7.5	.95	7	2	5.3	.99	2	0	-0	.00	0	j 1	33.3	.95	

*	MEDIAN SIZE	ĺ	34	14 MM		i	4	13 MM		i		40	6 MM		i	3	26 MM		
*		 	N =	= 88		 	: N	= 32		 		N =	3		 	N	= 3		. 9
*			STDERR =		0117	!	STDERR =		0123	ļ		STDERR =		0175	!	STDERR		.0049	*
*			COEVAR =		2199		COEVAR =	7.	7469			COEVAR =	4.	0019		COEVAR	=	.9068	*
*	SUMMARY		STDDEV =	3	1286	I	STDDEV :		0757			STDDEV =		0391		STDDEV	=	.0086	*
* (COND. FACTORS		MEAN =		9728		MEAN :	4	9772			MEAN =		9767		MEAN	=	.9440	*
*		İ				i				i					j				18
*																			
*	TOTALS	 120	100.0	-	88	l 38	100.0		32	1	5	100.0		3	3	100.0		3	-
	520- 529	1	.8	.93	1	1	2.6	.93	1		0	.0	.00	0	0	.0	.00	0	i
*	510- 519	2	1.7	1.00	2	0	.0	-00	0	!	2	40.0	1.00	2	0	.0	.00	_	*
*	500- 509	0	.0	_00	0	0	.0	.00	0		0	.0	.00	0	0	.0	- 00	0	*
*	490- 499	1	.8	_00	0	0	.0	.00	0		0	.0	.00	0	0	.0	.00	0	*
*	480- 489	1	.8	1.09	1	1	2.6	1.09	1		0	.0	.00	0	0	.0	.00	0	*
*	470- 479	3	2.5	.99	3	1	2.6	1.09	1	İ	0	.0	+00	0	0	.0	.00	0	*
*	460- 469	j 1	.8	.94	1	1	2.6	.94	1	i	0	.0	+00	0	0	.0	.00		18
*	450- 459	3	2.5	.99	2	2	5.3	.99	2	ì	0	.0	.00	0	0	.0	.00	_	
*	440- 449	2	1.7	1.05	2	2	5.3	1.05	2		0	.0	.00	0	1 0	.0	.00		
*	430- 439	1 4	3.3	1.02	3	1 3	7.9	1.02	3	1	0	.0	-00	0	0	.0	.00	_	
w	420- 429	1 4	3.3	.95	4	1 4	10.5	.95	4	[]	0	.0	.00	0	1 0	.0	.00		
-	400- 409 410- 419	/ 5	5.8 4.2	1.00 .96	5 4	3	7.9 13.2	.98 .96	2		1	20.0	.00	0	1 0	.0	-00	_	
-	390- 399	3	2.5	1.01	1	3	7.9	1.01	1	ļ	0	.0	.00	0	0	.0	.00	_	si
*	380- 389	7	5.8	.98	3	2	5.3	.99	1	!	0	.0	.00	0	0	.0	-00	-	1
*	370- 379	5	4.2	.96	3	2	5.3	.90	1		0	.0	_00	0	0	.0	.01	0	1
*	360- 369	3	2.5	-99	3	1	2.6	1.04	1		0	.0	.00	0	0	.0	.0	0 0	1
*	350- 359	3	2.5	.86	2	1	2.6	.85	1		1	20.0	.00	0	0	.0	.0	0 0	1
*	340- 349	8	6.7	-95	7	1	2.6	.91	1		0	.0	.00	0	0	.0	.0	0 0	9

	************	*****	*****	******	*****	*****	*****	*****	*****	*****	*****	*****	*****	******	*****	******	****	**
4		1												1				*
18			ALL G	ROUPED		1	MA	LES			FEM/	ALES		SE)	K INDET	ERM I NABL	.E	*
	•																	. 9.
*	·					!		_						1				*
-	CLASS INTERVAL	#		MEAN		#		MEAN		#		MEAN		#		MEAN		*
_	UNITS = G	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	*
_	0- 19	5	5.7	.92	5	l 0	.0	00										1
*	20- 39	1 0	۰.ر	.00	0	l 0	.0	.00	0	0 0	.0 .0	.00	0	0 0	.0	-00	0	
	40- 59	0	.0	-00	0	l 0	.0	.00	0	0 0	.0	-00	0	1 0	.0	.00 .00	0	Ī
*	60- 79	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	n	*
*	80- 99	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	ก	*
*	100- 119	i 0	.0	.00	0	, o	_0	.00	0	1 0	.0	-00	0	1 0	.0	.00	0	*
*	120- 139	1	1.1	.83	1	,	.0	-00	0	1 0	.0	-00	0	1 0	.0	.00	0	
*	140- 159	1 0	.0	.00	0	0	.0	_00	0	0	.0	.00	0	1 0	.0	-00	٥	
*	160- 179	2	2.3	.91	2	i o	.0	.00	0	0	.0	-00	0	0	.0	.00	0	
*	180- 199	3	3.4	.97	3	j o	.0	.00	0		.0	.00	0	l o	.0	.00	0	•
w	200- 219	j 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	_00	0	*
*	220- 239	5	5.7	.93	5	0	.0	.00	0	jo	.0	-00	0	1	33.3	.95	1	•
*	240- 259	1 1	1.1	.97	1	0	-0	.00	0	j o	.0	.00	0	0	.0	.00	0	•
*	260- 279	4	4.5	.92	4	1	3.1	.92	1	0	.0	-00	0	0	.0	.00	0	•
*	280 - 299	3	3.4	1.22	3	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	*
*	300- 319	7	8.0	.94	7	1	3.1	.93	1	1	33.3	.93	1	1	33.3	.93	1	
*	320- 339	5	5.7	.87	5	2	6.3	.90	2	0	.0	-00	0	0	.0	.00	0	*
*	340- 359	4	4.5	1.00	4	0	.0	.00	0	0	.0	.00	0	1	33.3	.95	1	*
*	360- 379	1	1.1	.91	1	1	3.1	.91	1	0	.0	.00	0	0	.0	.00	0	*
*	380- 399	4	4.5	.92	4	1	3.1	.85	1	0	.0	-00	0	0	.0	.00	0	•
*	400- 419	3	3.4	1.00	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	420- 439	2	2.3	1.21	2	1	3.1	1.11	1	0	.0	-00	0	0	.0	.00	0	•
*	440- 459	1	1.1	.95	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	•
*	460- 479	2	2.3	.93	2	1	3.1	-90	1	0	.0	.00	0	0	.0	.00	0	*
*	480- 499	1	1.1	.91	1	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
*	500- 519	1	1.1	1.04	1	1	3.1	1.04	1	0	.0	.00	0	0	.0	-00	0	*
*	520- 539	1	1.1	.93	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	540- 559	1	1.1	1.08	1	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
	560- 579	1	1.1	.99	1	1	3.1	.99	1	0	.0	.00	0	0	.0	.00	0	*
	580- 599	1	1.1	1.02	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
_	600- 619	2	2.3	.90	2	2	6.3	.90	2	0	.0	.00	0	0	.0	.00	0	*
-	620- 639 640- 659	2	2.3	.99	2		3.1	1.01	1	0	.0	.00	0	0	.0	.00	0	
_	,	1	1.1	.93 .93	1	1	3.1	.93	1	0	.0	.00	0	0	.0	.00	0	
-	660- 679 680- 699	2 2	2.3	1.05	2	1 1	3.1 3.1	.86 1.04	1	0 0	.0 .0	.00	0	0	.0	.00	0	
	700- 719	2	1.1	.97	1	1	3.1	.97	1	l 0	.0	.00	0	0 0	.0	-00	0	
	720- 739	' 1	1.1	.96	1 1	' 1	3.1	.96	1		.0	.00	0	0	.0 .0	.00 .00	0	
	740- 759	1	1.1	.99	1	1	3.1	.99	1	0	.0	.00	0	0	.0	.00	0	
	760- 779	1	1.1	1.00	1	1	3.1	1.00	1	0	.0	.00	0	0	.0	.00	0	
w	780- 799	1	1.1	1.07	1	1	3.1	1.07	1	0	.0	.00	0	0	.0	.00	0	#
*	800- 819	0	.0	.00	0	0	.0	.00	0		.0	.00	0	0	.0	.00	0	*
*	820- 839	2	2.3	.95	2	2	6.3	.95	2	0	.0	.00	0		.0	.00	0	*
*	840- 859	2	2.3	1.04	2	2	6.3	1.04	2	0	.0	.00	0	0	.0	-00	0	*
*	860- 879	0	.0	_00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	100
*	880- 899	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	•
*	900- 919	1	1.1	1.02	1	1	3.1	1.02	1	0	.0	.00	0	0	.0	.00	0	•
*	920- 939	1	1.1	.94	1	1	3.1	.94	1	0	.0	.00	0	0	.0	.00	0	*
						•				-				-				

*	940- 959	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	*
*	960- 979	1 1	1.1	1.08	1	1 1	3.1	1.08	1	jo	.0	.00	0	0	.0	.00	0	ŵ
*	980- 999	0	.0	.00	0	0	.0	.00	0	1 0	.0	_00	0	0	-0	.00	0	*
*	1000-1019	2	2.3	.99	2	1	3.1	1.07	1	ĺ	.0	.00	0	j o	.0	.00	0	*
*	1020-1039	0	.0	-00	0	0	.0	.00	0	jo	.0	.00	0	0	.0	.00	0	*
*	1040-1059	1	1.1	.96	1	0	.0	.00	0	į o	.0	.00	0	0	_0	.00	0	*
*	1060-1079	0	.0	.00	0	0	.0	.00	0	į o	.0	.00	0	j 0	.0	.00	0	*
*	1080-1099	0	.0	.00	0	0	.0	.00	0	1 0	.0	-00	0	0	.0	.00	0	*
*	1100-1119	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1120-1139	0	.0	-00	0	0	.0	.00	0	1 0	.0	.00	0	0	_0	.00	0	*
*	1140-1159	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	_0	.00	0	*
*	1160-1179	1	1.1	1.09	1	1	3.1	1.09	1	1 0	.0	.00	0	0	.0	.00	0	*
*	1180-1199	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
w	1200-1219	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1220-1239	1	1.1	1.09	1	1	3.1	1.09	1	0	.0	.00	0	0	.0	.00	0	*
*	1240-1259	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1260-1279	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1280-1299	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1300-1319	1	1.1	.98	1	0	.0	.00	0	1 1	33.3	.98	1	0	.0	.00	0	*
*	1320-1339	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1340-1359	1	1.1	1.01	1	0	.0	-80	0	1	33.3	1.01	1	0	.0	-00	0	*
*	1360-1379	1	1.1	.93	1	1	3.1	.93	1	0	.0	.00	0	0	.0	.00	0	*
*	••••••																	.*
*	TOTALS	88	100.0	-	88	32	100.0	-	32	3	100.0	-	3	3	100.0	-	3	*
*-	• • • • • • • • • • • • • • • • • • • •																	*
*						1												*
*	COND. FACTORS	1	MEAN :		9728	1	MEAN :	-	9772		MEAN		9767		MEAN =		9440	*
*	SUMMARY		STDDEV :		1286		STDDEV :		0757		STDDEV		0391		STDDEV =		0086	*
*			COEVAR :		2199		COEVAR :	= 7.	7469		COEVAR	= 4.	0019		COEVAR =		9068	*
*			STDERR :		0117		STDERR :		0123		STDERR		0175		STDERR =		0049	*
*			N :	= 88			N :	= 32			N	= 3		1	N =	= 3		*
*		ļ				ļ												-#
*	MEDIAN SIZE			96 G				01 G				11 G		1		11 G		*
**	******	*****	****	*****	****	****	***	*****	****	****	****	*****	****	****	*****	*****	****	企业

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = WHSC

LOCATION= ATHAB SITE(S)= 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 83

LENGTH FREQUENCY DISTRIBUTION

*********		*****	******	*****	*******	*****	*****	*****	******	*****	******	*****	******	*****	*****	***
		ALL G	ROUPED		 		LES			FEM	ALES		:		ERMINABI	E

CLASS INTERVAL	#		MEAN		#	•	MEAN	81	#		MEAN		#		MEAN	
UNITS = MM	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	*	CF	N
50- 59	1 1	.9	.97	1	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0
60- 69	1	.9	1.26	1	0	.0	.00	0	jo	.0	.00	0	0	.0	.00	0
70- 79	0	.0	.00	0	0	.0	.00	0	j o	.0	.00	0	0	.0	.00	0
80- 89	2	1.9	1.28	1] 0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
90- 99	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
100- 109	0	.0	.00	0	0	.0	.00	0	jo	.0	-00	0	0	.0	.00	0
110- 119	0	_0	.00	0	0	.0	.00	0	0	-0	.00	0	0	.0	.00	0
120- 129	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
130- 139	0	.0	.00	0	0	.0	.00	0	j o	-0	.00	0	0	-0	.00	0
140- 149	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
150- 159	0	.0	.00	0	0	.0	.00	0	0	-0	.00	0	0	.0	.00	0
160- 169	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
170- 179	0	.0	.00	0	0	.0	.00	0	0	٠0	.00	0	0	.0	.00	0
180- 189] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
190- 199	0	.0	-00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
200- 209	0	-0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
210- 219	1 1	.9	1.16	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
220- 229	1	-9	1.12	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
230- 239	0	.0	-00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
240- 249	1	-9	1.23	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
250- 259] 0	_0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
260- 269	1 1	-9	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
270- 279	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
280- 289	3	2.8	1.38	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
290- 299	10	9.3	1.32	9	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
300- 309	7	6.5	1.32	6	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
310- 319	3	2.8	1.37	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
320- 329	3	2.8	1.31	3	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
330- 339	3	2.8	1.29	3	0	.0	-00	0	0	.0	-00	0	0	.0	.00	0
340- 349	3	2.8	1.32	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
350- 359	5	4.6	1.20	5	1	5.3	1.23	1	1	16.7	1.22	1	0	.0	.00	0
360- 369	1	.9	1.21	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0

*	MEDIAN SIZE		40)3 MM		 	43	 2 M M		 	44	1 MM) MM		*
*			N =	95		!	N =	18			N =	- 6		1	N =	0		*
*		}	STDERR =	= "(0178		STDERR =	.0	0260	ĺ	STDERR =		591	j	STDERR =	.0	0000	*
*		!	COEVAR =	12.8	8880	ĺ	COEVAR =	7.7	7851	ĺ	COEVAR =	9.9	571	İ	COEVAR =	.0	0000	
*	SUMMARY		STDDEV =	ů.	1846	1	STDDEV =	• '	1135		STDDEV =	1	448	İ	STDDEV =	.0	0000	*
* (COND. FACTORS	! 	MEAN =	= 1.4	4327	 	MEAN =	1.4	4585		MEAN :	: 1.4	541	 	MEAN ≃	.0	0000	*
	TOTALS	108 	100.0		95 	19 	100.0		18	6	100.0	-	6	0	.0			.*
*	TOTALC		400.0				400.0			ļ	400.0			ļ				*
*	530- 539	1	.9	2.09	1	0	.0	.00	0	į o	.0	.00	0	0	.0	.00	0	*
*	520- 529	1	.9	1.39	1	0	.0	.00	0			.00	0	0	.0	.00	0	*
*	510- 519	3	2.8	1.61	3	0	.0	.00	0	0	• • •	.00	0	1 0	.0	.00	0	*
*	500- 509	1 1	.9	1.89	1	1 0	.0	-00	0	1 0	• • •	.00	0	1 0	.0	.00	0	*
*	490- 499	1 4 1 3	2.8	1.69	2	1 0	.0	.00	0	1 0		1.48	0	0	.0 .0	.00	0	*
*	470- 479	0	3.7	1.50	4	U	.0	-00	0] 1 1	16.7 16.7	1.46	1	0	.0	.00	0	*
*	470- 479	2	1.9 5.6	1.46	2 5	0 0	.0 .0	.00	0	0		.00	0	0	.0	.00	0	*
-	450- 459 460- 469	11	10.2	1.52	11	5	26.3	1.47	5	0	•	.00	0	0	.0	.00	0	*
-	440- 449	6	5.6	1.51	6	2	10.5	1.44	2	1		1.37	1	0	.0	.00	0	*
*	430- 439	3	2.8	1.53	3	3	15.8	1.53	3		•	.00	0	0	.0	.00	0	*
*	420- 429	8	7.4	1.51	8	2	10.5	1.47	2	1 1	16.7	1.58	1	0	.0	.00	0	*
*	410- 419	2	1.9	1.50	2	1	5.3	1.49	1	(0.0	.00	0	j o	.0	.00	0	*
*	400- 409	4	3.7	1.41	3	3	15.8	1.39	2	1	.0	.00	0	j o	.0	.00	0	*
*	390- 399	3	2.8	1.33	3	1	5.3	1.33	1	j	0.0	.00	0	i o	.0	.00	0	*
*	380- 389] 2	1.9	1.61	1	0	.0	.00	0	i 1	16.7	1.61	1	i o	.0	.00	0	*
*	370- 379	2	1.9	1.51	2	1	5.3	1.64	1	1 (0.0	.00	0	1 0	.0	-00	0	*

-

-	-	-	-	-	-	-	•	-	•	-	•	۰	-	-	-	-	•	-	-	-	-	-	-	-	-	٠	-	-	

**********	*****	*****	*****	*****	******	*****	*****	*****	*****	*****	******	*****	******	*****	*****	***
	1								!							
	1	ALL G	ROUPED			MA	LES		1	FEM	ALES		SEX		ERMINAB	LE
					1								1			
CLASS INTERVAL	 #		MEAN		 #		MEAN		 #		MEAN		 #		MEAN	
UNITS = G	FISH	%	CF	N	FISH	%	CF	N	#	%	CF	N	FISH	%	CF	N
011.10																
0- 19	1 3	3.2	1.17	3	1 0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	
20- 39	i 0	.0	-00	0	0	.0	.00	0	1 0	.0	-00	0	0	.0	+00	
40- 59	0	.0	-00	٥	1 0	.0	.00	0	0	.0	_00	0	1 0	.0	.00	
60- 79	0	.0	-00	0	1 0	.0	.00	0	. 0	.0	.00	0	0	.0	-00	
80- 99	1 0	.0	-00	0	1 0	.0	-00	0	1 0	.0	.00	0	1 0	.0	-00	
100- 119	1 1	1.1	1.16	1	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	
120- 139	1 1	1.1	1.12	1	1 0	.0	.00	0	1 0	.0	-00	0	0	.0	.00	ì
140- 159	l 0	_0	-00	0	1 0	.0	.00	0	0	.0	.00	0	0	.0	.00	ì
160- 179	1 1	1.1	1.23	1	0	.0	.00	0	i o	.0	.00	0	0	.0	.00	
180- 199		.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	-00	ì
200- 219	, o	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	1 0	.0	-00	ì
220- 239	1 0	.0	.00	0	i 0	.0	.00	0	1 0	.0	-00	0	1 0	.0	.00	ì
240- 259	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	
260- 279	0	.0	+00	0	1 0	.0	+00	0	I 0	.0	.00	0	1 0	.0	.00	,
280- 299	I 0	.0	.00	0	1 6	.0	.00	0	0	.0	.00	0	0 0	.0	.00	ľ
300- 319	l 2	2.1	1.28	2	0 1	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	ľ
320- 339	1 - 1 5	5.3	1.26	5	0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	·
340- 359	2	2.1	1.24	2	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	-00	Ì
360- 379	15	5.3	1.38	5	1 0	.0	400	0	1 0	.0	.00	0	0	.0	-00	
380- 399	1 2	2.1	1.45	2	1 0	.0	400	0	1 0	.0	.00	0	1 0	.0	.00	
400- 419	1 2	2.1	1.15	2	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	·
420- 439	1 1	1.1	1.27	1	1 0	.0	+00	0	1 0	.0	.00	0	1 0	.0	-00	ľ
440- 459	, . I 3	3.2	1.30	3	1 0	.0	.00	0	1 0	.0	.00	0	l 0	.0	.00	ì
460- 479	1 1	1.1	1.22	1	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	ì
480- 499	, , i 1	1.1	1.36	1	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	
500- 519	1 0	.0	.00	0	1 0	.0	.00	. 0	1 0	.0	.00	0	1 0	.0	.00	Ì
520- 539	2	2.1	1.37	2	1 0	.0	.00	. 0	1 0	-0	.00	0	l 0	.0	.00	Ì
540- 559	1 2	2.1	1.22	2	1 1	5.6	1.23	1	1 1	16.7	1.22	1	1 0	.0		,
560- 579	1 1	1.1	1.32	1		.0	400	0	, . 0	.0	.00	0	1 O		.00	ì
580- 599	i 2	2.1	1.26	2	1 0	.0	.00	0	0	_0	-00	0	1 0	.0 .0	.00	
600- 619	i 0	_0		0	l 0	.0	+00	0	1 0	.0		0	0			ľ
620- 639	l 0	-0	.00 .00	0	, O	.0	-00	0	1 0	.0	.00	0] 0	.0 .0	.00	
640- 659	l 0	.0	-00	0	l 0	.0	-00	0	1 0	.0	.00	0	l 0	.0	.00	,
660- 679	l 0	.0	-00	0	l 0	.0	-00	0	0	.0	.00	0	1 0	.0	.00	(
680- 699	l 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	.00	,
700- 719	l 0	.0	_00	0	°	.0	.00	0	0	.0	.00	0	i 0	.0	.00	ľ
720- 739	1 1	1.1	1.39	1	1 0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	·
740- 759	, . I 0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	,
760- 779) °	.0	.00	0	0	.0	.00	0	, o	.0	.00	0	1 0	.0	+00	
780- 799	2	2.1	1.32	2	1 1	5.6	1.33	1	1 0	.0	.00	0	l 0	.0	.00	(
800- 819	0	.0	.00	0	, . 0	.0	.00	0	1 0	.0	.00	0	0 0	.0	.00	(
820- 839	0	.0	.00	0	l 0	.0	-00	0	1 0	.0	+00	0	l 0	.0	.00	Ì
840- 859) 1	1.1	1.35	1	i 0	.0	-00	0	1 0	.0	.00	0	0 0	.0	.00	ľ
860- 879	' 0	.0	.00	0	l 0	.0	-00	0	1 0	.0	.00	0	l 0	.0	.00	,
880- 899	1 2	2.1	1.62	2	1 1	5.6	1.64	1	1	16.7	1.61	1	1 0	.0	.00	ď
900- 919	2	1.1	1.40	1	, . ! 1	5.6	1.40	1	l 0	.0	_00	0	i o	.0	.00	1
920- 939	1 1	1.1	1.39	1	l 1	5.6	1.39	1	l 0	.0	.00	0	I 0	.0	.00	,

*	940- 959	1 1	1.1	1.45	1	0	.0	-00	0	0	.0	.00	0	1 0	.0	.00	0	*
*	960- 979	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	j o	.0	.00	0	*
*	980- 999	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	*
*	1000-1019	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	j 0	.0	.00	0	*
*	1020-1039	1	1.1	1.39	1	1 1	5.6	1.39	1	0	.0	.00	0	0	.0	.00	0	*
*	1040-1059	2	2.1	1.43	2	1	5.6	1.49	1	0	.0	.00	0	0	.0	-00	0	*
*	1060-1079	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
*	1080-1099	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1100-1119	3	3.2	1.44	3	1	5.6	1.37	1	0	.0	.00	0] 0	.0	.00	0	*
*	1120-1139	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1140-1159	[1	1.1	1.55	1	1	5.6	1.55	1	0	.0	.00	0	0	.0	.00	0	*
**	1160-1179	1	1.1	1.37	1	0	.0	-00	0	1	16.7	1.37	1	0	.0	.00	0	*
*	1180-1199	1	1.1	1.54	1	0	.0	.00	0	0	.0	.00	0	0	-0	.00	0	*
*	1200-1219	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1220-1239	2	2.1	1.61	2	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1240-1259	2	2.1	1.46	2	0	.0	-00	0	1	16.7	1.58	1	0	.0	.00	0	*
*	1260-1279	1	1.1	1.40	1	1	5.6	1.40	1	0	.0	-00	0	0	.0	.00	0	*
*	1280-1299	1 1	1.1	1.63	1] 1	5.6	1.63	1	0	.0	-00	0	0	.0	.00	0	*
*	1300-1319	3	3.2	1.45	3	2	11.1	1.46	2	0	.0	.00	0	0	.0	.00	0	*
*	1320-1339	2	2.1	1.56	2	1 1	5.6	1.58	1	0	.0	.00	0	0	.0	-00	0	*
*	1340-1359	4	4.2	1.44	4	3	16.7	1.43	3	0	.0	.00	0	0	.0	-00	0	*
*	1360-1379	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1380-1399	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
	1400-1419] 0	.0	.00	0	0	.0	.00	0] 0	.0	-00	0	0	.0	.00	0	*
	1420-1439	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	-0	.00	0	*
*	1440-1459 1460-1479] 3 0	3.2 .0	1.56	3 0	0 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1480-1479	1 0	.0	.00	0	1 0	.0	.00	0	0 0	.0	.00	0	0	.0	.00	0	*
*	1500-1519	1 1	1.1	1.49	1	1 0	.0	.00	0	1 0	.0	.00 .00	0	0 ! 0	.0	.00	0	*
*	1520-1579	1 0	-0	.00	0	l 0	.0	.00	0	0	.0	.00	0	0 0	.0	.00 .00	0	*
*	1540-1559	1 1	1.1	1.65	1	1 0	.0	.00	0	1 0	.0	.00	0	i 0	.0	.00	0	*
*	1560-1579	1 1	1.1	1.64	1	1 1	5.6	1.64	1	1 0	.0	.00	0	1 0	.0	.00	0	*
*	1580-1599	1 2	2.1	1.58	2	l 0	.0	.00	0	1 1	16.7	1.46	1	1 0	.0	.00	0	*
*	1600-1619	1 1	1.1	1.54	1	0	.0	.00	0		.0	-00	0	0	.0	.00	0	*
*	1620-1639	0	.0	.00	0	0	.0	.00	0	. 0	.0	.00	0	0	.0	.00	0	*
*	1640-1659	1 1	1.1	1.57	1	0	.0	.00	0	. 0	.0	.00	0	0	.0	.00	0	*
*	1660-1679	i o	.0	-00	0	0	_0	.00	0	İ	.0	.00	0	0	.0	.00	0	*
*	1680-1699	1 1	1.1	1.47	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1700-1719	1 1	1.1	1.76	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1720-1739	1	1.1	1.48	1	0	.0	.00	0	j 1	16.7	1.48	1	0	.0	.00	0	*
*	1740-1759	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1760-1779	1	1.1	1.53	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1 78 0-1 799	1 1	1.1	1.53	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C	w
*	1800-1819	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1820-1839	1	1.1	1.71	1	0	.0	.00	0	0	.0	.00	0	0	-0	.00	0	w
*	1840-1859	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1860-1879	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	rite:
*	1880-1899	1	1.1	1.75	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1900-1919	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	-0	.00	0	*
*	1920-1939	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1940-1959	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1960-1979	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1980-1999 2000-2019	2	2.1	1.52	2	0 0	.0	.00	0	0 n	.0 .0	.00	0	0	.0	.00	0	*
*	2000-2019	0	.0	.00	0	U 0	.0 .0	-00	0	0 0		.00	0	0	.0	.00	0	
*	2020-2039) U	.0 2.1	.00 1.60	0 2)	.0	.00 .00	0	U 0	.0 .0	.00 .00	0	0 0	.0	.00	0	-
*	2060-2079	² 0	.0	-00	0	l 0	.0	.00	0	0 0	.0	.00	0	U 0	.0 .0	.00	0	*
*	2080-2079	1 0	.0	.00	0) 0 0	.0	.00	0	l 0	.0	.00	0	l 0	.0	.00	0	*
*	2100-2119	1 0	.0	-00	0	0	.0	.00	0	l 0	.0	.00	0	0 0	.0	.00	0	*
*	2120-2119	1 0	.0	-00	0	0	.0	-00	0	l 0	.0	.00	0	l 0	.0	.00	_	*
		' '			- 1	, ,			-	, ,			•			.00	•	

* * *	3180-3199 3200-3219 TOTALS	0 1 95	.0 1.1 100.0	.00 2.09 -	0 1 	0 0	.0 .0 100.0	.00	0 0	0 0 6	.0 .0 100.0	.00 .00	0 0 6	0 0	.0	.00 .00	0	*
*	3120-3139 3140-3159 3160-3179	0 0	.0	.00 .00	0 0 0	0 0	.0 .0 .0	.00	0 0 0	0	.0 .0 .0	.00	0 0	0 0 0 0	.0 .0	.00	0 0 0	* *
*	3060-3079 3080-3099 3100-3119	0 0	.0 .0 .0	.00 .00	0 0 0	0 0 0	.0 .0 .0	.00	0 0 0	0 0	.0 .0 .0	.00 .00	0 0	0 0 0	.0 .0 .0	.00	0 0 0	* *
* *	3000-3019 3020-3039 3040-3059	0	.0	.00	0	0 0	.0	.00	0 0 0	0 0	.0	.00	0 0	0 0	.0	.00	0	* *
*	2940-2959 2960-2979 2980-2999	0 0	.0	.00	0	0 0	.0 .0	.00	0	0 0	.0	.00	0	0 0	.0	.00	0	* *
*	2880-2899 2900-2919 2920-2939	0 0	.0 .0	.00	0 0 0	0 0 0	.0 .0 .0	.00	0 0 0	0	.0 .0 .0	.00 .00 .00	0	0 0 0	.0 .0 .0	.00 .00	0	*
*	2820-2839 2840-2859 2860-2879	0 0 0	.0 .0	.00 .00	0 0 0	0 0 0	.0 .0 .0	.00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0 0	0 0 0	.0 .0 .0	.00 .00	0	*
*	2760-2779 2780-2799 2800-2819	0 0 0	.0 .0	.00 .00	0 0 0	0 0	.0 .0 .0	.00	0 0 0	0 0	.0 .0 .0	.00 .00	0	0 0 0	.0 .0 .0	.00 .00	0	*
*	2700-2719 2720-2739 2740-2759	0 0 0	.0 .0 .0	.00 .00	0 0 0	0 0	.0	.00	0 0 0	0 0	.0 .0 .0	.00	0	0 0	.0 .0 .0	.00 .00	0	*
*	2660-2679 2680-2699	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	
*	2600-2619 2620-2639 2640-2659	0 0	.0 .0	.00	0 0 0	0	.0 .0 .0	.00	0	0	.0 .0	.00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0	*
*	2540-2559 2560-2579 2580 - 2599	0 0 0	.0 .0	.00	0	0 0 0	.0 .0 .0	.00	0 0 0	0 0 0	.0 .0 .0	.00	0	0 0 0	.0 .0 .0	.00 .00	0	*
*	2500-2519 2520-2539	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	2440-2459 2460-2479 2480-2499	0 0	.0 .0 1,1	.00 .00	0 0 1	0 0	.0 .0 .0	.00	0	0 0	.0 .0	.00	0	0 0 0	.0 .0	.00 .00	0	*
*	2380-2399 2400-2419 2420-2439	0 0	.0 .0	.00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0	*
*	2340-2359 2360-2379	0	.0	.00	0	0	.0	.00	0	0	.0	.00 .00 .00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0 0 0	*
* *	2280-2299 2300-2319 2320-2339	1 1 0	1.1 .0	1.73	1 0	0 0	.0	.00 .00	0	0 0 0	.0	.00	0	0	.0	.00	0	*
*	2220-2239 2240-2259 2260-2279	0 0 1	.0 .0	.00 .00	0 0 1	0 0 0	.0	.00	0	0	.0	.00	0 0	0	.0	.00	0	*
* *	2160-2179 2180-2199 2200-2219	0	.0 .0	.00	0 0 0	0	.0 .0	.00	0 0 0	0 0	.0 .0 .0	.00	0 0 0	0 0 0	.0 .0 .0	.00 .00	0	*

* * *	COEVAR = 12.8880 STDERR = .0178 N = 95	COEVAR = 7.7851 STDERR = .0260 N = 18	COEVAR = 9.9571 STDERR = .0591 N = 6	COEVAR = .0000 * STDERR = .0000 * N = 0 *
* MEDIAN SIZE	1046 G	1261 G	1241 G	0 G *

:

LENGTH FREQUENCY SUMMARY FOR LARGE-SIZED FISH SITES AND ALL SAMPLING METHODS COMBINED

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = BURB

LOCATION= ATHAB SITE(S)= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 18

LENGTH FREQUENCY DISTRIBUTION

		ALL GRO	OUPED		 	MAL	ES 		 	FEMA	LES		SE	X INDETE	RMINAB	LE
CLASS INTERVAL	 #		MEAN		 #		MEAN		#		MEAN		#		MEAN	
UNITS = MM	FISH	%	CF	N	FISH	%	CF	N	FISH	%	CF	N	FISH	*	CF	N
100- 149	1	3.6	.60	1	0	.0	.00	0	0	.0	_00	0	0	.0	.00	0
150- 199	1	3.6	.58	1	0	.0	.00	0	0	.0	.00	0	j 1	100.0	.58	1
200- 249	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	j o	.0	.00	0
250- 299	1	3.6	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
300- 349	2	7.1	.61	2	1	16.7	.65	1	1	33.3	.56	1	jo	.0	.00	0
350- 399	j o	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
400- 449	6	21.4	-51	6	1	16.7	.52	1	0	.0	.00	0	0	.0	.00	0
450- 499	4	14.3	.56	4	3	50.0	.55	3	0	.0	.00	0	0	.0	.00	0
500- 549	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
550- 599	7	25.0	.51	6	0	-0	.00	0	2	66.7	-44	2	0	.0	.00	0
600- 649	1	3.6	.56	1	1	16.7	.56	1	0	.0	.00	0	0	.0	.00	0
650- 699	3	10.7	.55	3	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
700- 749	1	3.6	.59	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
750- 7 9 9	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	_0	.00	0
800- 849	1 	3.6	.54	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
TOTALS	28	100.0	-	26	6	100.0	- 1	6	3	100.0	•	3	1	100.0	-	1
					1								 	******		
COND. FACTORS		MEAN =		405	1	MEAN =		5616	1	MEAN =		782	İ	MEAN =	-	5800
SUMMARY		STDDEV =	-0	0681	1	STDDEV =	5.4	0542	!	STDDEV =	.0	736	1	STDDEV =	+	0000
		COEVAR =		900	1	COEVAR =	9.6	5460	1 (COEVAR =	15.3	898	1	COEVAR =	-	0000
		STDERR =	-0	129		STDERR =		0221		STDERR =	. ()425		STDERR =		0000
		N =	26			N =	6			N =	3		!	N =	1	
MEDIAN SIZE		299	MM		1	<i>ک</i> .۵	7 MM		[E47				47/	5 MM	

CLASS INTERVAL # UNITS = G	7.7 .0 7.7 11.5 11.5 7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0	MEAN CF .59 .00 .61 .46 .55 .55 .55 .59 .00 .63 .56 .49 .00 .52 .00 .00 .63	N 2 0 2 3 3 2 1 3 0 1 2 0 0 1 1 1 0 0 1 0 0 1	#	.0 .0 .0 16.7 .0 16.7 .33.3 16.7 .0 .0 .0 .0	MEAN CF	N 0 0 1 0 1 2 1 0 0 0 0 1 0 0 0 0 0	# FISH 0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN CF .00 .00 .56 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	N 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# FISH 0 0 0 0 0 0 0 0 0	% 100.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN CF .58 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	N
0- 99 2 100- 199 0 200- 299 2 300- 399 3 400- 499 3 500- 599 2 600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1700-1799 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2800-2899 0 2800-2899 0	7.7 .0 7.7 11.5 11.5 7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0	.59 .00 .61 .46 .55 .55 .55 .49 .00 .63 .56 .49 .00	2 0 2 3 3 2 1 3 0 1 2 0 0 1 1 1 0	0 0 1 0 1 2 1 0 0 0 0 0 0 0 0 0	.0 .0 16.7 .0 16.7 33.3 16.7 .0 .0 .0 .0	.00 .00 .65 .00 .52 .55 .55 .00 .00 .00 .00 .00	0 0 1 0 1 2 1 0 0 0 0 0 0		.0 .0 33.3 .0 .0 .0 .0 .0 .0 .0	.00 .00 .56 .00 .00 .00 .00 .00 .00 .00	0 0 1 0 0 0 0 0 0 0 0 0 0		100.0	.58 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	
100- 199 0 200- 299 2 300- 399 3 400- 499 3 500- 599 2 600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000- 1099 2 1100- 1199 0 1200- 1299 0 1300- 1399 1 1400- 1499 1 1500- 1599 1 1600- 1699 0 1700- 1799 1 1800- 1899 0 1900- 1999 0 2000- 2099 1 2100- 2199 0 2200- 2299 1 2300- 2399 0 2400- 2499 0 2500- 2599 0 2600- 2699 0 2700- 2799 0 2800- 2899 0 2900- 2999 0	7.7 .0 7.7 11.5 11.5 7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.59 .00 .61 .46 .55 .55 .55 .49 .00 .51 .51 .00 .00 .63 .56 .49 .00	0 2 3 3 2 1 3 0 1 2 0 0 1 1 1 0 1	0	.0 16.7 .0 16.7 33.3 16.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .65 .00 .52 .55 .00 .00 .00 .00 .00	0 1 0 1 2 1 0 0 0 0 0 0		.0 .0 33.3 .0 .0 .0 .0 .0 .0 .0	.00 .00 .56 .00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0 0 0 0		100.0 .0 .0 .0 .0 .0 .0 .0	.58 .00 .00 .00 .00 .00 .00 .00 .00 .00	
200- 299 2 300- 399 3 400- 499 3 500- 599 2 600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000- 1099 2 1100- 1199 0 1200- 1299 0 1300- 1399 1 1400- 1499 1 1500- 1599 1 1600- 1699 0 1700- 1799 1 1800- 1899 0 2000- 2099 1 2100- 2199 0 2200- 2299 1 2300- 2399 0 2400- 2499 0 2500- 2599 0 2600- 2699 0 2700- 2799 0 2800- 2899 0 2900- 2999 0	7.7 11.5 11.5 7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.61 .46 .55 .55 .55 .49 .00 .51 .51 .00 .00 .63 .56 .49 .00	2 3 3 2 1 3 0 1 1 2 0 0 1 1 1 0 1	1	16.7 .0 16.7 33.3 16.7 .0 .0 .0 .0 .0	.65 .00 .52 .55 .00 .00 .00 .00 .00 .00	1 0 1 2 1 0 0 0 0 0 0	1	33.3 .0 .0 .0 .0 .0 .0 .0 .0	.00 .56 .00 .00 .00 .00 .00 .00 .00 .00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00 .00 .00	
300- 399 3 400- 499 3 500- 599 2 600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1700-1799 1 1800-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2500-2599 0 2700-2799 0 2800-2899 0	11.5 11.5 7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.46 .55 .55 .55 .49 .00 .51 .51 .00 .00 .63 .56 .49 .00	3 3 2 1 3 0 1 2 0 0 1 1 1 0 1	0	.0 16.7 33.3 16.7 .0 .0 .0 .0 .0	.00 .52 .55 .55 .00 .00 .00 .00 .00 .00	0 1 2 1 0 0 0 0 0 0		.0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .44 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00 .00	
400- 499 3 500- 599 2 600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1700-1799 1 1800-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	11.5 7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.55 .55 .55 .49 .00 .51 .51 .00 .00 .63 .56 .49 .00	3 2 1 3 0 1 2 0 0 1 1 1 0 1	1	16.7 33.3 16.7 .0 .0 .0 .0 .0 .0	.52 .55 .55 .00 .00 .00 .00 .00 .00	1 2 1 0 0 0 0 0 0 0 0		.0 .0 .0 66.7 .0 .0 .0 .0	.00 .00 .00 .44 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00 .00	
500- 599 2 600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1700-1799 1 1800-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	7.7 3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.55 .55 .49 .00 .51 .51 .00 .00 .63 .56 .49 .00	2 1 3 0 1 2 0 0 1 1 1 0 1	2 1 0 0 0 0 0 0 0 0 0 0	33.3 16.7 .0 .0 .0 .0 .0 .0 .0	.55 .55 .00 .00 .00 .00 .00 .00 .00	2 1 0 0 0 0 0 0 1 0 0 0 0		.0 .0 66.7 .0 .0 .0 .0	.00 .00 .44 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00	
600- 699 1 700- 799 3 800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	3.8 11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.55 .49 .00 .51 .51 .00 .00 .63 .56 .49 .00	1 3 0 1 2 0 0 1 1 1 0 1	1	16.7 .0 .0 .0 .0 .0 .0 .0	.55 .00 .00 .00 .00 .00 .00 .00	1 0 0 0 0 0 0 0 0		.0 66.7 .0 .0 .0 .0 .0	.00 .44 .00 .00 .00 .00 .00	0 2 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00 .00	
700- 799 3 800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	11.5 .0 3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.49 .00 .51 .51 .00 .00 .63 .56 .49 .00	3 0 1 2 0 0 1 1 1 0		.0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .00 .56 .00	0 0 0 0 0 0 0 1 0	2 0 0 0 0 0 0 0	66.7 .0 .0 .0 .0 .0	.44 .00 .00 .00 .00 .00 .00	2 0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00	
800- 899 0 900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1700-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	.0 3.8 7.7 .0 .0 3.8 3.8 .0 3.8 .0	.00 .51 .51 .00 .00 .63 .56 .49 .00 .52	0 1 2 0 0 1 1 1 1 0 0 0		.0 .0 .0 .0 .0 .0 .0 .0 .0	.00 .00 .00 .00 .00 .00 .56 .00	0 0 0 0 0 0 1 0		.0	.00 .00 .00 .00 .00	0 0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00 .00	
900- 999 1 1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	3.8 7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.51 .00 .00 .63 .56 .49 .00 .52	1 2 0 0 1 1 1 0 1	0 0 0 0 0 1 0 0 0	.0 .0 .0 .0 .0 16.7 .0	.00 .00 .00 .00 .00 .56 .00	0 0 0 0 0 1 0		.0	.00 .00 .00 .00 .00	0 0 0 0 0 0 0 0		.0	.00 .00 .00 .00 .00	
1000-1099 2 1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	7.7 .0 .0 3.8 3.8 3.8 .0 3.8	.51 .00 .00 .63 .56 .49 .00 .52	2 0 0 1 1 1 0 0 0 0		.0 .0 .0 .0 16.7 .0 .0	.00 .00 .00 .00 .56 .00	0 0 0 0 1 0		.0	.00 .00 .00 .00	0 0 0 0 0		.0	.00 .00 .00 .00	
1100-1199 0 1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	.0 .0 3.8 3.8 3.8 .0 3.8 .0	.00 .00 .63 .56 .49 .00 .52	0 0 1 1 1 0 1 0	0 0 0 1 0 0 0	.0 .0 .0 16.7 .0 .0	.00 .00 .00 .56 .00	0 0 0 1 0	0 0 0	.0	.00 .00 .00 .00	0 0 0 0		.0 .0 .0 .0	.00 .00 .00 .00	
1200-1299 0 1300-1399 1 1400-1499 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	.0 3.8 3.8 3.8 .0 3.8 .0	.00 .63 .56 .49 .00 .52	0 1 1 1 0 1 0	0 0 1 0 0 0	.0 .0 16.7 .0 .0	.00 .00 .56 .00 .00	0 0 1 0 0	0 0 0	.0 .0 .0	.00 .00 .00	0 0 0 0	0 0 0	.0 .0 .0 .0	.00 .00 .00	
1300-1399 1 1400-1499 1 1500-1599 1 1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	3.8 3.8 3.8 .0 3.8 .0	.63 .56 .49 .00 .52 .00	1 1 1 0 1 0	0 1 0 0	.0 16.7 .0 .0	.00 .56 .00 .00	0 1 0 0	0 0	.0	.00 .00 .00	0 0 0	0 0	.0 .0 .0	.00 .00 .00	
1400-1499	3.8 3.8 .0 3.8 .0 .0	.56 .49 .00 .52 .00	1 1 0 1 0 0	1 0 0 0	16.7 .0 .0 .0	.56 .00 .00	1 0 0	0 0 0	.0 .0 .0	.00	0	0 0	.0 .0	.00	
1500-1599 1 1600-1699 0 1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	3.8 .0 3.8 .0 .0	.49 .00 .52 .00	1 0 1 0 0	0 0	.0 .0 .0	.00 .00	0	0	.0	.00	0	0	.0	.00	
1600-1699 0 1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	.0 3.8 .0 .0	.00 .52 .00	0 1 0 0	0 0	.0	.00	0 0	0	.0	.00	0	0	.0	.00	
1700-1799 1 1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	3.8 .0 .0	.52 .00 .00	1 0 0	0	.0	.00	0					1			
1800-1899 0 1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	.0 .0 3.8	.00	0	0	.0			0	.0	.00	0	1 0	.0	.00	
1900-1999 0 2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	.0 3.8	+00	0	1 -		.00	0					1 -			
2000-2099 1 2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	3.8			0				0	.0	.00	0	0	.0	.00	
2100-2199 0 2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0		.63	1		.0	.00	0	0	.0	.00	0	0	.0	.00	
2200-2299 1 2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	_		'	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
2300-2399 0 2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	- 00	
2400-2499 0 2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	3.8	.59	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
2500-2599 0 2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	-0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
2600-2699 0 2700-2799 0 2800-2899 0 2900-2999 0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	
2700-2799 0 2800-2899 0 2900-2999 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
2800-2899 0 2900-2999 0	.0	.00	0] 0	.0	+00	0	0	.0	.00	0	0	.0	-00	
2900-2999 0	.0	.00	0	1 0	.0	.00	0	0	.0	.00	0	0	.0	.00	
•	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
3000-3099 0 3100-3199 1	.0 3.8	.00 .54	0 1	0 0	.0 .0	.00	0	0 0	.0 .0	.00	0	0 D	.0 .0	.00 .00	
										•••••					
TOTALS 26	100.0	-	26	6	100.0	-	6	3	100.0	•	3	1	100.0	-	
OND. FACTORS	MEAN	= 114	5405	i	MEAN =		616	i	MEAN =	.4	782	i	MEAN =	5	580
SUMMARY	STDDEV	= ;	0681	İ	STDDEV =	()542	5	STDDEV =	.0	736		STDDEV =		000
į	COEVAR	= 12.	5900	1	COEVAR =	9.0	460	0	COEVAR =	15.3	898	1	COEVAR =	: _0	000
j	STDERR	= .	0129		STDERR =		221	5	STDERR =	.0	0425	:	STDERR =	(000
	M	= 26		!	N =	- 6		ļ	N =	3		!	N =	: 1	

NOTE SEPARATE ANALYSIS FOR EACH SPECIES ONLY (ALL LOCATIONS AND SITES GROUPED)***NOTE***

SPECIES = NRPK

LOCATION= ATHAB SITE(S)= 0.2 0.3

.3 0.4

0.5

0.6 0.8

0.9 1.0

LENGTH - WEIGHT ANALYSIS

NO. FISH NOT SEXED = 15

LENGTH FREQUENCY DISTRIBUTION

		ALL GR	ROUPED		 	MAL	ES		 	FEMA	LES		SE)	X INDETE	RMINAB	LE
CLASS INTERVAL	 #		MEAN		#		MEAN		#		MEAN		 #		MEAN	
UNITS = MM	FISH	%	CF	N	FISH	*	CF	N	FISH	*	CF	N	FISH	*	CF	N
150- 199	1	4.2	.59	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
200- 249	1	4.2	.63	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
250- 299	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
300- 349	1	4.2	-60	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
350- 399	2	8.3	-67	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0
400- 449	2	8.3	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	C
450- 499	0	.0	-00	0	1 0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
500- 549	3	12.5	₋ 70	2	0	.0	.00	0	2	28.6	.80	1	0	.0	.00	(
550- 599	4	16.7	-68	3	2	100.0	.71	2	1	14.3	.00	0	0	.0	.00	(
600- 649	1	4.2	.62	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	(
650- 699	1	4.2	_84	1	0	.0	.00	0	0	.0	-00	0	0	.0	.00	(
700- 749	3	12.5	.71	3	0	.0	.00	0	1	14.3	.57	1	0	.0	.00	(
750- 7 9 9	2	8.3	.83	2] 0	.0	.00	0	1	14.3	.77	1	0	.0	.00	(
800- 849	1	4.2	-64	1	0	.0	.00	0	1 1	14.3	.64	1	0	.0	.00	(
850- 899	1	4.2	.75	1	0	.0	.00	0	1	14.3	.75	1	0	.0	.00	(
900- 949	1 	4.2	.88		0 	.0	.00	0	0	.0	.00	0	0	.0	.00	(
TOTALS	24	100.0	-	19	 2 	100.0	-	2	7	100.0	-	5	0	.0	-	
					i				i				į			
COND. FACTORS		MEAN =		7093		MEAN =		7138	1	MEAN =		7034	l	MEAN =		0000
SUMMARY		STDDEV =	-	1099	•	STDDEV =		0694	!	STDDEV =		967		STDDEV =		0000
		COEVAR =			1	COEVAR =		7171	!	COEVAR =				COEVAR =		0000
		STDERR =)224	!	STDERR =		0490	!	STDERR =	100	365	ļ s	STDERR =		0000
		N =	19		 	N =	2			N =	5			N =	0	
MEDIAN SIZE		57	6 MM		 	57	6 MM		1	7 7	6 MM) MM	

*	******	*****	*****	*****	*****	****	*****	*****	*****	*****	*****	*****	*****	*****	*****	****	****	**
*		1				1								1				*
-		ļ	ALL G	ROUPED			MAI	LES		ļ	FEM	ALES		SEX	INDET	ERMINAB	LE	*
*																		**
*	CLASS INTERVAL	 #		MEAN		 #		MEAN		 #		MEAN		 #		MEAN		
w	UNITS = G	FISH	%	CF	N	" FISH	%	CF	N	" FISH	%	CF	N	" FISH	%	CF	N	sir.
*																		.*
w	0- 99	2	10.5	.61	2	0	.0	.00	0	0	.0	.00	0	i o	.0	.00	0	*
*	100- 199	0	.0	.00	0	j o	.0	.00	0	j o	.0	.00	0	j o	.0	.00	0	*
*	200- 299	1	5.3	.60	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	w
*	300- 399	1 1	5.3	.67	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	400- 499] 0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	w
*	500- 599	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	600- 699	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	w
*	700- 799	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	*
*	800- 899	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
Ī	900- 999	1	5.3	.60	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
-	1000-1099 1100-1199	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	-
	1200-1299	2 2	10.5 10.5	.71 .71	2	0	.0 100.0	.00 .71	0 2	1 0	20.0	.80	1	0	.0	.00	0	*
	1300-1399	2	.0	.00	0	1 0	.0	-00	0	1 0	.0 .0	.00 .00	0	[0 0	.0 .0	.00 .00	D	*
*	1400-1499	1 1	5.3	.62	1	1 0	.0	-00	0	l 0	.0	.00	0	l 0	.0	.00	0	*
*	1500-1599	, , I 0	.0	.00	0	1 0	.0	.00	0	l 0	.0	.00	0	l 0	.0	.00	0	*
*	1600-1699	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	0	, o	.0	.00	0	*
*	1700-1799	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1800-1899	0	.0	.00	0		.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	1900-1999	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	00	0	*
*	2000-2099	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	2100-2199	1	5.3	.57	1	0	.0	_00	0	1	20.0	.57	1	0	.0	.00	0	sk
*	2200-2299	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	2300-2399	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	2400-2499	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	=
*	2500-2599	1 1	5.3	.69	1	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
*	2600-2699	1	5.3	-84	1	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
Ī	2700-2799	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
	2800-2899 2900-2999	0	.0	.00 .00	0	C O	.0	.00 .00	0	0 0	.0	.00 .00	0	0 I n	.0	.00	n	Ξ.
*	3000-3099	0	.0	.00	0	l 0	.0 .0	.00	0	l 0	.0 .0	.00	0	l 0	.0 .0	.00 .00	0	·
*	3100-3199	0	.0	.00	0	l 0	.0	.00	0	l 0	.0	.00	0	l 0	.0	.00	0	*
*	3200-3299	0	.0	.00	0	0	.0	.00	0	l 0	.0	.00	0	l 0	.0	.00	0	*
*	3300-3399	2	10.5	.7 0	2	0	-0	.00	0	1 2	40.0	.70	2	0	.0	.00	0	*
*	3400-3499	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	3500-3599	1	5.3	-88	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	3600-3699	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	_0	.00	0	*
*	3700-3799	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	3800-3899	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	-0	-00	0	*
*	3900-3999	0	-0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	4000-4099	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
*	4100-4199	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	*
*	4200-4299	1	5.3	-90	1	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	4300-4399	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	4400-4499	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	*
*	4500-4599	0	.0	.00	0	0 0	.0	.00	0	0 0	.0	.00	0	0	.0	-00	0	*
-	4600-4699	0	.0	.00	0	l u	.0	.00	U	ı v	.0	.00	0	0	.0	-00	0	-

MEDIAN SIZE		1451	l G			1251	G			3326	G				D G	
	 	N =	19			N =	2		 	N =	5		 	N =	0	
	 	STDERR =		0224	l	STDERR =		0490	i i	STDERR =		7447 0365	1	STDERR =		0000
SUMMARY	i I	STDDEV = COEVAR =		1099 4896	1	STDDEV = COEVAR =		0694 7171	1	STDDEV = COEVAR =		0967 7447	1	STDDEV = COEVAR =		0000
COND. FACTORS		MEAN =		7093		MEAN =		7138		MEAN =		7034	1	MEAN =		0000
												•••••				
TOTALS	19	100.0	-	19	2	100.0	-	2	5	100.0	-	5	0	.0	-	0
6900-6999	1 	5.3	.88	1	0	.0	.00	0	0	.0	.00	0	0	.0	+00	0
6800-6899	0	.0	.00	0	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0
6700-6799	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0
6600-6699	0	.0	.00	0	0	.0	+00	0	0	.0	.00	0	0	.0	.00	(
6500-6599	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
6400-6499	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	ı
6300-6399	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	(
6200-6299	0	.0	.00	0	0	.0	-00	0	0	.0	.00	0	0	.0	.00	(
6100-6199	0	.0	-00	0	0	.0	.00	0	0	.0	.00	0	0	.0	+00	
6000-6099	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	1
5900-5999	j o	.0	.00	0	0	.0	.00	0	0	.0	.00	0	0	.0	.00	
5800-5899	0	.0	.00	0	j 0	.0	.00	0	j 0	.0	-00	0	io	.0	.00	(
5700-5799	i o	.0	.00	0	0	.0	.00	0	j 0	.0	_00	0	i o	.0	.00	(
5600-5699	i o	.0	_00	0	jo	.0	.00	0	io	.0	.00	0	0	.0	.00	(
5500-5599	0	.0	.00	0	i o	.0	.00	0	0	.0	.00	0	0	.0	.00	ĺ
5400-5499	0	.0	.00	0	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	
5300-5399	i o	.0	.00	0	0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	
5200-5299	1 0	.0	.00	0	. 0	.0	.00	0	1 0	.0	.00	0	1 0	.0	-00	
5100-5199	0	.0	.00	0	0	_0	-00	0	1 0	.0	.00	0	1 0	.0	.00	
5000-5099	1 1	5.3	.75	1	1 0	.0	.00	0	1 1	20.0	.75	1	1 0	.0	.00	·
4900-4999	1 0	.0	.00	0	1 0	.0	-00	0	1 0	.0	.00	0	1 0	.0	.00	
4800-4899	0	-0	.00	0	1 0	.0	.00	0	0	.0	.00	0	1 0	.0	.00	

APPENDIX E TRIBUTARY DATA

DRAINAGE - ATHABASCA RIVER

ROCKY RIVER

Date: 28 April 1992 Location: 11 434212

U 5888234

Confluence type:

Passable 5-15

Width at Mouth (m): Site Length (m):

150

Sampling Location (m): (upstream end from mouth) 230

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	ВО	CO	PE	GR	SI	SA
RF RF/BG R2 R3	40 10 10 40	0.2 0.3 0.6 0.3	10	40 40 60 60	20 20 40 40	40 30		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.09 0.7 High		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	5 6): 5 Grass, r (%): 10	Shrub Boulder			

WATER QUALITY

Conductivity (µS):
Water temperature (°C):
4.0

FISHERIES INVENTORY

Electrofisher Type: Type XII
Distance electrofished (m): 150
Effort (s): 499

SPECIES	NUMBER
MNWH	3

PRELIMINARY EVALUATION'

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Fair	Good	Fair	Fair	Fair
BLTR	Fair	Good	Fair	Fair	Fair
RNTR	Fair	Good	Good	Fair	Good
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Роог	Poor
BURB	Poor	Fair	Fair	Fair	Fair

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

DRAINAGE - ATHABASCA RIVER

SNAKE INDIAN RIVER

Date: 28 April 1992 Location: 11 434170

U 5893425

Confluence type: Passable
Width at Mouth (m): 5-30
Site Length (m): 120
Sampling Location (m): 320

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	BO	СО		PE	GR	SI	SA
RF R2 R3 F2	20 30 40 10	0.2 0.4 0.3 0.4		20 20 20 20 20			70 70 70 70	10 10 10 10	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.25 >1.5 Moderate		Bank erosion (%): Siltation (%): Bank cover (%): Type: Instream cover (%): Type:		15	ss, Shrub, Tree th, Debris			

WATER QUALITY

Conductivity (µS):
Water temperature (*C):

FISHERIES INVENTORY

Electrofisher Type: Type XII
Distance electrofished (m): 120
Effort (s): 421

SPECIES	NUMBER			
LKCH	1			
MNWH	5			

5.0

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Good	Good	Good	Good	Good
BLTR	Good	Good	Good	Good	Good
RNTR	Good	Good	Good	Good	Good
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
BURB	Fair	Good	Good	Good	Good

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

MOOSEHORN CREEK

Date: 28 April 1992 Location: 11 438617

U 5897074

Confluence type:

Impassable

Width at Mouth (m): Site Length (m): <5 150 175

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUBSTRATE TYPE (%)					
		(m)	ВО	CO		PE	GR	SI	SA
RF R3 F1 F3	5 20 5 70	0.1 0.4 1.5 0.5				20	80	100 100 100	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low >1.0 1.8 Slow		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	6): r (%):	5 50 80 Shrub 50 Debris	, Tree	•		

WATER QUALITY

Conductivity (µS):	_			
Water temperature (°C):	3.0			
		 		 ·

FISHERIES INVENTORY

Electrofisher Type:	Type XII		
Distance electrofished (m):	150		
Effort (s):	283		
SPECIES	NUMBER	٦	
n/a		1	
		1	
			

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Poor Poor Poor Poor Poor Poor	Good Good Good Poor Poor Good	Poor Poor Poor Poor Poor Poor	Fair Fair Fair Fair Poor Poor Fair	Fair Fair Fair Fair Poor Poor Fair

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

FIDDLE RIVER

Date: 28 April 1992 Location: 11 442500

U 5897925

Confluence type:

Impassable

Width at Mouth (m): Site Length (m):

15-30 140 450

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUBSTRATE TYPE (%)				
		(m)	ВО	CO	PE	GR	SI	SA
RF RF/BG RA/BG R3	20 30 30 20	0.1 0.2 0.3 0.3	10 10 10 10	60 60 60 60		30 30 30 30 30		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.71 0.50 High		Bank erosion (%): 10 Siltation (%): 0 Bank cover (%): 0 Type: Instream cover (%): 10 Type: Boulder					

WATER QUALITY

Conductivity (µS):

Water temperature (°C):

5.0

FISHERIES INVENTORY

Electrofisher Type: Type XII
Distance electrofished (m): 150
Effort (s): 410

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Good	Good	Good	Poor	Fair
BLTR	Poor	Good	Good	Роог	Fair
RNTR	Poor	Good	Good	Poor	Fair
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Good	Poor	Poor	Fair
				}	
1					
L			<u></u>		

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

SOLOMON CREEK

28 April 1992 Date:

11 444457 Location:

U 5910638

Confluence type: Width at Mouth (m): Passable 10-15

Site Length (m):

40 200

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUBSTRATE TYPE (%)				
		(m)	ВО	СО	PE	GR	SI	SA
RF R3 P1 P2 F3	20 30 5 25 20	0.1 0.3 0.7 0.4 0.4		10		90 50 50	50 100 100 50	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low >1.0 1.2 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	70 %): 30 Tree	5			

WATER QUALITY

Conductivity (µS): Water temperature (°C): 6.0

FISHERIES INVENTORY

Electrofisher Type: Type XII Distance electrofished (m): 40 Effort (s): 242

SPECIES	NUMBER
BKTR	2
	l

PRELIMINARY EVALUATION⁴

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB BKTR	Good Poor Fair Good Poor Poor Good Good	Good Good Good Good Poor Poor Good Good	Good Poor Poor Good Poor Poor Good Good	Poor Poor Poor Good Poor Poor Poor Good	Good Poor Poor Good Poor Poor Good Good

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

MASKUTA CREEK

Date:

27 April 1992 Location: 11 456680

U 5914585

Confluence type:

Passable

Width at Mouth (m): Site Length (m):

<5.0 100

Sampling Location (m):

165

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	ВО	CO		PE	GR	SI	SA
RF RF/BG RA/BG R3	10 10 10 70		20 20	100 80 80 80			20		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	High 1.0 0.6 High		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	%): r (%):	30 5 20 Shrub 20 Depth, B	oulder, Deb	oris, Turbulence		

WATER QUALITY

Conductivity (µS):

Water temperature (°C):

6.0

FISHERIES INVENTORY

Electrofisher Type:

Type XII Distance electrofished (m): 100

Effort (s):

338

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Good	Good	Good	Good	Good
MNWH	Poor	Good	Poor	Good	Fair
BLTR	Poor	Good	Poor	Good	Fair
RNTR	Good	Good	Good	Good	Good
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Good	Good	Good	Good

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

OLDMAN CREEK

Date: 11 June 1992

Location: 11 489542

U 5955202

Confluence type: Width at Mouth (m):

Impassable <5.0

Site Length (m): Sampling Location (m): 100 100

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
	1	(m)	ВО	CO	PE	GR	SI	SA
RF/BG RA/BG	20 80	1.0 0.4	50 50	50 50				
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 2.0 >1.5 High		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	5 %): 0 er (%): 90	der, Turbulence			

WATER QUALITY

Conductivity (µS):	280		
Water temperature (°C):	12.0		

FISHERIES INVENTORY

Electrofisher Type:	Type XII/SR-18
Distance electrofished (m): Effort (s):	75 1380
Direct (a).	1500
SPECIES	NUMBER
MNWH	8
RNTR	1
BKTR	3
LNDC	2
LNSC	11

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB BKTR	Fair Fair Fair Good Poor Fair Poor Good	Good Good Good Poor Poor Poor Good	Fair Poor Poor Good Poor Poor Poor Good	Poor Poor Poor Poor Poor Poor Poor Fair	Fair Fair Fair Fair Poor Poor Poor Good

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

NOSEHILL CREEK

Date: 29 May 1992

Location: 11 504527

U 5981203

Confluence type: Width at Mouth (m): Passable 5-15 100

Site Length (m): Sampling Location (m): (upstream end from mouth)

100 220

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		-		TE TYPE %)		
		(m)	ВО	СО	PE	GR	SI	SA
RF/BG	100	0.39	30	40	15	10	5	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium >0.39 0.45 Moderate		Bank erosion Siltation (%): Bank cover (9 Type: Instream cove Type:	15 (6): 10 Shrub				1

WATER QUALITY

Conductivity (µS):	212		
Water temperature (°C):	10.0		
i han			

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m): Effort (s):	Type XI 100 493
SPECIES	NUMBER
LNDC	2
	İ

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Poor Poor Poor Poor Poor Poor Poor	Fair Fair Fair Fair Poor Poor Poor	Fair Fair Fair Fair Poor Poor Poor	Poor Poor Poor Poor Poor Poor Poor	Fair Poor Fair Fair Poor Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

BERLAND RIVER

Date: 29 May 1992 Location: 11 510324

U 5983518

Confluence type: Width at Mouth (m): Passable 30-60

Site Length (m): Sampling Location (m): 400 400

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	BO	CO	PE	GR	SI	SA
R2 R3	50 50	0.90 0.55	5 5	40 40	35 35	10 10	10 10	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	High 0.18 >1.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	35 6): 0 r (%): 10	der, Turbidity			

WATER QUALITY

Conductivity (µS):	332	 	<u> </u>	
Water temperature (°C):	11.0			

FISHERIES INVENTORY

Electrofisher Type: SR-18
Distance electrofished (m): 400
Effort (s): 540

SPECIES	NUMBER
MNWH	29
ARGR	1
BURB	1
LNDC	1

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Fair Fair Fair Fair Poor Fair Fair	Good Good Good Good Good Fair	Good Good Good Good Good Good Good	Good Good Good Good Good Good	Good Good Good Good Good Good

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

MARSH HEAD CREEK

Date: 23 April 1992 Location: 11 526436

U 6000202

Confluence type: Width at Mouth (m): Passable 5-15

Site Length (m):

120 209

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	BO	CO	PE	GR	SI	SA	
R3/BG	100	0.40	15	60	10	15			
Stream stage: Visibility (m): Maximum depth (m): Velocity:	High 0.15 n/a High		Bank erosion Siltation (%): Bank cover (9 Type: Instream cove Type:	90 6): 20 Tree r (%): 45	der, Turbulence	e, Turbidity	<u> </u>		

WATER QUALITY

Conductivity (µS): 228 Water temperature (°C): 2.5

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 120
Effort (s): 300

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Fair	Poor	Poor
MNWH	Poor	Poor	Fair	Poor	Poor
BLTR	Poor	Poor	Fair	Poor	Poor
RNTR	Poor	Poor	Fair	Poor	Poor
NRPK	Poor	Роог	Fair	Poor	Poor
WALL	Poor	Poor	Fair	Роог	Poor
BURB	Poor	Poor	Fair	Poor	Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

PINE CREEK

Date: 23 April 1992 Location: 11 526648

U 6000244

Confluence type: Width at Mouth (m):

Passable 5-15

Site Length (m): Sampling Location (m): 120 285

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	BO	CO	PE	GR	SI	SA	
RF R3/BG R3 P3	10 50 35 5	0.15 0.35 0.56 0.77	15 5 100	75 55	65 10 25	35 15			
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.56 0.77 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	5 %): 5 Tree or (%): 10	der, Debris				

WATER QUALITY

Conductivity (µS):	198		
Water temperature (*C):	3.0		

FISHERIES INVENTORY

Electrofisher Type:	Type XI			
Distance electrofished (m):	120			
Effort (s):	249			
SPECIES	NUMBER	1		
n/a		1		

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
ARGR	Fair	Fair	Fair	Poor	Fair
MNWH	Fair	Fair	Fair	Poor	Fair
BLTR	Poor	Fair	Fair	Poor	Poor
RNTR	Poor	Fair	Fair	Poor	Poor
NRPK	Poor	Fair	Poor	Poor	Poor
WALL	Poor	Fair	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

PASS CREEK

Date: 24 April 1992 Location: 11 547414

U 6011574

Confluence type:

Passable

Width at Mouth (m): Site Length (m): 15-30 120 210

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT	AREA	MEAN	SUBSTRATE TYPE (%)						
TYPE	(%)	DEPTH							
		(m)	ВО	СО	PE	GR	SI	SA	
RF/BG	30	0.25	25	45	15	10	5	5	
R3	70	0.30	20	40	20	10	5		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.45 0.60 Moderate	, , , , , , , , , , , , , , , , , , , ,	Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	10 %): 30 Grass	s, Shrub, Logs,	Undercut	1	1	

WATER QUALITY

Conductivity (µS): 341 Water temperature (°C): 6.0

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 120
Effort (s): 1014

SPECIES	NUMBER
SCUL. SPP.	1

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Poor Poor Poor Poor Poor Poor	Fair Fair Fair Fair Fair Fair Fair	Fair Fair Fair Fair Fair Fair Fair	Poor Poor Poor Poor Poor Poor	Fair Fair Fair Fair Fair Fair

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

TWO CREEKS

Date: 24 April 1992

Location: 11 548234

U 6011925

Confluence type:

Passable 15-30

Width at Mouth (m): Site Length (m):

5-30 130 280

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

0.21 0.50	BO 10	СО	PE	GR	SI	SA
	10			1	l	1 711
1 0.50	70	50 30	15	20	5	
0.94	10	60	10	10	10	
0.65	10	45	15	20	10	
-	Bank erosion	(%): 20				
	Siltation (%):					
	Bank cover (%	6):				
	Type:	Shrui	b, Tree			
	Instream cover	r (%): 45				
	Type:	Dept	h, Boulder, Turi	bulence, Turbidi	ty	
-	0.94 0.65	Bank erosion Siltation (%): Bank cover (% Type: Instream cove	0.65 10 45 Bank erosion (%): 20 Siltation (%): 30 Bank cover (%): 10 Type: Shrui Instream cover (%): 45	0.65 10 45 15 Bank erosion (%): 20 Siltation (%): 30 Bank cover (%): 10 Type: Shrub, Tree Instream cover (%): 45	0.65 10 45 15 20 Bank erosion (%): 20 Siltation (%): 30 Bank cover (%): 10 Type: Shrub, Tree Instream cover (%): 45	0.65 10 45 15 20 10 Bank erosion (%): 20 Siltation (%): 30 Bank cover (%): 10 Type: Shrub, Tree Instream cover (%): 45

WATER QUALITY

Conductivity (µS): 184
Water temperature (*C): 4.0

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 130
Effort (s): 326

SPECIES	NUMBER
SCUL. SPP.	1
TRPR	3
SUCKER SPP.	2

PRELIMINARY EVALUATION[®]

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Poor Poor Poor Poor Poor Fair Poor	Fair Fair Fair Fair Fair Fair Fair	Good Good Good Good Good Good Good	Good Good Good Good Good Good	Fair Fair Fair Fair Fair Fair Fair

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

OLDMAN CREEK

Date: 24 April 1992

Location:

11 563053 U 6004531 Confluence type: Possible Width at Mouth (m): 15-30 Site Length (m): 150

397

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	СО	PE	GR	SI	SA
RF R3/BG R3	20 30 50	0.12 0.35 0.40		5 20 15	35 35 35	40 25 30	20 20 20	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.25 0.45 Moderate		Bank erosion (%): 0 Siltation (%): 50 Bank cover (%): 0 Type: Instream cover (%): 10 Type: Turbidity			-		

WATER QUALITY

Conductivity (µS): 276 Water temperature (°C): 7.5

FISHERIES INVENTORY

Electrofisher Type: Type XI Distance electrofished (m): 150 Effort (s): 1007

SPECIES	NUMBER
SUCKER SPP.	14
LKCH	5
LNDC	2

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Poor	Poor	Poor	Poor	Poor
BLTR	Poor	Poor	Poor	Poor	Poor
RNTR	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Роог	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor
				i I	

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

SAKWATAMAU RIVER

Date: 24 April 1992 Location: 11 584000

U 6001212

Confluence type: Width at Mouth (m): Passable 15-30

Site Length (m):
Sampling Location (m):

130 380

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUBSTRATE TYPE (%)				
		(m)	ВО	CO	PE	GR	SI	SA
RF R2	15 85	0.13 >1.0		10 5	25 5	45 10	20 80	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.35 >1.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	80 6): 10 Grass	. •			

WATER QUALITY

Conductivity (µS):	253	 	-
Conductivity (µS): Water temperature (*C):	7.5		

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 130
Effort (s): 445

SPECIES	NUMBER
LNDC	1
i e	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Fair	Fair	Fair
MNWH	Poor	Poor	Fair	Fair	Fair
BLTR	Poor	Poor	Fair	Fair	Fair
RNTR	Poor	Poor	Fair	Fair	Fair
NRPK	Poor	Fair	Fair	Fair	Fair
WALL	Роог	Fair	Fair	Fair	Fair
BURB	Роог	Fair	Fair	Fair	Fair

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

MCLEOD RIVER

Date: 24 April 1992 Location: 11 585000

U 6000851

Confluence type: Width at Mouth (m): Passable >60

Site Length (m): Sampling Location (m): 1500 1500

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT	AREA	MEAN	SUBSTRATE TYPE (%)					
TYPE	(%)	DEPTH						
		(m)	ВО	СО	PE	GR	SI	SA
RF	20	0.20	5	40	30	5	20	
R1	80	3.0	5	40	30	5	20	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.90 >3.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	70 6): 40 Grass r (%): 40	s, Shrub, Log h, Boulder, Tur	bulence, Turbidi	ty	•

WATER QUALITY

Conductivity (µS):	301	 		
Water temperature (°C):	9.0			

FISHERIES INVENTORY

Electrofisher Type:	SR-18
Distance electrofished (m):	1500
Electrofisher Type: Distance electrofished (m): Effort (s):	750

SPECIES	NUMBER
MNWH	17
LNSC	8
WHSC	3

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Poor Poor Poor Poor Poor Poor Poor	Fair Fair Fair Fair Fair Fair Good	Good Good Good Good Good Good	Good Good Good Good Good Good	Good Good Good Good Good Good

^{&#}x27;Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

CHRISTMAS CREEK

Date: 27 April 1992 Location:

U 6003172

11 607231

Confluence type:

Passable

Width at Mouth (m): Site Length (m):

5-15 100 200

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	CO	PE	GR	SI	SA
F3	100	0.65					100	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.30 >1.0 Slow		Bank erosion (Siltation (%): Bank cover (% Type: Instream cover Type:	100 6): 15 Grass r (%): 20	s, Branches n, Turbidity			

WATER QUALITY

Conductivity (µS):	347		•	
Conductivity (µS): Water temperature (*C):	8.0			

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m): Effort (s):	n/a				
SPECIES	NUMBER]			
n/a			_		

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Роог	Poor	Poor	Poor	Poor
BLTR	Poor	Poor	Poor	Poor	Poor
RNTR	Роот	Poor	Poor	Poor	Poor
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

CORBETT CREEK

Date: 27 April 1992

11 629569 Location:

U 6014035

Confluence type: Impassable

Width at Mouth (m): <5 Site Length (m): 200 350

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	BO	CO	PE	GR	SI	SA	
F1 F3	20 80	0.75 0.37					100 100		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.25 >0.75 Slow		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	75 %): 30 Gr (%): 65	ass, Shrub, Tree				

WATER QUALITY

Conductivity (µS): 435 Water temperature (°C): 11.0

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m):

Effort (s):

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR MNWH BLTR RNTR NRPK WALL BURB	Poor Poor Poor Poor Poor Poor Poor	Poor Poor Poor Poor Poor Poor Poor	Poor Poor Poor Poor Poor Poor Poor	Poor Poor Poor Poor Poor Poor Poor	Poor Poor Poor Poor Poor Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

GOOSE CREEK

Date: 27 April 1992 Location: 11 639088

U 6021340

Confluence type: Passable Width at Mouth (m): <5.0

Width at Mouth (m): <5.0 Site Length (m): 100 Sampling Location (m): 300

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	ВО	CO	PE	GR	SI	SA	
F2	100	0.75					100		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.38 >1.0 Slow		Bank erosion (%): Siltation (%): Bank cover (%) Type: Instream cover Type:	100 : 15 Shrub (%): 40	o, Log n, Debris, Turb	idity		<u>L</u>	

WATER QUALITY

Conductivity (µS): 411
Water temperature (*C): 12.0

FISHERIES INVENTORY

Electrofisher Type: n/s
Distance electrofished (m):
Effort (s):

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Poor	Poor	Poor	Poor	Poor
BLTR	Poor	Poor	Poor	Poor	Poor
RNTR	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

FREEMAN RIVER

27 April 1992 Date: Location: 11 644010

U 6021257

Confluence type: Passable Width at Mouth (m):

Site Length (m): 142 Sampling Location (m): 354

<5.0

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	ВО	со	PE	GR	SI	SA
F3	100	0.60					100	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.25 >1.0 nil		Bank erosion (%): Siltation (%): Bank cover (%) Type: Instream cover Type:	100	ity			<u> </u>

WATER QUALITY

Conductivity (µS): 528 Water temperature (°C): 16.5

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m):

Effort (s):

SPECIES	NUMBER
n/a	
	l l

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Poor	Poor	Poor	Poor
MNWH	Poor	Poor	Poor	Poor	Poor
BLTR	Poor	Poor	Poor	Poor	Poor
RNTR	Poor	Роог	Poor	Poor	Poor
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Роог	Poor	Роог	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

HORSE CREEK

Date: 27 April 1992 Location: 11 650874

U 6022307

Confluence type: Passable

Width at Mouth (m): <5.0 Site Length (m): 100 Sampling Location (m): 180

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	BO	СО	PE	GR	SI	SA
RF RF/BG R3	20 70 10	0.12 0.19 0.30	45	40 20 40	25 10 25	30 15 30	5 5 5	5
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.35 0.35 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	25 %): 60 Shrub ar (%): 80	o, Tree der, Debris,			

WATER QUALITY

Conductivity (µS): 369
Water temperature (°C): 11.5

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 100
Effort (s): 710

SPECIES	NUMBER
SUCKER SPP.	12
WHSC	1
LKCH	5

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Fair	Good	Poor	Poor	Fair
MNWH	Fair	Good	Poor	Poor	Fair
BLTR	Fair	Good	Poor	Poor	Fair
RNTR	Fair	Good	Poor	Poor	Fair
NRPK	Poor	Fair	Poor	Poor	Poor
WALL	Poor	Fair	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

CLEARWATER CREEK

Date: 27 April 1992 Location: 11 660366

U 6034178

Confluence type: Passable Width at Mouth (m): <5.0

Site Length (m): 120 Sampling Location (m): 270

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	CO	PE	GR	SI	SA
RF R3 P3	60 35 5	0.13 0.50 0.40	5	20 10 10	15	40	20 50 50	40 40
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.26 0.69 Slow		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	25 %): 45 Shrub	o, Tree s			

WATER QUALITY

Conductivity (µS): 430
Water temperature (*C): 11.0

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 120
Effort (s): 511

SPECIES	NUMBER
SCUL. SPP.	1
CYPRINID SPP.	2

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
ARGR	Poor	Good	Fair	Poor	Fair
MNWH	Poor	Good	Fair	Poor	Fair
BLTR	Poor	Good	Fair	Poor	Fair
RNTR	Poor	Good	Fair	Poor	Fair
NRPK	Роот	Good	Poor	Poor	Fair
WALL	Poor	Good	Poor	Poor	Fair
BURB	Poor	Good	Poor	Poor	Fair
			1		
			•		

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

TIMEU CREEK

Date: 29 April 1992 Location:

11 665665 U 6038386 Confluence type: Width at Mouth (m): Possible

Site Length (m): Sampling Location (m):

<5 120 420

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	ВО	CO	PE	GR	SI	SA
RF R3 BW	60 30 10	0.18 0.45 0.10		10 10	25 25 15	45 45 65	20 20 20	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.37 0.54 High		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	20 6): 20 Gras r (%): 25	s h, Turbulence			

WATER QUALITY

Conductivity (µS):	209			
Water temperature (°C):	11.0			

FISHERIES INVENTORY

Electrofisher Type: Type XI Distance electrofished (m): 120 Effort (s): 731

1				
SPECIES	NUMBER			
SCUL. SPP.	1			
SUCKER SPP.	8			
TRPR	1			
LKCH	22			

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
MNWH LKWH NRPK WALL GOLD BURB	Poor	Fair	Fair	Poor	Fair
	Poor	Fair	Fair	Poor	Fair
	Poor	Fair	Fair	Poor	Fair
	Poor	Fair	Fair	Poor	Fair
	Poor	Poor	Poor	Poor	Poor
	Poor	Poor	Poor	Poor	Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

PEMBINA RIVER

Date: 28 April 1992 11 674812 Location:

U 6069467

Confluence type: Passable Width at Mouth (m):

Site Length (m): 800 Sampling Location (m): 1700

30-60

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	СО	PE	GR	SI	SA
R1 R3	50 50	1.5 0.55		15		10	50 40	50 35
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.43 >1.0 Moderate		Bank erosion Siltation (%): Bank cover (9 Type: Instream cove Type:	35 %): 20 Shrub, er (%): 20	Tree Debris, Turbid	lity		

WATER QUALITY

Conductivity (µS): 310 Water temperature (°C): 10.0

FISHERIES INVENTORY

Electrofisher Type: SR-18 Distance electrofished (m): 1600 Effort (s): 896

SPECIES	NUMBER
WALL	2
BURB	2
GOLD	2
FLCH	7
EMSH	5
LNSC	1

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
MNWH LKWH NRPK WALL GOLD BURB	Poor	Poor	Good	Good	Good
	Poor	Poor	Fair	Fair	Fair
	Poor	Good	Good	Good	Good
	Poor	Good	Good	Good	Good
	Poor	Good	Good	Good	Good
	Poor	Good	Good	Good	Good

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

CHISHOLM CREEK

Date: 28 April 1992 Location: 11 680295

U 6088669

Confluence type: Width at Mouth (m): Passable 5-15

Site Length (m):

120 420

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	CO	PE	GR	SI	SA
RF R3	40 60	0.15 0.40		20 10	30 20	35 30	15 20	20
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.40 0.75 n/a		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	15 6): 5 Grass r (%): 15	s, Shrub n, Debris			•

WATER QUALITY

Conductivity (µS):	284
Water temperature (°C):	11.0

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 120
Effort (s): 541

SPECIES	NUMBER
LNSC	1

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH	Poor	Poor	Fair	Poor	Poor
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Fair	Fair	Fair	Poor	Fair
WALL	Роог	Poor	Poor	Poor	Poor
GOLD	Poor	Роог	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

ROURKE CREEK

Date: 01 May 1992 Location:

U 6102961

11 684620

Confluence type: Passable Width at Mouth (m): 5-15 Site Length (m): 110

340

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	CO	PE	GR	SI	SA
RF RF/BG R3/BG R3	10 10 30 50	0.21 0.23 0.50 0.68	10 15 10	35 40 40 40	25 20 10 15	25 15 10 10	15 15 25 25	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.29 0.84 Moderate		Bank erosion (%): 40 Siltation (%): 70 Bank cover (%): 10 Type: Shrub Instream cover (%): 60 Type: Depth, Boulder, Debris, Turbidity					•

WATER QUALITY

Conductivity (µS):	256	
Water temperature (°C):	9.0	

FISHERIES INVENTORY

Electrofisher Type: Type XI Distance electrofished (m): 110 Effort (s): 747

SPECIES	NUMBER
SUCKER SPP.	6
LNSC	2
BRST	3
CYPRINID SPP.	1

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH LKWH NRPK WALL GOLD BURB	Poor	Poor	Poor	Poor	Poor
	Poor	Poor	Poor	Poor	Poor
	Poor	Fair	Fair	Fair	Fair
	Poor	Fair	Fair	Fair	Fair
	Poor	Poor	Poor	Poor	Poor
	Poor	Poor	Poor	Poor	Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

UNNAMED CREEK (8-72-25)

Date: 01 May 1992 Location: 12 320824

U 6122296

Confluence type:

Passable

Width at Mouth (m): Site Length (m):

<5.0 120 298

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	ВО	CO	PE	GR	SI	SA	
R3	100	0.39		5			95		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.06 0.47		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	90 6): 0 r (%): 40	, Turbidity	·			

WATER QUALITY

Conductivity (µS):	378	 	 	
Water temperature (°C):	9.5			

FISHERIES INVENTORY

Electrofisher Type: Type XI Distance electrofished (m): 120 Effort (s):

SPECIES	NUMBER
LNSC	2
BRST	1
SUCKER SPP.	1

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVFRALL RATING
MNWH LKWH NRPK WALL	Poor Poor Poor Poor	Poor Poor Poor Poor	Poor Poor Poor Poor	Poor Poor Poor Poor	Poor Poor Poor
GOLD BURB	Poor Poor	Poor Poor	Poor Poor	Poor Poor	Poor Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

BAPTISTE CREEK

Date: 04 May 1992 Location: 12 342085

11 (071740

U 6071340

Confluence type:

Ephemeral

Width at Mouth (m): Site Length (m): <5.0 130

198

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
	j i	(m)	ВО	CO	PE	GR	SI	SA
RF RF/BG R3	15 75 10	0.08 0.11 0.21	15 10	50 30	15	20 20	100 40	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.28 0.28 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	85 6): 10 Grass	r			

WATER QUALITY

Conductivity (µS):	980			 			
Water temperature (*C):	12.0						

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 130
Effort (s): 701

SPECIES	NUMBER
SUCKER SPP.	3
LKCH	1
LNSC	33
WHSC	3
FTMN	20
SPSH	2

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
MNWH	Poor	Poor	Poor	Poor	Poor
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Poor	Poor	Poor	Poor
WALL	Poor	Poor	Poor	Poor	Poor
GOLD	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

TAWATINAU RIVER

Date: 04 May 1992 Location: 12 353361

U 6066063

Confluence type: Passable

Width at Mouth (m): 5-15
Site Length (m): 115
Sampling Location (m): 305

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	BO	СО	PE	GR	SI	SA	
R3/BG	100	0.35	35				65		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.15 0.60 Moderate		Bank erosion (%): Siltation (%): Bank cover (%) Type: Instream cover (Type:	90 5 Shrub (%): 45	r, Turbidity	1			

WATER QUALITY

Conductivity (µS): 558
Water temperature (°C): 13.5

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 115
Effort (s): 747

SPECIES	NUMBER
NRPK	1
BURB	1
FTMN	1

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH	Poor	Poor	Poor	Poor	Poor
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Good	Fair	Fair	Fair
WALL	Poor	Good	Fair	Fair	Fair
GOLD	Poor	Fair	Fair	Fair	Fair
BURB	Poor	Good	Good	Good	Good

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

LA BICHE RIVER

Date: 06 May 1992 Location: 12 389308

U 6097458

Confluence type:
Width at Mouth (m):

Passable 30-60 120

520

Site Length (m): Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	ВО	CO	PE	GR	SI	SA	
RF/BG R1	15 30	0.31 >1.5	25	40	15	5	15		
R3	55	0.57	5	30	20	20	25		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.33 >1.5 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	80 6): 0 r (%): 60	Boulder			<u> </u>	

WATER QUALITY

Conductivity (µS):

Water temperature (*C): 14.0

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 120
Effort (s): 604

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH	Poor	Fair	Fair	Good	Good
LKWH	Poor	Fair	Fair	Good	Good
NRPK	Poor	Fair	Good	Good	Good
WALL	Poor	Fair	Good	Good	Good
GOLD	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Fair	Good	Good	Good

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

CALLING RIVER

Date:

07 May 1992

Location:

12 379915 U 6106230 Confluence type: Width at Mouth (m):

Passable 30-60

Site Length (m): Sampling Location (m): 100 210

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	ВО	CO	PE	GR	SI	SA
RF R3	40 60	0.19 0.37	10	40 40	25	25 30	10 20	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.48 0.66 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	50 6): 20 Shrub, r (%): 30	Tree Boulder, Debr	is		

WATER QUALITY

Conductivity (µS):	310		
Water temperature (*C):	16.0		

FISHERIES INVENTORY

Electrofisher Type:	Type XI
Distance electrofished (m):	100
Effort (s):	859
SPECIES	NUMBER
n/a	

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
MNWH LKWH NRPK WALL GOLD BURB	Poor Poor Poor Poor Poor Poor	Fair Fair Fair Fair Poor Fair	Good Good Good Good Good	Fair Fair Fair Fair Fair Fair	Good Fair Good Good Fair Good

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

LA PETITE RIVIERE JAILLANTE

Date: 07 May 1992 Location: 12 384175

U 6117001

Confluence type: Possible Width at Mouth (m): <5 Site Length (m): 110

270

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	BO	CO	PE	GR	SI	SA
RF RF/BG R3 F3	30 15 40 15	0.12 0.14 0.18 0.20	20 5	40 30 30 30 30	20 25 5 20	25 10 25 15	15 15 35 35	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.39 0.39 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	85 6): 45 Shrub, r (%): 75	Tree r, Debris			

WATER QUALITY

Conductivity (µS): 965
Water temperature (*C): 13.0

FISHERIES INVENTORY

Electrofisher Type: Type XI
Distance electrofished (m): 110
Effort (s): 959

SPECIES	NUMBER
SUCKER SPP.	5
LNSC	2
WHSC	9
LKCH	10

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH	Poor	Fair	Poor	Poor	Poor
LKWH	Poor	Fair	Poor	Poor	Poor
NRPK	Poor	Fair	Poor	Poor	Poor
WALL	Poor	Fair	Poor	Poor	Poor
GOLD	Poor	Poor	Poor	Poor	Poor
BURB	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

DUNCAN CREEK

Date: 07 May 1992 Location: 12 392973

U 6131504

Confluence type: Possible Width at Mouth (m): Site Length (m):

5-10

100

220

Sampling Location (m):

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	ВО	CO	PE	GR	SI	SA
RF R3	10 90	0.10 0.40		25 10		20 10	55 80	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.55 1.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	80 6): 10 Logs				

WATER QUALITY

Conductivity (µS):	175	· .			
Water temperature (°C):	15.0				

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m)	Type XI : 100
Distance electrofished (m) Effort (s): SPECIES LNDC LKCH LNSC	756
SPECIES	NUMBER
LNDC	2
LKCH	12
LNSC	1
SUCKER SPP.	2
WHSC	1

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH LKWH NRPK WALL GOLD BURB	Poor	Poor	Poor	Poor	Poor
	Poor	Poor	Poor	Poor	Poor
	Poor	Fair	Fair	Fair	Fair
	Poor	Fair	Fair	Fair	Fair
	Poor	Poor	Poor	Poor	Poor
	Fair	Poor	Fair	Poor	Poor

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

PARALLEL CREEK

Date: 08 May 1992 Location: 12 397720

U 6181740

Confluence type:

Passable 5-15

Width at Mouth (m): Site Length (m): Sampling Location (m):

100 210

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH				ATE TYPE %)		
		(m)	ВО	CO	PE	GR	SI	SA
RF/BG R3/BG	35 65	0.26 0.41	25 35	40 30	15 10	10 10	10 15	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.21 0.78 High		Bank erosion Siltation (%): Bank cover (Type: Instream cove Type:	25 %): 10 Boulder				

WATER QUALITY

Conductivity (µS): 119	
Water temperature (°C): 13.0	

FISHERIES INVENTORY

Electrofisher Type:	Type XI
Distance electrofished (m):	100
Effort (s):	1037
SPECIES	NUMBER
LKCH	13
SUCKER SPP.	14
FTMN	14
LNSC	4
LNDC	3
BRST	1
	-

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH LKWH NRPK WALL GOLD BURB	Poor	Fair	Poor	Poor	Poor
	Poor	Fair	Poor	Poor	Poor
	Poor	Poor	Poor	Poor	Poor
	Good	Fair	Poor	Poor	Fair
	Poor	Poor	Poor	Poor	Poor
	Poor	Fair	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

PELICAN RIVER

Date: 08 May 1992 12 397051 Location:

U 6188959

Confluence type: Width at Mouth (m):

Passable 30-60

Site Length (m): Sampling Location (m): 100 400

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		_		TE TYPE %)		
		(m)	BO	СО	PE	GR	SI	SA
RA	100	1.0°	75°	25°				
Stream stage: Visibility (m): Maximum depth (m): Velocity:	High 0.26 >1.0 High		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	45 6): 15 Shrub, r (%): 20	Tree Boulder, Debri	s		

WATER QUALITY

Conductivity (µS): 80 Water temperature (°C): 14.0

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m): Effort (s):	Type XI 100 450
SPECIES	NUMBER
LKCH	4

SPECIES	NUMBER
LKCH	4
FLCH	1
LNDC	2
BRST	1

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH	Poor	Poor	Fair	Fair	Poor
LKWH	Poor	Poor	Fair	Fair	Poor
NRPK	Poor	Poor	Fair	Fair	Poor
WALL	Poor	Poor	Fair	Fair	Poor
GOLD	Poor	Poor	Fair	Fair	Poor
BURB.	Poor	Poor	Fair	Fair	Poor
ı					

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

Estimated due to high stream stage.

HOUSE RIVER

Date: 09 May 1992 Location: 12 406508

V 6228996

Confluence type:

Passable 30-60

Width at Mouth (m): Site Length (m): Sampling Location (m):

700 700

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUB	STRATE TYPE (%)		
		(m)	ВО	CO PE	GR	SI	SA
R3	100	0.50				50	50
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.17 0.75 Moderate		Bank erosion (%): Siltation (%): Bank cover (%): Type: Instream cover (%): Type:	20 80 15 Shrub, Tree 40 Boulder, Turbidi	ty	, I ,	

WATER QUALITY

Conductivity (µS):	184			
Conductivity (µS): Water temperature (*C):	12.0			

FISHERIES INVENTORY

Electrofisher Type:	SR-18E
Distance electrofished	(m): 700
Effort (s):	443
SPECIES	NUMBER
LNSC	1
	1

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
MNWH	Poor	Fair	Fair	Fair	Fair
LKWH	Poor	Fair	Fair	Fair	Fair
NRPK	Poor	Fair	Fair	Fair	Fair
WALL	Poor	Fair	Fair	Fair	Fair
GOLD	Poor	Fair	Fair	Fair	Fair
BURB	Fair	Fair	Fair	Fair	Fair
l l					

^a Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

HANGINGSTONE RIVER

12 May 1992 Date:

12 479295 Location:

U 6284418

Confluence type: Width at Mouth (m): Passable 30-60

Site Length (m): Sampling Location (m):

(upstream end from mouth)

105 388

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	СО	PE	GR	SI	SA
RF R3	15 85	0.19 0.50		25 10	20 35	25 25	30 30	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Low 0.10 1.0 Moderate		Bank erosion (%): 70 Siltation (%): 80 Bank cover (%): 20 Type: Shrub, Tree Instream cover (%): 40 Type: Debris, Turbidity					

WATER QUALITY

Conductivity (µS): 276 Water temperature (*C):

FISHERIES INVENTORY

Electrofisher Type: Type XI Distance electrofished (m): 105 Effort (s): 518

SPECIES	NUMBER
n/a	

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
LKWH	Poor	Fair	Fair	Poor	Poor
NRPK	Poor	F a ir	Fair	Poor	Fair
WALL	Poor	Fair	Fair	Poor	Fair
GOLD	Poor	Fair	Fair	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

LITTLE FISHERY RIVER

Date: 12 May 1992 12 473222 Location:

V 6285423

Confluence type: Passable Width at Mouth (m): Site Length (m):

5-10

110

220

Sampling Location (m):

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	CO	PE	GR	SI	SA
RF R3/BG	5 95	0.10 0.35	30	20 35	35	30 15	15 20	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.10 0.55 Moderate		Bank erosion (%): 45 Siltation (%): 50 Bank cover (%): 25 Type: Grass, Shrub Instream cover (%): 35 Type: Boulder, Turbidity					

WATER QUALITY

Conductivity (µS): 282 Water temperature (°C): 8.5

FISHERIES INVENTORY

Electrofisher Type:	Type XI
Distance electrofished (m):	110
Effort (s):	763
SPECIES	NUMBER
FTMN	13
SUCKER SPP.	3
LKCH	2

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Fair	Poor	Poor	Poor
WALL	Poor	Fair	Poor	Poor	Poor
GOLD	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

CLEARWATER RIVER

Date: 12 May 1992 Location: 12 476446

V 6289219

Confluence type: Width at Mouth (m): Site Length (m):

Passable 30-60 2000 2000

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	ВО	CO	PE	GR	SI	SA	
R2 R3	35 65	0.90 0.50					50 50	50 50	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.27 >1.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	50 6): 50 Shrub r (%): 20	ity, Debris				

WATER QUALITY

Electrofisher Type:

Conductivity (µS):	168	 		
Water temperature (°C):	8.5		 	_

FISHERIES INVENTORY

Electrofisher Type:	Type VIA
Distance electrofished (m):	2000
Effort (s):	1244
SPECIES	NUMBER
WHSC	4
WALL	1
NRPK	1

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
LKWH	Poor	Poor	Fair	Fair	Fair
NRPK	Poor	Fair	Fair	Fair	Fair
WALL	Poor	Fair	Fair	Fair	Fair
GOLD	Poor	Fair	Fair	Fair	Fair

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

STEEPBANK RIVER

Date: Location: 15 May 1992 12 470917

V 6319443

Confluence type:

Passable

Width at Mouth (m): Site Length (m): 15**-**30 650

Sampling Location (m): (upstream end from mouth) 650

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)						
		(m)	ВО	CO	PE	GR	SI	SA	
R2 R3	80 20	>1.3 0.60	5 5				50 50	45 45	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.46 >1.3 High		Bank erosion (Siltation (%): Bank cover (% Type: Instream cover Type:	40): 25 Shrui (%): 30	n, Debris				

WATER QUALITY

Conductivity (µS): 137
Water temperature (°C): 7.0

FISHERIES INVENTORY

Electrofisher Type: Distance electrofished (m): Effort (s):	Type VIA 650 275
SPECIES	NUMBER
2/0	

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
LKWH	Poor	Poor	Good	Fair	Fair
NRPK	Poor	Fair	Good	Good	Good
WALL	Poor	Fair	Good	Good	Good
GOLD	Poor	Poor	Fair	Fair	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

MUSKEG RIVER

Date: 15 May 1992

Location: 12 453337

V 6332191

. .

Passable

Confluence type: Width at Mouth (m):

15-30

Site Length (m):

500 500

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)							
		(m)	ВО	CO	PE	GR	SI	SA		
R3	100	0.55			35	45	10	10		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium >0.82 1.0 High		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	30 6): 40 Shrub, r (%): 30	, Tree , Debris, Color					

WATER QUALITY

Conductivity (µS):	212	 				
Water temperature (°C):	8.0					

FISHERIES INVENTORY

Effort (s):	225			
SPECIES	NUMBER			
WHSC	5			

PRELIMINARY EVALUATION^a

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Fair	Fair	Fair	Fair
WALL	Poor	Fair	Fair	Fair	Fair
GOLD	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

MACKAY RIVER

Date: 16 May 1992 Location: 12 461877

V 6335785

Confluence type:

Passable

Width at Mouth (m): Site Length (m):

30-60 1500 1500

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT	AREA	MEAN	SUBSTRATE TYPE (%)						
TYPE	(%)	DEPTH							
		(m)	ВО	CO	PE	GR	SI	SA	
R2	45	0.80		20	10	10	30	30	
R3	55	0.65		20	10	10	30	30	
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium >0.38 >1.5 Moderate		Bank erosion (Siltation (%): Bank cover (% Type: Instream cover Type:	45 6): 20 Shrub,	Tree				

WATER QUALITY

Conductivity (µS): 209 Water temperature (°C): 9.5

FISHERIES INVENTORY

Electrofisher Type: Type VIA
Distance electrofished (m): 1500
Effort (s): 766

NUMBER
56
1
1
3

PRELIMINARY EVALUATION'

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
LKWH	Poor	Poor	Fair	Fair	Fair
NRPK	Poor	Poor	Good	Good	Good
WALL	Poor	Poor	Good	Good	Good
GOLD	Poor	Poor	Fair	Fair	Fair

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

ELLS RIVER

Date: 17 May 1992 Location: 12 459570

V 6351551

Confluence type: Width at Mouth (m): Site Length (m):

Passable 30-60 800 800

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	CO	PE	GR	SI	SA
R2 R3 BW	30 60 10	0.85 0.40 0.45		10 10 10			45 45 45	45 45 45
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.22 1.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	70 6): 40 Shrub, r (%): 55	Tree , Turbidity			:

WATER QUALITY

Conductivity (µS):	186	
Water temperature (°C):	10.0	

FISHERIES INVENTORY

Type VIA				
800				
390				
NUMBER]			
	1			
	800 390	800 390	800 390	800 390

PRELIMINARY EVALUATION'

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Fair	Fair	Fair	Fair
WALL	Poor	Fair	Fair	Fair	Fair
GOLD	Poor	Poor	Poor	Poor	Poor

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

TAR RIVER

Date: 17 May 1992 Location: 12 459029

V 6353298

Confluence type:

Passable

Width at Mouth (m): Site Length (m):

30-60 800 800

Sampling Location (m): (upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)					
		(m)	ВО	СО	PE	GR	SI	SA
R2	100	0.80		5			50	45
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.35 1.0 Slow		Bank erosion (Siltation (%): Bank cover (% Type: Instream cover	75 5): 40 Shrub,	Tree			
			Туре:	Debris,	Turbidity			

WATER QUALITY

Conductivity (µS): 264 Water temperature (°C): 8.0

FISHERIES INVENTORY

Electrofisher Type: Type VIA Distance electrofished (m): 800 Effort (s): 329

SPECIES	NUMBER
n/a	

PRELIMINARY EVALUATION'

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVFRALL RATING
LKWH	Poor	Poor	Роог	Poor	Poor
NRPK	Poor	Fair	Good	Good	Fair
WALL	Роот	Fair	Good	Good	Fair
GOLD	Poor	Poor	Poor	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

PIERRE RIVER

Date: 18 May 1992 Location: 12 462340

V 6367223

Confluence type: Width at Mouth (m): Site Length (m): Passable 10-15

Sampling Location (m):

(upstream end from mouth)

60 120

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUBSTRATE TYPE (%)				
		(m)	ВО	СО	PE	GR	SI	SA
RF R3 P2	10 75 15	0.10 0.50 1.0			20	60	20 50 50	50 50
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.19 >2.0 Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	75 (6): 15 Shrub				

WATER QUALITY

Electrofisher Type:

Conductivity (µS):	471			
Water temperature (*C):	6.0			

FISHERIES INVENTORY

Distance electrofished (m): Effort (s):	60 473
SPECIES	NUMBER
SCUL. SPP.	I

Type XI

PRELIMINARY EVALUATION*

SPECIES	SPAWNING	REARING	ADULT FEEDING	OVERWINTERING	OVERALL
	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	RATING
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Poor	Fair	Poor	Fair
WALL	Poor	Poor	Fair	Poor	Fair
GOLD	Poor	Poor	Poor	Poor	Poor

Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

FIREBAG RIVER

Date: 18 May 1992 Location: 12 479268

V 6400630

Confluence type:

Passable 30-60

Width at Mouth (m): Site Length (m): Sampling Location (m):

1000 1000

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH	SUBSTRATE TYPE (%)							
		(m)	ВО	CO	PE	GR	SI	SA		
R3 R2	20 80	0.30 0.80		10 10	10 10		40 40	40 40		
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium 0.73 >1.0° Moderate		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	45 %): 50 Shrub	Debris					

WATER QUALITY

Conductivity (µS): 174
Water temperature (°C): 8.0

FISHERIES INVENTORY

Electrofisher Type: Type VIA
Distance electrofished (m): 1000
Effort (s): 798

SPECIES	NUMBER
NRPK	2

PRELIMINARY EVALUATION

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVF.RALL RATING
LKWH	Poor	Fair	Fair	Fair	Fair
NRPK	Poor	Good	Good	Good	Good
WALL	Poor	Good	Good	Good	Good
GOLD	Poor	Fair	Fair	Fair	Fair

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

⁺ Estimate

GRAYLING CREEK

20 May 1992 Date: 12 479513 Location:

V 6430043

Confluence type:

Passable 30-60

Width at Mouth (m): Site Length (m): Sampling Location (m):

2000 2000

(upstream end from mouth)

CHANNEL CHARACTERISTICS

HABITAT TYPE	AREA (%)	MEAN DEPTH		SUBSTRATE TYPE (%)								
		(m)	ВО	CO	PE	GR	SI	SA				
R2	100	1.0					100					
Stream stage: Visibility (m): Maximum depth (m): Velocity:	Medium >1.37 >1.5 Slow		Bank erosion Siltation (%): Bank cover (% Type: Instream cove Type:	15 6): 20 Shrub, r (%): 50	Tree Debris							

WATER QUALITY

Conductivity (µS): 194 Water temperature (°C): 4.0

FISHERIES INVENTORY

	Type VIA		
Distance electrofished (m)	: 2000		
Effort (s):	433		
• •			
SPECIES	NUMBER		
SPECIES	NUMBER		
SPECIES n/a	NUMBER		

PRELIMINARY EVALUATION

SPECIES	SPAWNING POTENTIAL	REARING POTENTIAL	ADULT FEEDING POTENTIAL	OVERWINTERING POTENTIAL	OVERALL RATING
LKWH	Poor	Poor	Poor	Poor	Poor
NRPK	Poor	Fair	Good	Good	Fair
WALL	Poor	Fair	Fair	Fair	Fair
GOLD	Poor	Poor	Роот	Poor	Poor

^{*} Evaluation conducted from confluence with Athabasca to upstream end of sampling location noted above.

APPENDIX F CONTAMINANT SAMPLING

APPENDIX F

FISH SAMPLING PROCEDURE FOR CONTAMINANT ANALYSIS

Fish for contaminant analyses were collected utilizing one or more techniques (i.e., electroshocking, beach seines). At the Lake Athabasca Delta sites, fish were collected directly from commercial nets. RL&L personnel hand-picked the fish out of the gill nets and immediately placed each fish into contaminant-free plastic bags of the type recommended by the Department of Fisheries and Oceans. In total, nine sites were sampled.

- Weldwood Mill, Hinton, zone of influence from effluent;
- Alberta Newsprint, Whitecourt, zone of influence from effluent;
- Millar Western, Whitecourt, zone of influence from effluent;
- Alberta Pacific Mill, zone of likely influence from effluent;
- Fort MacKay Indian Reserve area mid-point;
- Athabasca Delta;
- Lake Athabasca;
- Lac La Biche;
- Gregoire Lake,

Fish species collected from various reaches on the Athabasca River were as follows:

- Upper reaches (above Whitecourt): mountain whitefish, bull trout, northern pike and longnose sucker.
- Middle reaches (Whitecourt to Cascade Rapids): goldeye, walleye, northern pike and longnose sucker.
- Lower reaches (below Cascade Rapids): goldeye, walleye, northern pike, longnose sucker and lake whitefish.

Once collected, fish were immediately processed following the protocol outlined in Schedule D of the Terms of Reference. Each fish was measured for fork length, and the intact specimen was placed directly into a contaminant-free plastic bag of the type recommended by the Department of Fisheries and Oceans. Each sample bag was labelled with the following information: species, fork length, date, location, collector's name, and sample number. A tag with the same information was tied to the outside of the bag. Except for small forage fish which were bagged in composite groups of at least 10 for each species collected, all fish were bagged individually.

Fish samples were placed immediately on dry ice, and stored in labelled cardboard boxes lined with styrofoam and plastic. Samples were shipped immediately to Edmonton by courier, or picked up by R.L. & L. personnel and delivered to the laboratory.

Table F1. Universal Transverse Mercator Coordinates (UTM) for contaminant fish collections, Athabasca River, 1992.

Site	Upst	ream	Downstream				
1	11 454600	U 5914600	11 458500 U 5916100				
6	12 380412	U 5990124	12 390066 U 6093858				
8	12 466329	V 6280816	12 470096 V 6282414				
9	12 463062	V 6332184	12 462965 V 6340983				
Athabasca River at Highway	40 Bridge	11 453760 U 5914250					
Athabasca River at Weldwood	i Mill	11 461050 U 5918300					
Athabasca River at Millar We	estern Mill	11 5	586615 U 6001205				
Athabasca River at Alberta N	ewsprint Mill	11 5	579565 U 6001600				
Lac La Biche		12 4	438500 U 6077250				
Gregoire Lake		12 4	459200 V 6257750				
Athabasca Delta		12 5	503750 V 6473750				
Lake Athabasca		12 5	500425 V 6501750				

	S SNU	M SP	EC	LEN	SE	CA	MESH	DA	МО	YR	LOC		SI	KM	MTU
1		= ==	==		==	==	====	==	==	==		=====	==		
	8 2	9 GO	LD	410		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	В	9 WA	LL	337		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	В 1	O LN	SC	488		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	B 1	1 LN	SC	479		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	В 1	2 LK	WH	453		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	3 1	3 LK	WH	399		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	3 1	4 LK	WH	427		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	B 1	5 GO	LD	341		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	3 1	6 GO	LD	338		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
-	3 1	7 GO	LD	348		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
-	3 1	B GO	LD	343		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
-	3 1	9 WA	LL	516		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
1	3 2	AW C	LL	494		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 v 6473750
1	3 2	1 WA	LL	479		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
1	3 2	2 WA	LL	462		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
1	3 2	3 LK	WH	429		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	3 2	4 LK	WH	363		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	3 2	5 WA	LL	536		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	3 2	S WA	LL	472		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
	_	7 WA		547		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
		3 GO		377							ATHABASCA				12 503750 V 6473750
E		GO		344		GN	10.2	10	06	92	ATHABASCA	DELTA			12 503750 V 6473750
		LN:		441							ATHABASCA				12 503750 V 6473750
		7 GO		366							ATHABASCA				12 503750 V 6473750
		2 LN		466							ATHABASCA				12 503750 V 6473750
Ė		S WAI		464							ATHABASCA				12 503750 V 6473750
		LK		451							ATHABASCA				12 503750 V 6473750
E		GO		347							ATHABASCA				12 503750 V 6473750
E		LK		434							ATHABASCA				12 503750 V 6473750
E		LKI		449							ATHABASCA				12 503750 V 6473750
E		LKI		449							ATHABASCA				12 503750 V 6473750
E		LN		417							ATHABASCA				12 503750 V 6473750
E		LNS		451							ATHABASCA				12 503750 V 6473750
E		GO!		353							ATHABASCA				12 503750 V 6473750 12 503750 V 6473750
E		LNS		427							ATHABASCA				12 503750 V 6473750 12 503750 V 6473750
	3004			193		ES	10.2				ATHABASCA		09		12 462965 V 6340983
	300			194		ES					ATHABASCA		09		12 462965 V 6340983
	2999			223		ES					ATHABASCA		09		12 462965 V 6340983
	300			200		ES					ATHABASCA		09		12 462965 V 6340983
	300			185		ES					ATHABASCA		09		12 462965 V 6340983
	300			175		ES					ATHABASCA		09		12 462965 V 6340983
	299			236		ES					ATHABASCA		09		12 462965 V 6340983
	301			75		ES					ATHABASCA		09		12 462965 V 6340983
	2994			280	10						ATHABASCA		09		12 462965 V 6340983
,		TRE		59	10	ES					ATHABASCA				
													09 na		12 462965 V 6340983
	299			377 71		ES					ATHABASCA		09 no		12 462965 V 6340983
	3010			71 317	10	ES					ATHABASCA		09		12 462965 V 6340983
	2992			317	10						ATHABASCA		09 no		12 462965 V 6340983
	3012			58 91		ES					ATHABASCA		09		12 462965 V 6340983
P	3008	> ⊨MS	SH	81		ES		10	ŲΣ	72	ATHABASCA	к.	09	250.4	12 462965 V 6340983

	s	SNUM	SPEC	LEN	SE	CA	MESH	DA	МО	YR	LOC		SI	KM	UTM	
		2988		458		ES					ATHABASCA		09			V 6340983
	Α			381	07						ATHABASCA		09			V 6340983
	A	2986		282							ATHABASCA		09			V 6340983
	A			308							ATHABASCA		09			V 6340983
	Α	2989		319		ES					ATHABASCA		09			V 6340983
	A			285		ES					ATHABASCA		09			V 6340983
	Α	2996		274		ES					ATHABASCA		09			V 6340983
	A	3014	TRPR	60		ES					ATHABASCA		09			V 6340983
	Α	2998	FLCH	284		ES		16	05	92	ATHABASCA	R.	09		_	V 6340983
	Α	3009	EMSH	78		ES					ATHABASCA		09			V 6340983
	A	2987	LKWH	357		ES		16	05	92	ATHABASCA	R.	09			V 6340983
	Α	3019	TRPR	55		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
	Α	3015	TRPR	62		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
	Α	3016	TRPR	52		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
	A	3017	TRPR	53		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
	A	3018	TRPR	52		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
i	Α	3000	FLCH	261		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
i	Α	3001	FLCH	195		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
1	Α	3002	FLCH	204		ES		16	05	92	ATHABASCA	R.	09	230.4	12 462965	V 6340983
i	A	2695	FLCH	180		E\$		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
i	A	2693	FLCH	188		ES		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
i	A	2692	FLCH	203		ES		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
1	A	2696	FLCH	108		BS		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
ı	A	2702	TRPR	36		BS		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
i	Ą	2697	FLCH	126		BS		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
ı	A	2691	FLCH	226		ES		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
1	A	2673	WALL	408	19	ES		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
ı	A	2667	GOLĐ	261	10	ES		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
ı	A	2670	WALL	393	80	ES		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414
		2669		535	19	ES					ATHABASCA		80	299.8	12 470096	V 6282414
		2672	_	384		ES					ATHABASCA		80		12 470096	
		2705		39		BS					ATHABASCA		80		12 470096	
		2706		58		BS					ATHABASCA		80		12 470096	
		2694		189		ES					ATHABASCA		80		12 470096	
		2703		71	40	BS					ATHABASCA		80			V 6282414
			GOLD		10						ATHABASCA		80			V 6282414
			FLCH			ES					ATHABASCA ATHABASCA		80			V 6282414
			LNSC			ES					ATHABASCA		80 ng			V 6282414
		2685	FLCH	261		ES ES					ATHABASCA		80 80			V 6282414 V 6282414
		2671		433		ES					ATHABASCA		08			V 6282414
		2682		350		ES					ATHABASCA		08		12 470096	
		2700		60		BS					ATHABASCA		08		12 470096	
		2674		382		ES					ATHABASCA		08		12 470096	
		2675		385		ES					ATHABASCA		08		12 470096	
		2676		375		ES			_		ATHABASCA		08		12 470096	
		2699		81		BS					ATHABASCA		08			V 6282414
			GOLD		10						ATHABASCA		08			V 6282414
		2701		52		BS					ATHABASCA		08			V 6282414
		2707		47		BS					ATHABASCA					V 6282414
1	A.	2698	TRPR	60		BS		13	05	92	ATHABASCA	R.	80	299.8	12 470096	V 6282414

s	SNUM	SPEC	LEN	SE	CA	MESH	DA	МО	YR	LOC		SI	KM	UTI	М		
=		====		==	==	-	==	==	==			==		==			
Α	1794	EMSH	61		ES		05	05	92	ATHABASCA	R.	06	630.0	12	390066	U	6093858
Α	1780	LNSC	277		ES		05	05	92	ATHABASCA	R.	06	630.0	12	390066	U	6093858
Α	1785	GOLD	220		ES		05	05	92	ATHABASCA	R.	06	630.0	12	390066	U	6093858
Α	1791	EMSH	66		ES		05	05	92	ATHABASCA	R.	06	630.0	12	390066	U	6093858
Α	1781	LNSC	271		ES		05	05	92	ATHABASCA	R.	06	630.0	12	390066	U	6093858
Α	1706	LNSC	341		ES		05	05	92	ATHABASCA	R.	06	632.5	12	390066	U	6093858
Α	1705	LNSC	415		ES		05	05	92	ATHABASCA	R.	06	632.5	12	390066	U	6093858
Α	1702	GOLD	364	10	ES		05	05	92	ATHABASCA	R.	06	633.8	12	390066	U	6093858
Α	1704	GOLD	373	20	ES		05	05	92	ATHABASCA	R.	06	633.8	12	390066	U	6093858
Α	1703	WALL	325		ES		05	05	92	ATHABASCA	R.	06	633.8	12	390066	U	6093858
Α	4789	ныим	372		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4788	MNWH	363		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4783	MNWH	346		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4775	LNSC	430		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4780	LNSC	343		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4779	LNSC	336		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	Ų	6001205
Α	4786	HWMM	386		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4777	LNSC	377		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4791	MNWH	438		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4785	MNWH	334		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4792	BURB	870		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4787	MNWH	352		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4774	LNSC	381		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4782	MNWH	296		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4778	LNSC	407		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4781	LNSC	350		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4776	LNSC	417		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4784	HWMM	309		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4790	HWMM	418		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4772	LNSC	347		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4773	LNSC	400		ES		20	05	92	ATHABASCA	R.		1024.0	11	586615	U	6001205
Α	4752	LNSC	391		ES		20	05	92	ATHABASCA	R.		1032.0	11	579565	U	6001600
Α	4734	HWMM	323		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4762	HWMM	334		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4754	LNSC	413		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4742	LNSC	332		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4747	LNSC	382		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4770	HWMM	350		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4743	LNSC	365		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4769	HWMM	354		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4750	LNSC	401		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	Ų	5918300
Α	4748	LNSC	353		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4771	MNWH	356		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	Ų	591830 0
Α	4746	LNSC	372		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4760	LNSC	420		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4744	LNSC	354		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4739	HWMM	371		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4737	MNWH	347		ES					ATHABASCA			1229.0	11	461050	U	5918300
	4763		422		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
A	4749	LNSC	404		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300
Α	4733	MNWH	370		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050	U	5918300

s	SNUM	SPEC	LEN	SE	CA	MESH	DA	MO	YR	LOC		SI	KM	UTI	М
=				==	==	====	==	==	==		=====	==		==	
A	4735	MNWH	323		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4751	LNSC	385		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4766	MNWR	303		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
A	4732	HWMM	283		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4759	LNSC	408		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4768	MNWH	283		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4758	LNSC	409		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4761	LNSC	477		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4765	MNWH	332		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4767	MNWH	310		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4764	MNWH	388		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4736	MNWH	462		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4757	LNSC	397		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4738	HWMM	401		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4753	LNSC	377		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4756	LNSC	373		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4745	LNSC	387		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4741	MNWH	350		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4740	MNWH	494		ES		19	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	4755	LNSC	399		ES		20	05	92	ATHABASCA	R.		1229.0	11	461050 U 5918300
Α	3702	BLTR	517		SL		27	04	92	ATHABASCA	R.	01	1234.3	11	526509 U 6000800
Α	3701	BLTR	388		SL		27	04	92	ATHABASCA	R.	01	1235.6	11	526509 U 6000800
Α	3700	BLTR	312		SL		27	04	92	ATHABASCA	R.	01	1235.6	11	526509 U 6000800
Α	4730	LNSC	323		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4726	LNSC	380		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4720	MNWH	236		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
	4718		262		ES		13	05	92	ATHABASCA	R.				453760 U 5914250
Α	4731	LNSC	334		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4716	MNWH	266		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4719	MNWH	255		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4725	LNSC	366		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4714	MNWH	270		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4713	MNWH	322		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4724	LNSC	375		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4721	HWMM	279		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4728	LNSC	357		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4712	MNWH	319		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4715	MNWH	287		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4723	LNSC	363		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4727	LNSC	397		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4729	LNSC	376		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4717	MNWH	272		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	4722	LNSC	410		ES		13	05	92	ATHABASCA	R.		1238.0	11	453760 U 5914250
Α	3322	SPSH	84		GN	1.9	23	05	92	GREGOIRE L				12	459200 v 6257750
Α	3323	SPSH	79		GN	1.9	23	05	92	GREGOIRE L				12	459200 V 6257750
Α	3324	SPSH	84		GN	1.9	23	05	92	GREGOIRE L	ě.			12	459200 v 6257750
Α	3357	WALL	392	80	GN	11.4	23	05	92	GREGOIRE L				12	459200 V 6257750
Α	3321	SPSH	83		GN	1.9	23	05	92	GREGOIRE L				12	459200 V 6257750
Α	3351	NRPK	782		GN	8.9	23	05	92	GREGOIRE L				12	459200 V 6257750
Α	3328	SPSH	83		GN	1.9	23	05	92	GREGOIRE L				12	459200 V 6257750
Α	3329	SPSH	80		GN	1.9	23	05	92	GREGOIRE L				12	459200 V 6257750

s	SNUM	SPEC	LEN	SE	CA	MESH	DA	МО	YR	LOC	SI KM	UTM
=	====		====	==	==		==	==	==			
A	3325	SPSH	82		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3350	NRPK	795		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3359	WALL	485	08	GN	11.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	336 0	WALL	489	08	GN	11.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3361	WALL	444	80	GN	11.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
A	3349	NRPK	486		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3358	WALL	466	08	GN	11.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3342	WALL	502		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3343	NRPK	733		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3344	NRPK	548		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
A	3345	NRPK	520		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3346	NRPK	581		GN	6.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3326	SPSH	86		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3327	SPSH	91		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3348	WHSC	407		GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3355	WALL	373	07	GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3330	SPSH	81		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3347	NRPK	464		GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3352	LKWH	450		GN	11.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3354	WALL	379	08	GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3339	NRPK	847		GN	3.8	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3356	WALL	408	80	GN	11.4	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3353	YLPR	156		GN	3.8	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3337	LKWH	475		GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3338	WHSC	462		GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3333	NRPK	568		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3340	LKWH	469		GN	3.8	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3341	WALL	509		GN	8.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3331	TRPR	76		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3332	NRPK	454		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3334	NRPK	413		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3335	NRPK	560		GN	1.9	23	05	92	GREGOIRE L.		12 459200 V 6257750
Α	3336	LKWH	386		GN	14.0	23	05	92	GREGOIRE L.		12 459200 V 6257750
В	69	NRPK	639		GN	3.8	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	73	NRPK	513		GN	6.4	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	68	LKWH	312		GN	11.4	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	71	NRPK	548		GN	8.9	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	65	LKWH	324		GN	6.4	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	72	NRPK	597		GN	8.9	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	67	LKWH	333		GN	8.9	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	70	NRPK	591		GN	6.4	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	59	LKWH	289		GN	6.4	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	57	NRPK	635		GN	8.9	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	66	LKWH	291		GN	8.9	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	74	NRPK	522		GN		-		_	LAC LA BICHE		12 438500 U 6077250
В		LKWH	321		GN					LAC LA BICHE		12 438500 U 6077250
В	61	LNSC	451		GN	11.4	18	06	92	LAC LA BICHE		12 438500 U 6077250
В	62	LKWH	275		GN					LAC LA BICHE		12 438500 U 6077250
В		LKWH	280		GN					LAC LA BICHE		12 438500 U 6077250
В		LKWH	278		GN					LAC LA BICHE		12 438 500 U 6077250
В	60	LNSC	468		GN	11.4	18	06	92	LAC LA BICHE		12 438500 U 6077250

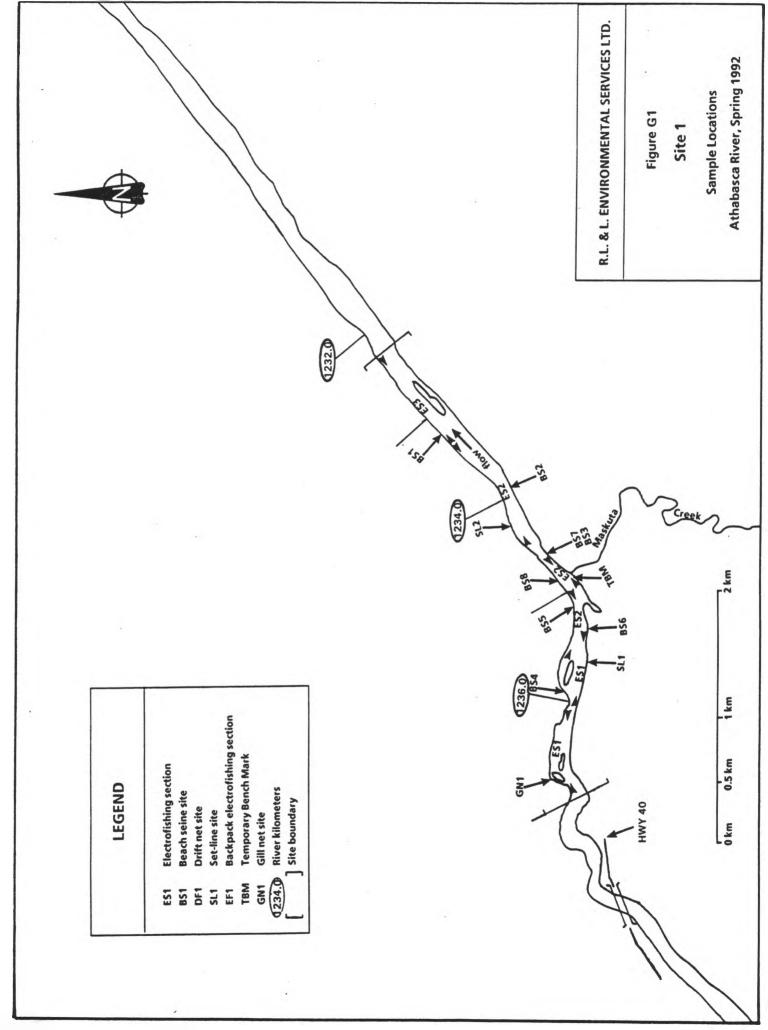
S	SNUM	SPEC	LEN	SE	CA	MESH	DA	МО	YR	LOC	SI	KM	UTM
=	====		====	==	==		==	==	==	************	==		
В	56	GOLD	336		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	37	NRPK	570		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	38	NRPK	631		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	55	LKWH	329		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	54	LNSC	447		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	36	LKWH	363		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	42	LKWH	420		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	43	LKWH	439		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	39	NRPK	535		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	40	LKWH	393		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	41	LKWH	414		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	47	WALL	460		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	48	WALL	394		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	44	GOLD	365		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	45	GOLD	357		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	46	WALL	442		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	52	LNSC	450		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	53	LNSC	413		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	49	WALL	434		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	50	LNSC	458		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750
В	51	LNSC	457		GN	11.4	11	06	92	LAKE ATHABASCA			12 500425 V 6501750

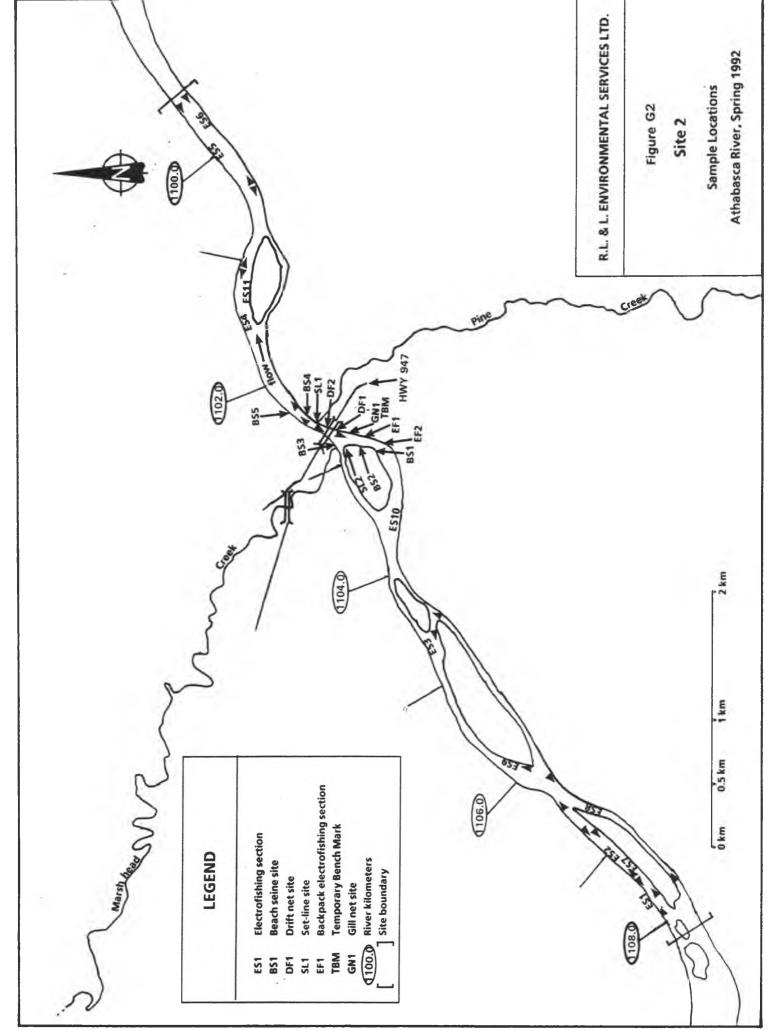
TOTALS:	SNUM	842,339.00
	LEN	108,568.00
	SEX	356.00
	MESH	1,029.20
	DAY	4,774.00
	MO	1,701.00
	YR	29,992.00
	SITE	961.00
	KM	149,793.10

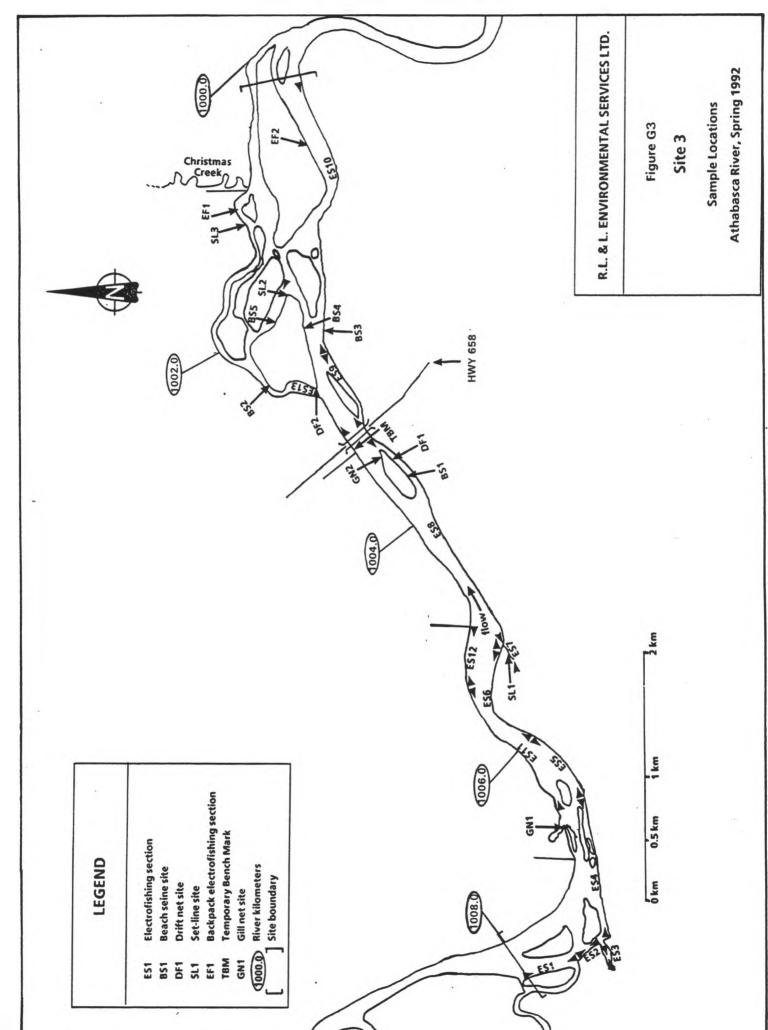
Printed 326 of the 326 records.

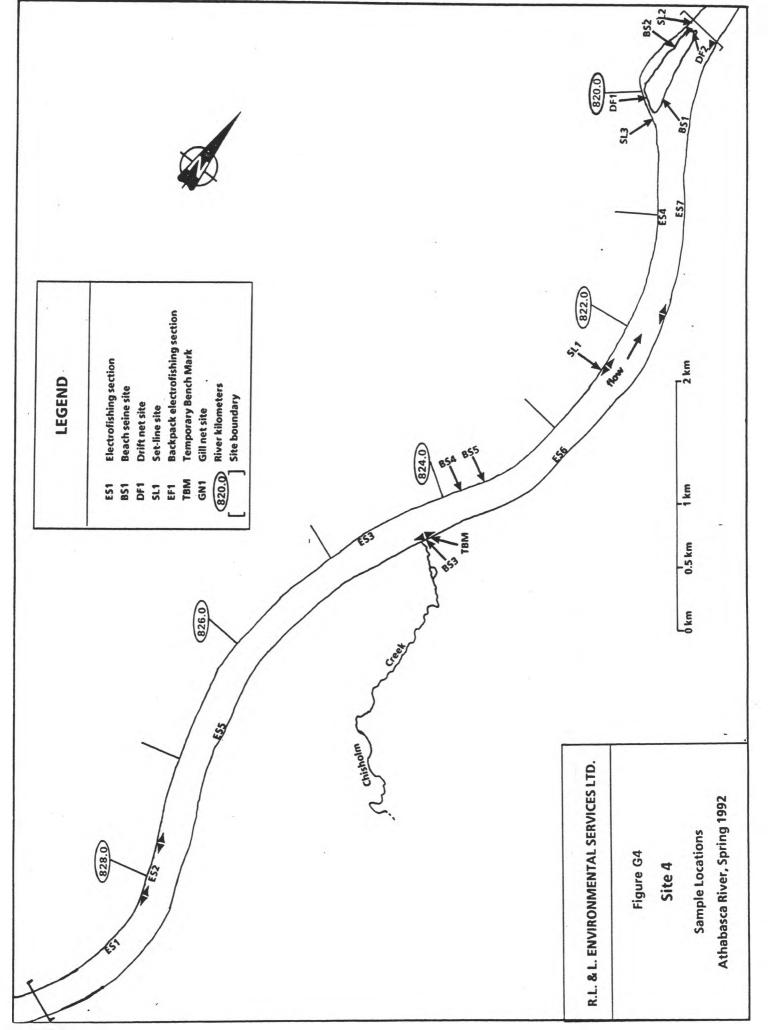
PRIMARY SORT FIELD: LOC

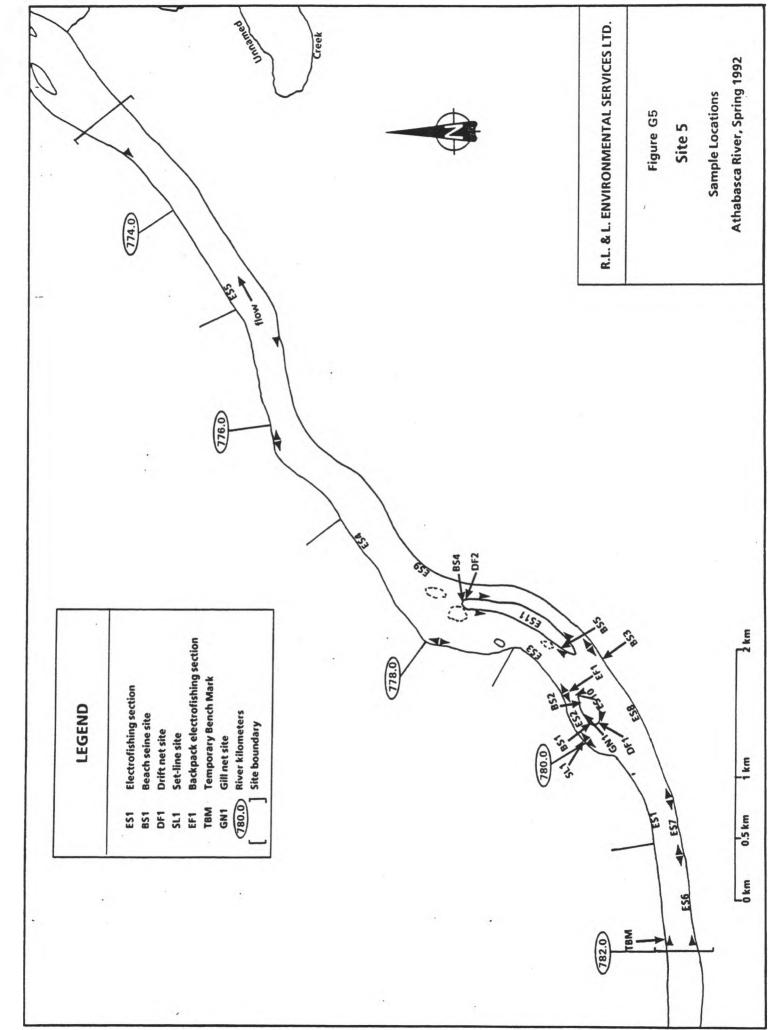
SELECTION CRITERIA:

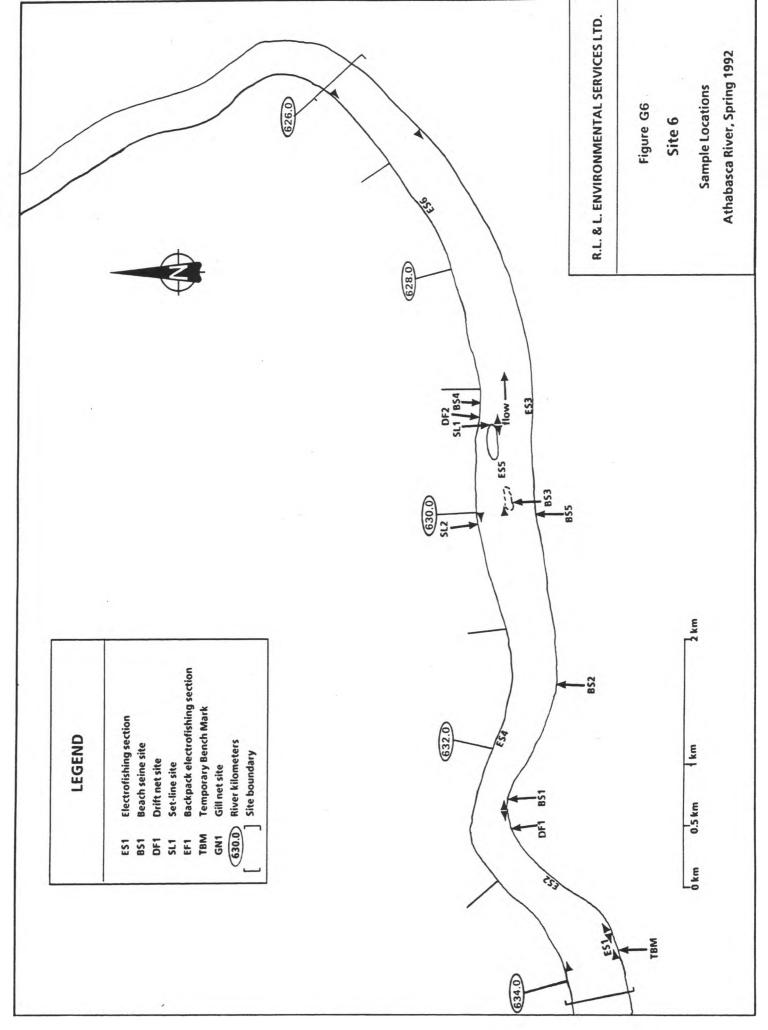

All records

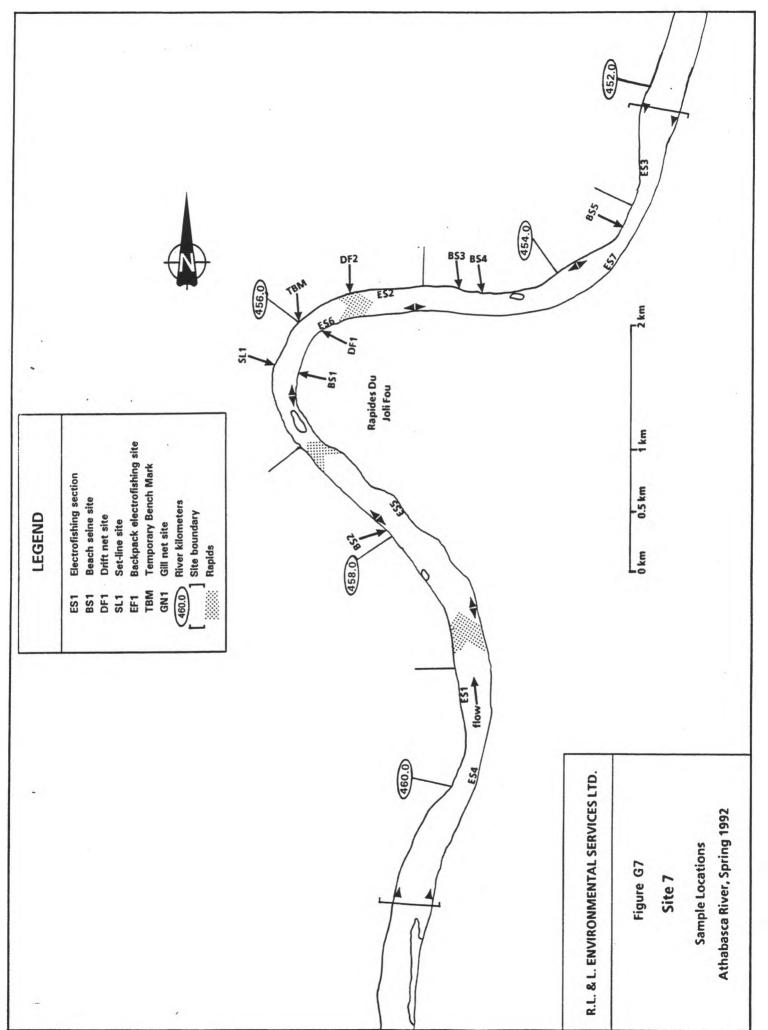

APPENDIX G

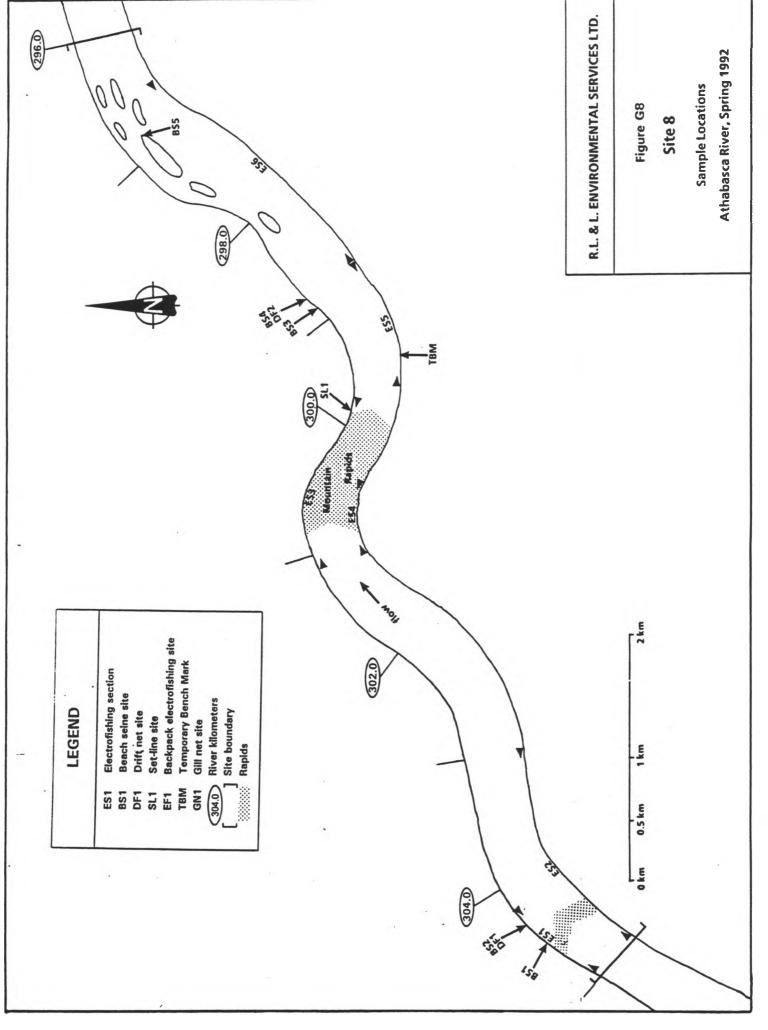

SAMPLING LOCATIONS AT INTENSIVE SURVEY SITES

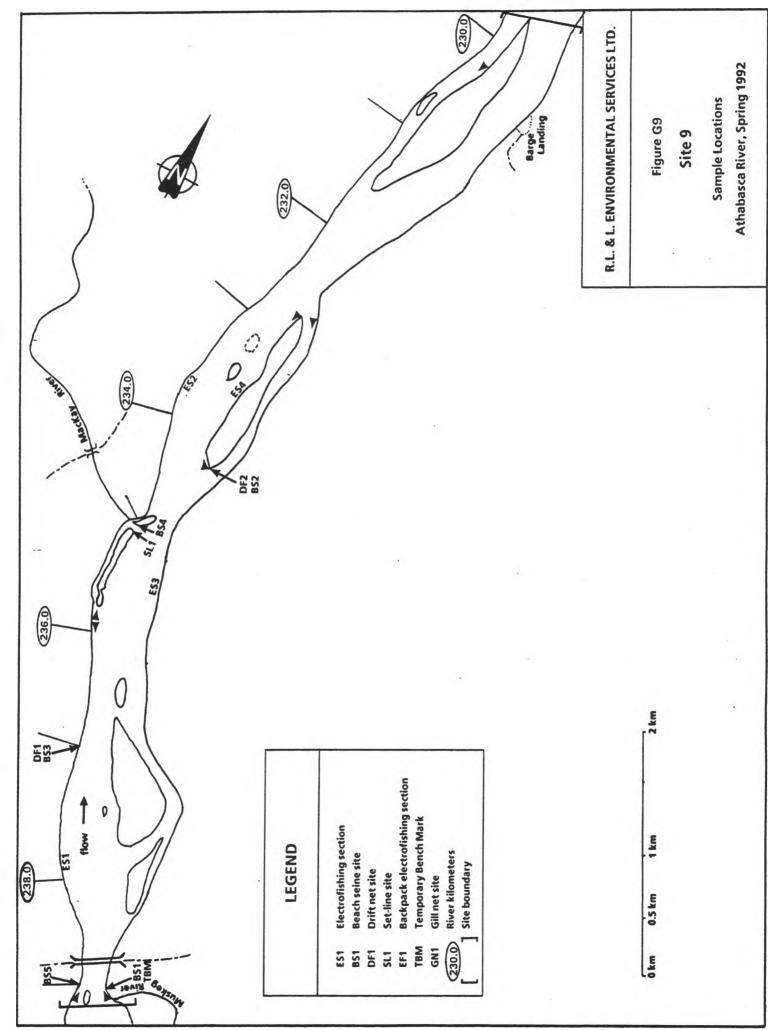

Table G1. Universal Transverse Mercator Coordinates (UTM) for release areas for Floy-tagged fish, Athabasca River, 1992.

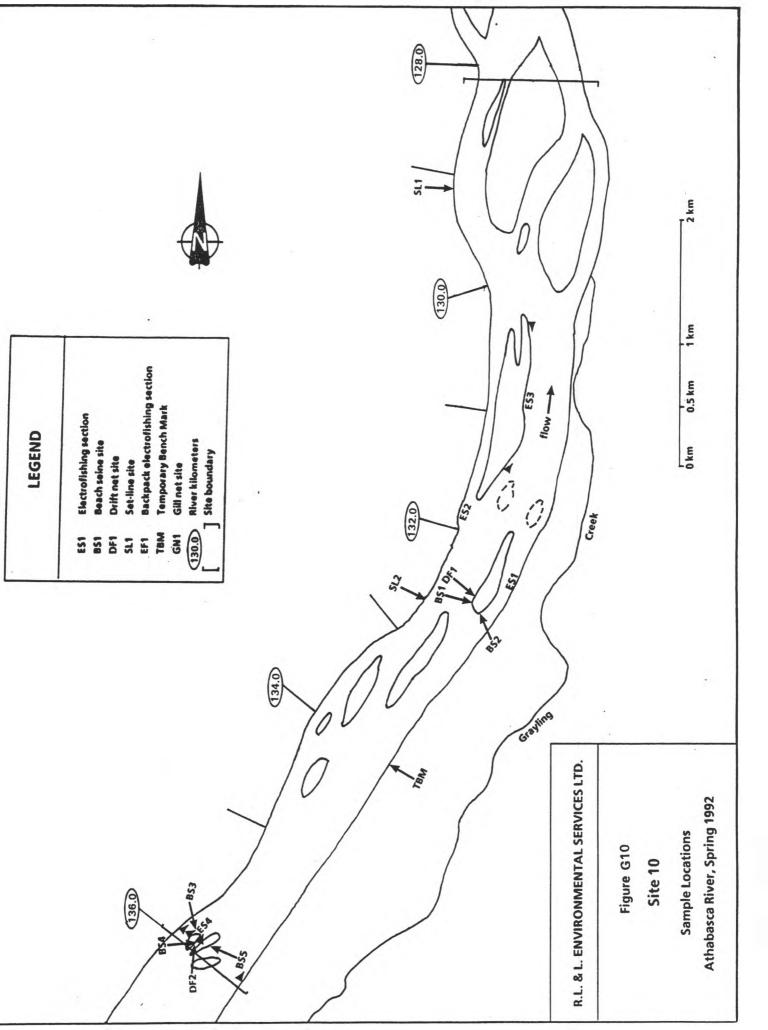

Site	Upstream End	Downstream End
1	11 454600 U 5914600	11 458500 U 5916100
2	11 522654 U 5997451	11 526509 U 6000800
3	11 600466 U 6002393	11 607659 U 6002700
4	11 680256 U 6083805	11 679328 U 6092957
5	12 313499 U 6117442	12 319863 U 6121642
6	12 380412 U 5990124	12 390066 U 6093858
7	12 398920 V 6212331	12 401710 V 6217521
8	12 466329 V 6280816	12 470096 V 6282414
9	12 463062 V 6332184	12 462965 V 6340983
10	12 477130 V 6425723	12 479046 V 6432386

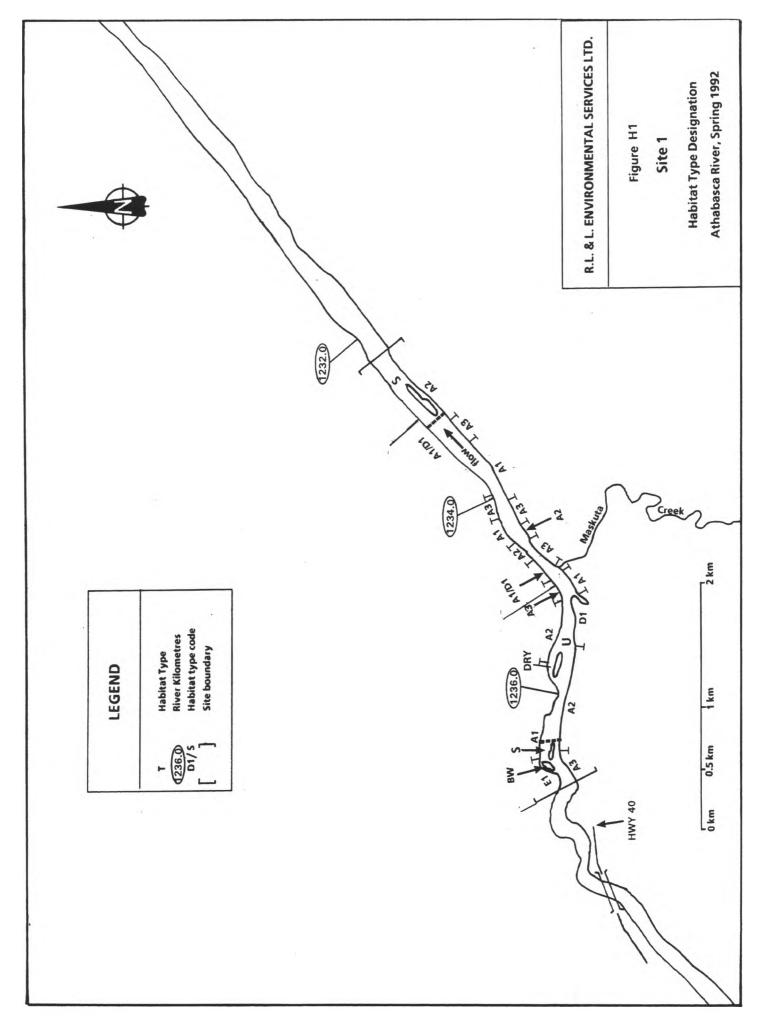


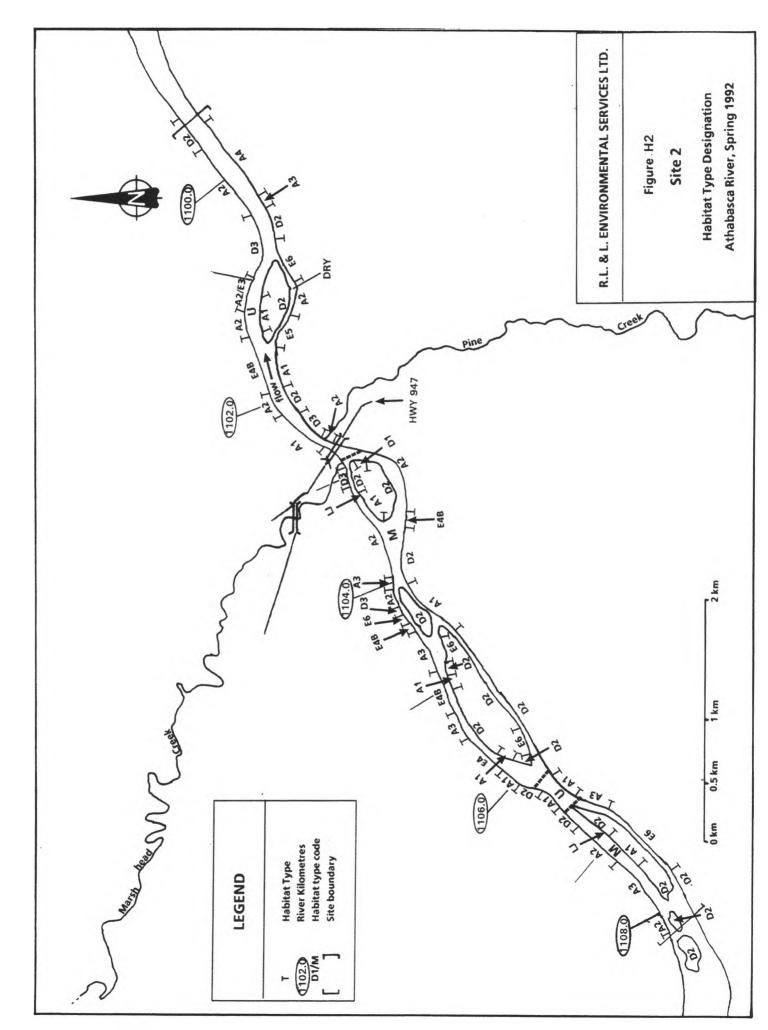


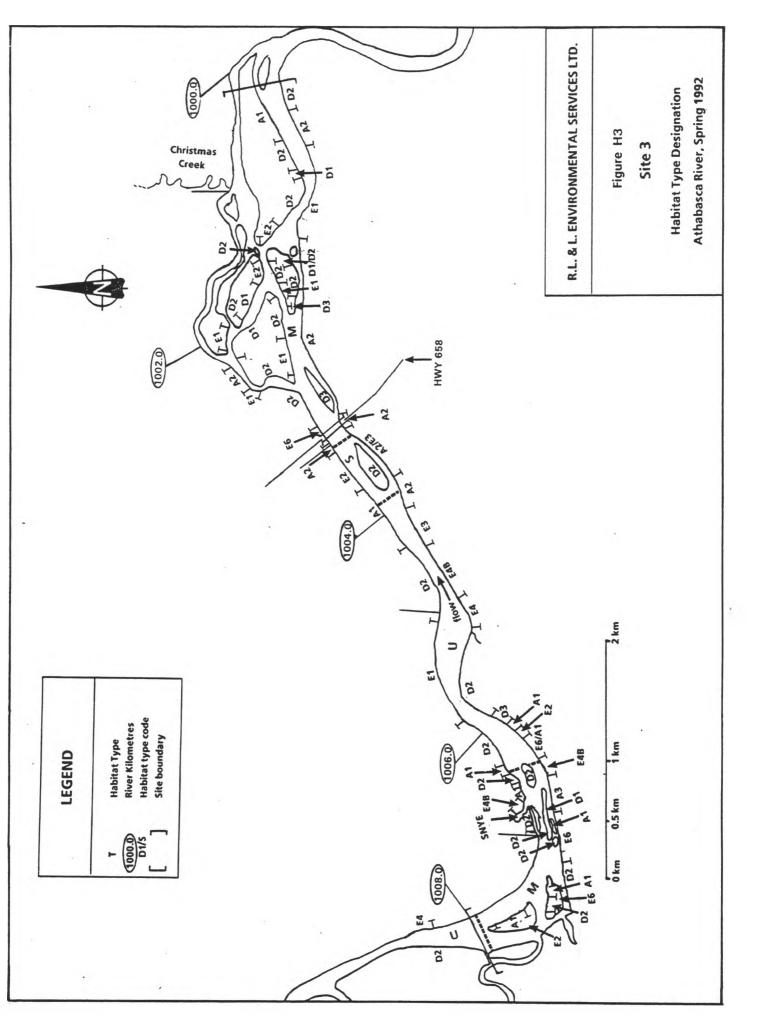


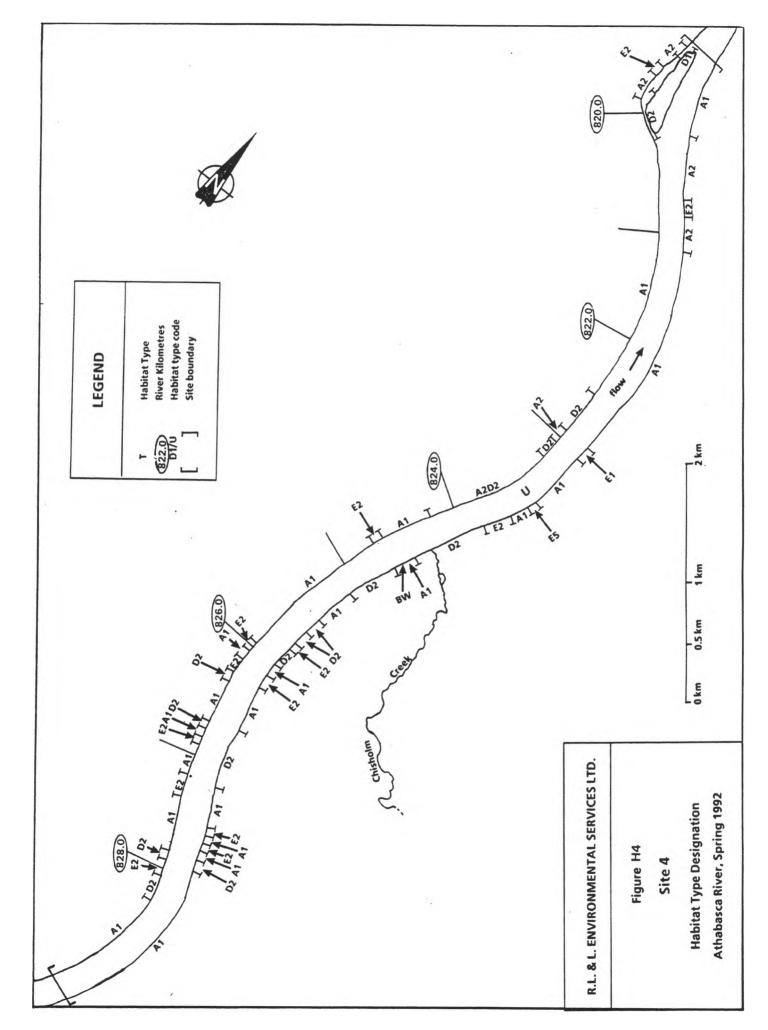


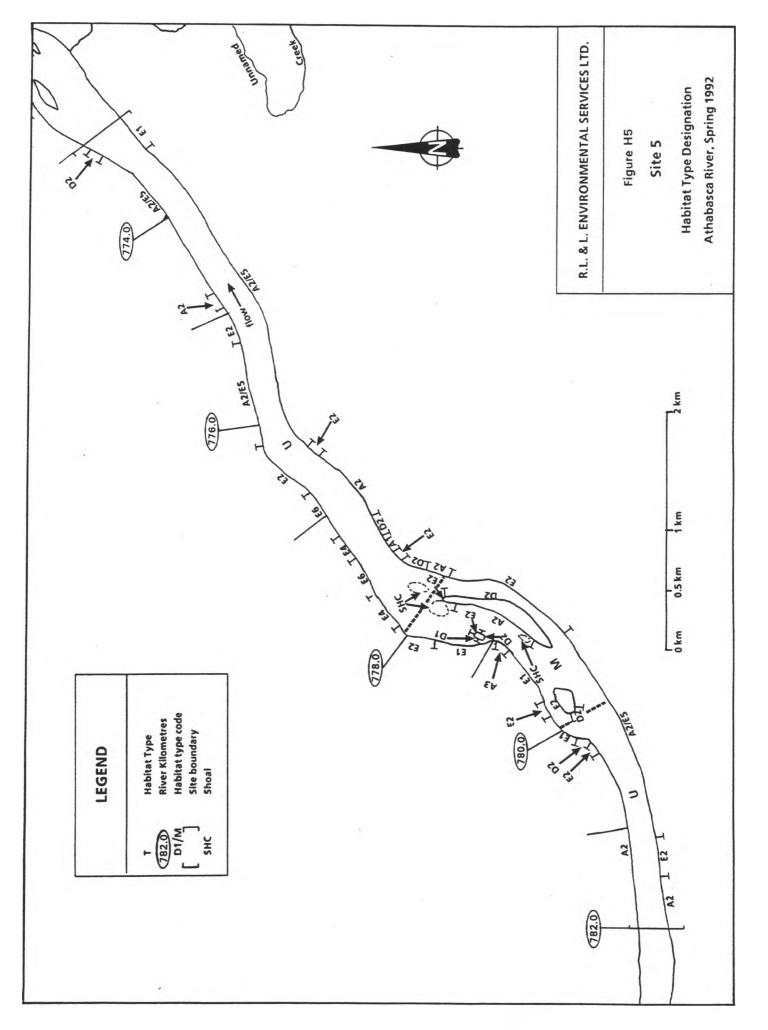


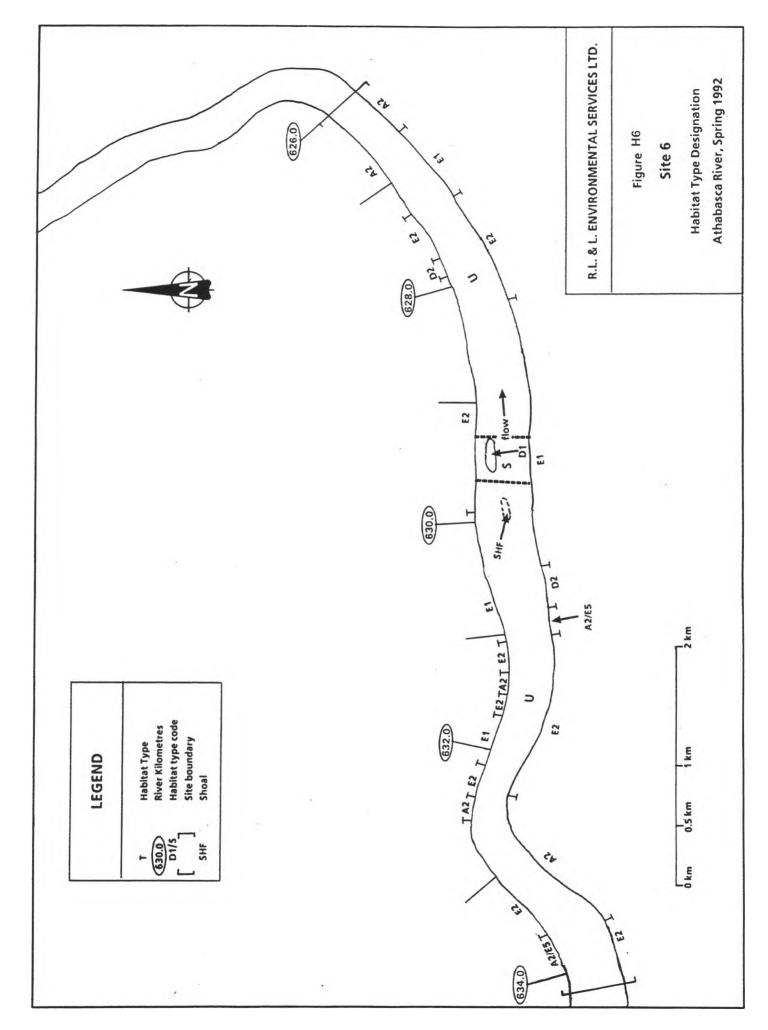


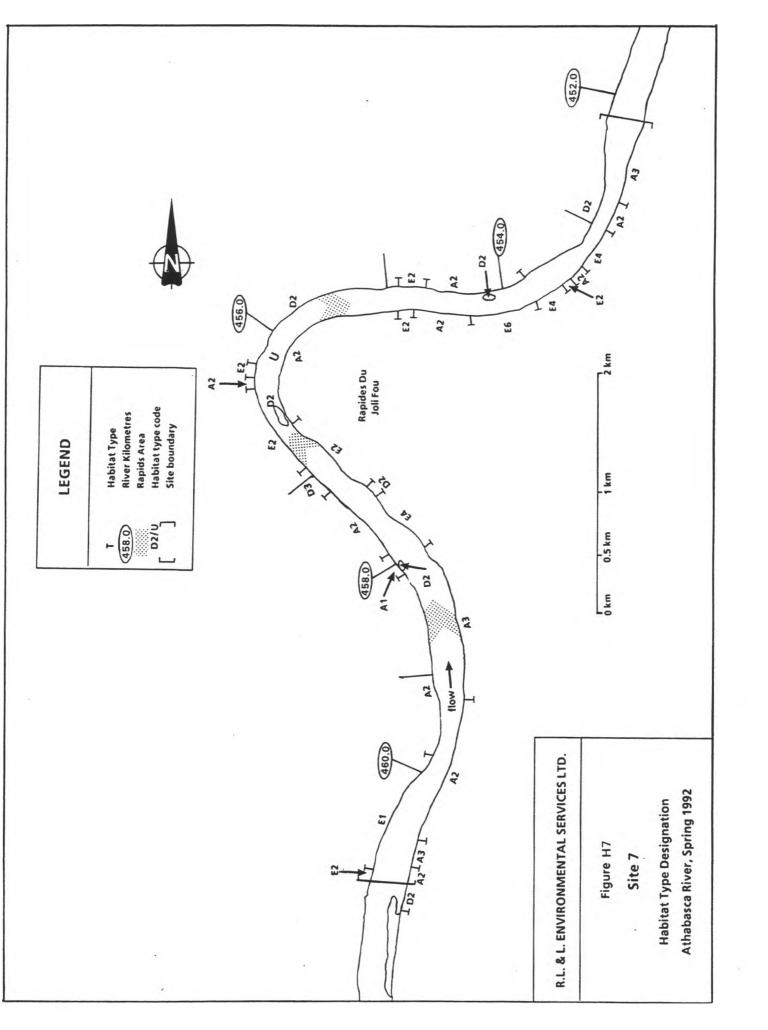


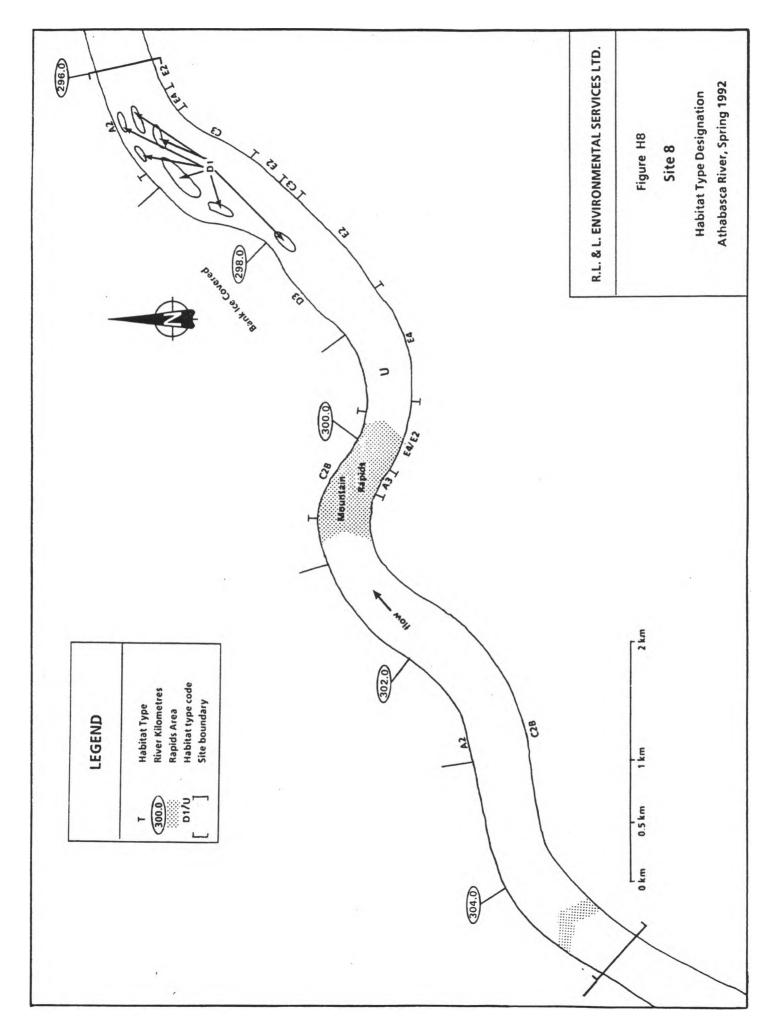


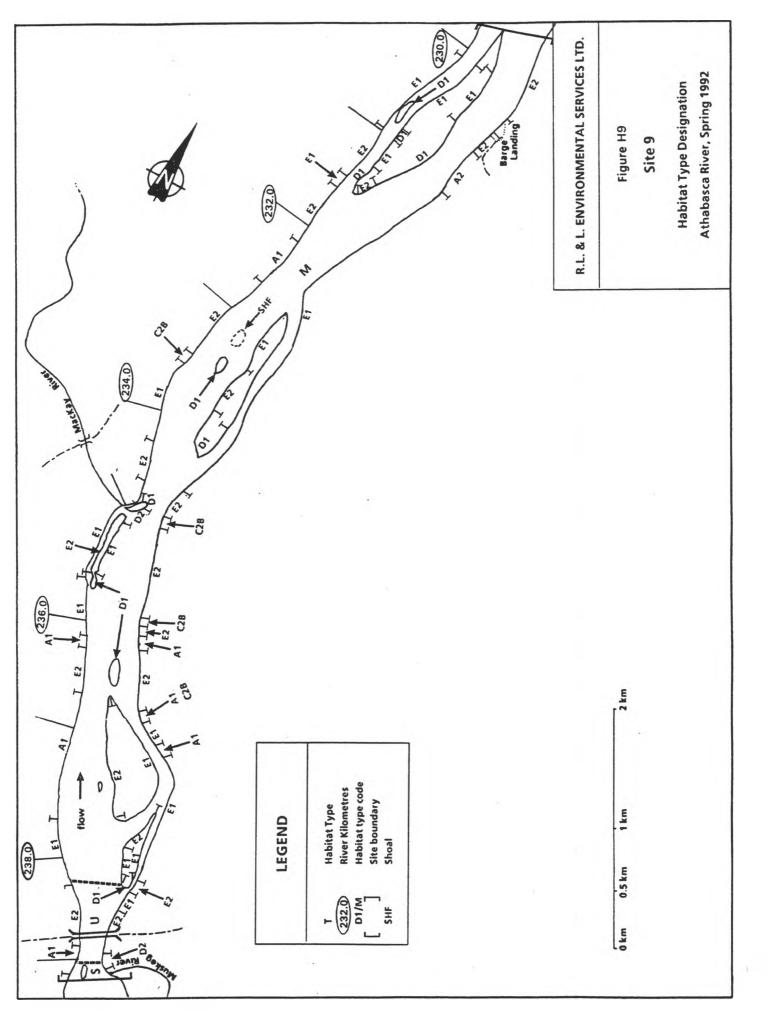

APPENDIX H

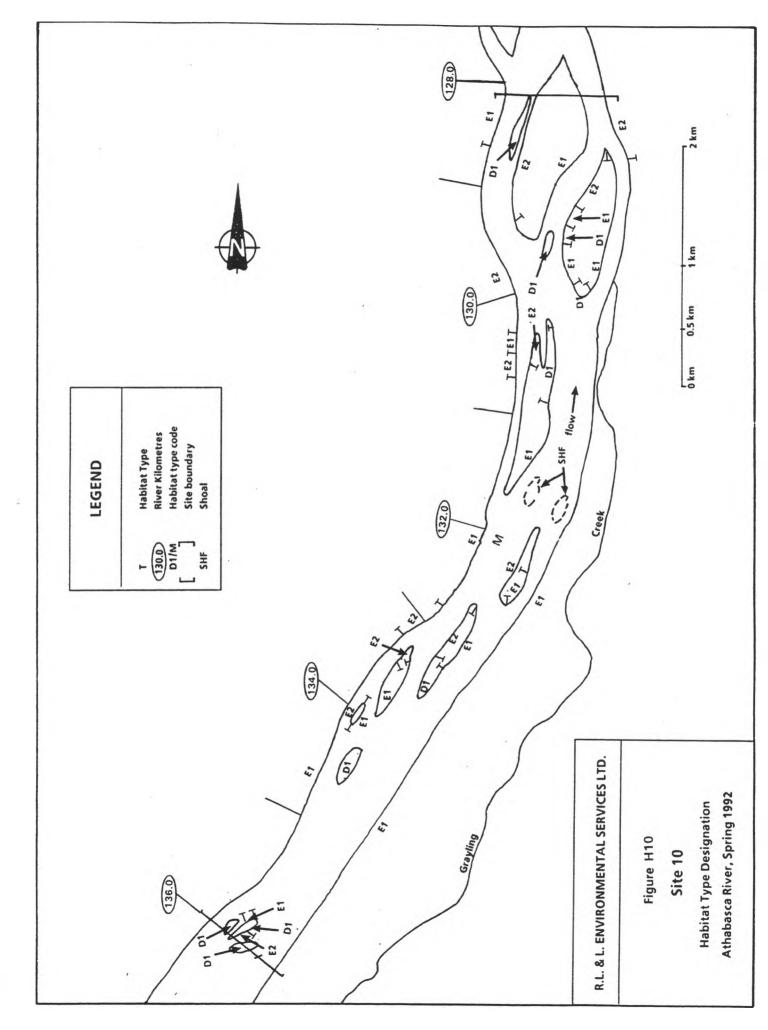

DISTRIBUTION OF BANK HABITAT TYPES AT INTENSIVE SURVEY SITES

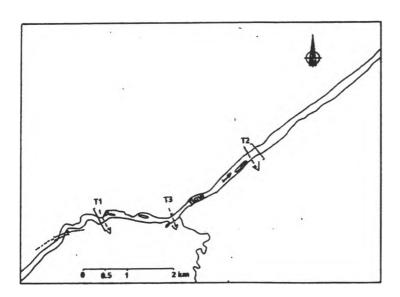


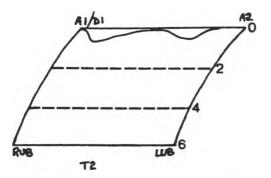




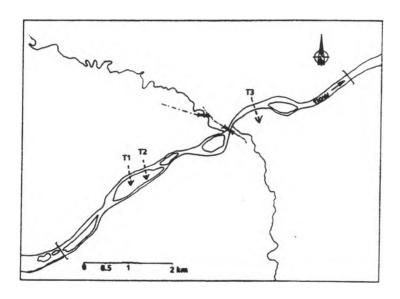


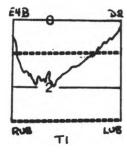


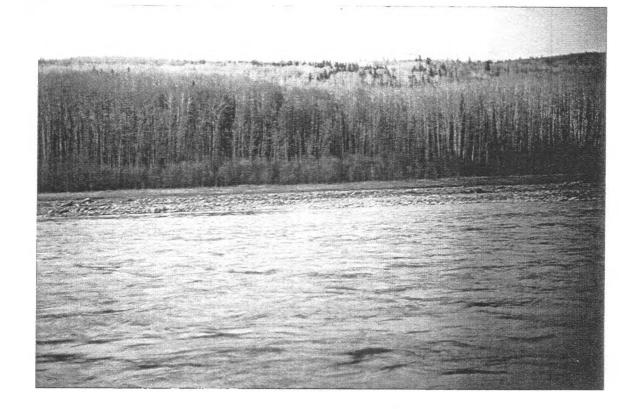


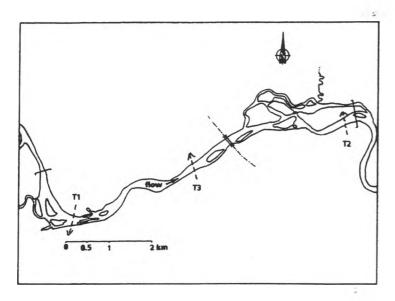


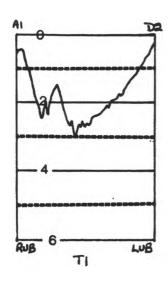
APPENDIX I

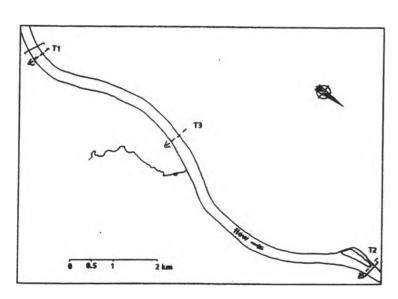

PHOTOGRAPHS AND SITE MAPS AT TRANSECT LOCATIONS

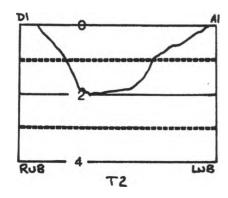


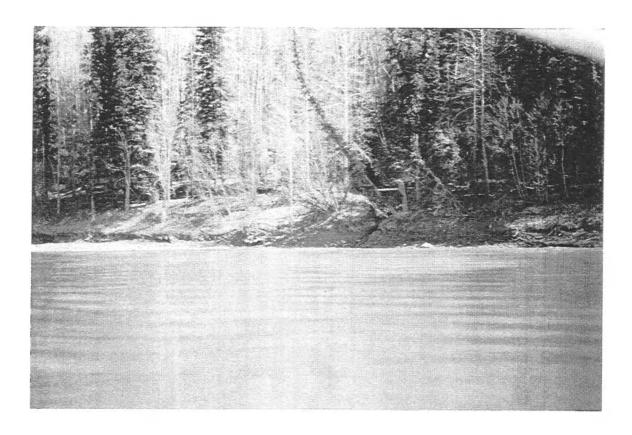


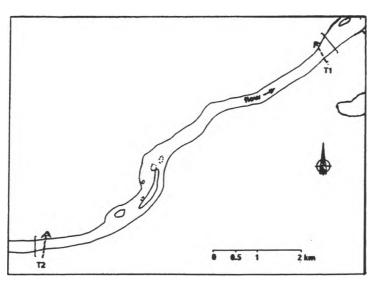


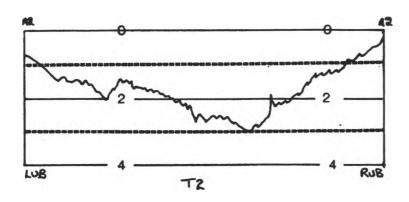


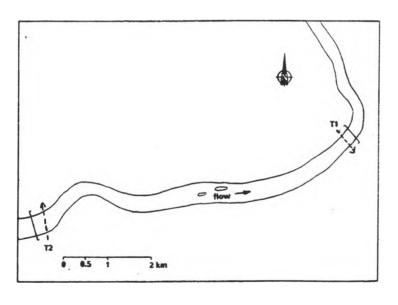


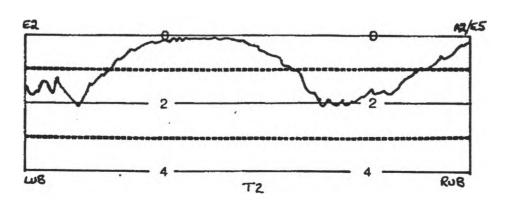


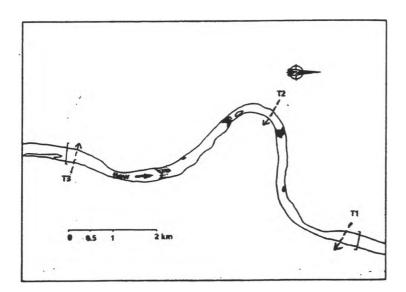


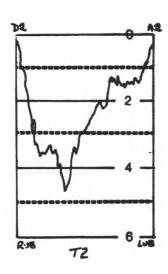


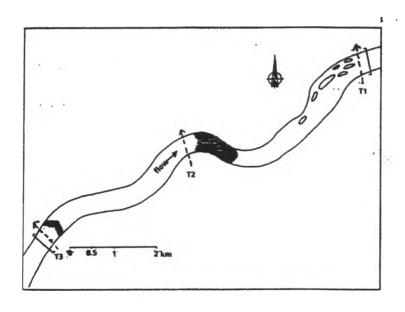


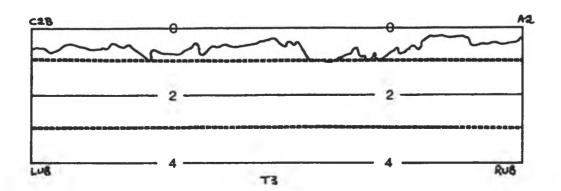


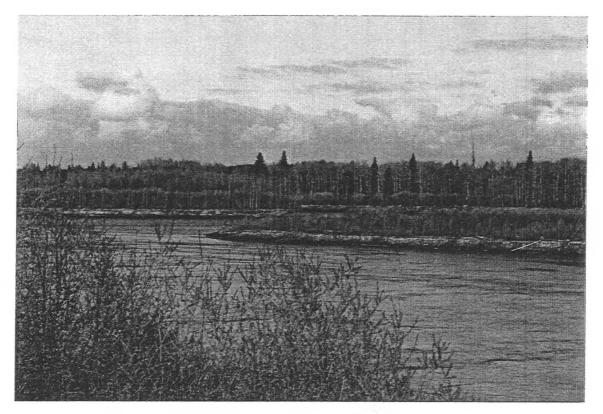


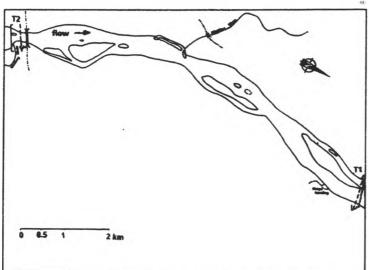


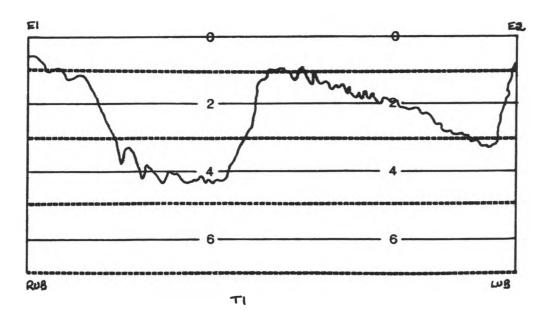


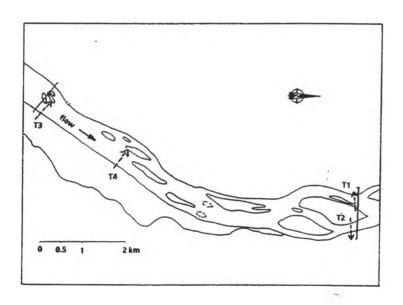


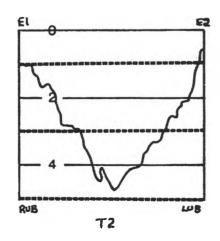












APPENDIX J

List of Tagged Fish

TAG COLOUR	NUMBER	SPECIES	LENGTH	WEIGHT	CAPT SEX METH	OD DAY	MONTH		RIVER	SITE (Km)	CAPT. CODE	SAMPLE NUMBER
ORANGE	1207	NRPK	552	1283	7 ES		4	92 92	ATHAB	1106.7	0	1 7
ORANGE	1208	MNWH	300	301	0 ES		4	92	ATHAB	1106.7 1106.7	0	8
ORANGE	1209	MNWH	256	211 236	0 ES		4	92	ATHAB	1106.7	0	9
ORANGE	1210 1211	MNWH	275 269	270	0 ES		4	92	ATHAB	1106.7	ō	10
ORANGE	1212	ARGR	315	400	0 E			92	ATHAB	1102.7	ō	17
ORANGE	1213	ARGR	274	264	0 E		4	92	BAHTA	1102.7	0	25
ORANGE	1214	ARGR	251	209	0 ES	22	4	92	ATHAB	1102.7	0	27
ORANGE	1215	MNWH	285	269	0 E		4	92	ATHAB	1102.7	0	30
ORANGE	1216	MNWH	347	409	0 ES		4	92	ATHAB	1102.7	0	31
ORANGE	1217	HWMM	285	287	0 ES		4	92	ATHAB	1102.7	0	32
ORANGE	1218	MNWH	260	206	0 E			92	ATHAB	1102.7	0	33
ORANGE	1219	MNWH	261	245	0 ES		4	92 92	ATHAB ATHAB	1102.7 1102.7	0	34 36
ORANGE	1220	MNWH	288	285 274	0 ES			92	ATHAB	1102.7	0	37
ORANGE	1221 1222	MNWH	294 255	182	0 E		4	92	ATHAB	1102.7	0	45
ORANGE	1223	MNWH ARGR	258	218	0 E		4	92	ATHAB	1102.7	o o	57
ORANGE	1224	MNWH	253	173	0 E		4	92	ATHAB	1101	0	66
ORANGE	1225	MNWH	283	276	0 E		4	92	ATHAB	1099.5	0	76
ORANGE	1235	ARGR	374	0	0 ES	22	4	92	ATHAB	1099.5	0	77
ORANGE	1236	ARGR	268	257	0 E	22	4	92	ATHAB	1099.5	0	78
ORANGE	1237	ARGR	251	175	0 E	22	4	92	ATHAB	1099.5	0	79
ORANGE	1238	MNWH	255	200	0 E			92	ATHAB	1099.5	0	81
ORANGE	1239	MNWH	398	761	0 E		4	92	ATHAB	1106.6	0	123
ORANGE	1240	MNWH	260	196	0 E			92	ATHAB	1106.6	0	124
ORANGE	1241	MNWH	280	276	0 E			92 92	ATHAB	1106.6	0	125 126
ORANGE	1242	MNWH	263	218	0 E		4	92	ATHAB ATHAB	1106.6 1106.6	0	128
ORANGE	1243 1244	MNWH	251 385	198 677	0 E			92	ATHAB	1106.1	0	138
ORANGE	1245	MNWH	297	357	0 E		4	92	ATHAB	1106.1	ō	139
ORANGE	1246	MNWH	330	416	0 E			92	ATHAB	1106.1	0	140
ORANGE	1247	MNWH	258	226	0 E		4	92	ATHAB	1106.1	0	143
ORANGE	1248	ARGR	285	326	0 E		4	92	ATHAB	1106.1	0	145
ORANGE	1249	RNTR	281	271	0 E	23	4	92	BAHTA	1106.1	0	146
ORANGE	1250	RNTR	347	513	0 E			92	ATHAB	1106.1	0	147
ORANGE	3295	LNSC	365	550	17 E			92	ATHAB	1104.5	0	149
ORANGE	3296	ARGR	280	260	0 E		4	92	ATHAB	1104.5	0	150
ORANGE	3297	ARGR	281	313	0 E		4	92	ATHAB	1104.5	0	151
ORANGE	3298	MNWH	319	369	0 E		4	92	ATHAB	1104.5	0	153
ORANGE	3299	MNWH	268	237	0 E:		4	92 92	ATHAB	1104.5	0	154 155
ORANGE	3300	MNWH	261	195	0 E			92	ATHAB	1104.5 1104.5	0	160
ORANGE	3326	MNWH	254 322	186 373	0 E			92	ATHAB	1104.3	0	171
ORANGE	3327	HWMM	259	211	0 E			92	ATHAB	1102.7	0	172
ORANGE	3328 3329	MNWH	250	196	0 E		4	92	ATHAB	1102.7	ő	173
ORANGE	3330	ARGR	305	389	0 E		4	92	ATHAB	1101.5	Ö	183
ORANGE	3331	ARGR	279	258	0 E	23	4	92	ATHAB	1101.5	0	184
ORANGE	3332	ARGR	290	334	0 E	23	4	92	BAHTA	1101.5	0	185
ORANGE	3333	ARGR	292	346	0 E		4	92	ATHAB	1101.5	0	186
ORANGE	3334	MNWH	344	433	0 E		4	92	BAHTA	1101.5	0	191
ORANGE	3335	HWMM	285	259	0 E			92	ATHA8	1101.5	0	192
ORANGE	3336	MNWH	254	213	0 E			92 92	BAHTA	1101.5	0	193
ORANGE	3337	MNWH	305	318 383	0 E		4	92	ATHAB ATHAB	1101.5 1101.5	0	194 195
ORANGE	3338	MNWH	304 260	224	0 E:		4	92	ATHAB	1101.5	0	196
ORANGE	3339 3340	MNWH	258	202	0 E			92	ATHAB	1101.5	ő	197
ORANGE	3341	BLTR	342	472	0 E		4	92	ATHAB	1101.5	Ö	216
ORANGE	3342	MNWH	444	1063	0 E		4	92	MCLEO	1026.3	ō	260
ORANGE	3343	MNWH	269	233	0 E		4	92	MCLEO	1026.3	0	266
ORANGE	3344	MNWH	419	1190	0 E	25	4	92	ATHAB	1007.5	0	274
ORANGE	3345	WALL	338	428	8 £:	25	4	92	ATHAB	1007.5	0	275
ORANGE	3346	MNWH	371	693	0 E	25	4	92	ATHAB	1007.4	0	281
ORANGE	3347	MNWH	376	785	0 E			92	ATHAB	1007.4	0	282
ORANGE	3348	MNWH	269	264	0 E			92	ATHAB	1007.4	0	283
ORANGE	3349	MNWH	392	772	0 E			92	ATHAB	1007.4	0	284
ORANGE	3350	MNWH	379 370	719 674	0 E:			92 92	ATHAB ATHAB	1007.4 1007.4	0	285 287
ORANGE	3351 3352	MNWH	280	294	0 E			92	ATHAB	1006.4	0	309
ORANGE	3353	MNWH	381	759	0 E			92	ATHAB	1006.4	Ö	310
ORANGE	3354	MNWH	445	1225	0 E			92	ATHAB	1005.5	ō	318
ORANGE	3355	MNWH	358	639	0 E			92	ATHAB	1005.5	0	319
ORANGE	3356	MNWH	255	189	0 E			92	ATHAB	1005.5	0	326
ORANGE	3357	NRPK	714	2523	0 E			92	ATHAB	1005.5	0	332
ORANGE	3358	NRPK	736	3507	0 E			92	ATHAB	1005.5	0	333
ORANGE	3359	MNWH	406	803	0 E			92	ATHAB	1003	0	335
ORANGE	3360	MNWH	388	811	0 E			92	ATHAB	1003	0	336
ORANGE	3361	MNWH	419 463	973 1452	0 E			92 92	BAHTA	1003 1003	0	337 338
ORANGE	3362		370	743	0 E			92	ATHAB	1003	0	339
ORANGE	3363 3364	MNWH	370	449	0 E			92	ATHAB	1003	0	340
ORANGE	3364	MNWH	332	449	0 E			92	ATHAB	1005	2	427
DRANGE	3365	MNWH	401	894	0 E			92	ATHAB	1003	ō	342
ORANGE	3366	MNWH	371	739	0 E			92	ATHAB	1003	ō	343
ORANGE	3367	MNWH	396	820	0 E	25	4	92	ATHAB	1003	0	354
ORANGE	3368	MNWH	260	227	0 E			92	ATHAB	1003	0	353
ORANGE	3369	MNWH	391	839	0 E			92	ATHAB	1002.4	0	357
ORANGE	3370	HWMM	286	296	0 E			92	ATHAB	1002.4	0	358
ORANGE	3371	MNWH	430	1056	0 E			92	ATHAB	1000.5	0	364
ORANGE	3372	MNWH	388	734 545	0 E			92 92	ATHAB	1000.5 1000.5	0	365 366
ORANGE	3373 3374	MNWH	354 294	342	0 E			92	ATHAB	1000.5	0	367
ORANGE	3375	MNWH	356	538	0 E			92	ATHAB	1000.5	0	368
ORANGE	3376	MNWH	291	303	0 E			92	ATHAB	1000.5	o o	369
ORANGE	3377	MNWH	303	345	0 E			92	ATHAB	1000.5	0	370

FISH CAPTURED AND TAGGED BY R.L.&L. ENVIRONMENTAL SERVICES LTD.

COLOUR	NUMBER	SPECIES	LENGTH	WEIGHT		CAPTURE		монтн	YEAR	RIVER	SITE (Km)	CAPT.	SAMPLE NUMBER
ORANGE	3378	WALL	424 454	754 1000	8 8	ES ES	25 25	4	92 92	ATHAB	1000.5	0	376
ORANGE	3379 3380	BURB	491	720	ő	SL	26	4	92	ATHAB ATHAB	1000.5 1005.6	0	377 404
ORANGE	3381	NRPK	923	6900	0	SL	26	4	92	ATHAB	1005.6	ō	405
ORANGE	3382	NRPK	529	1180	17	ES	26	4	92	ATHAB	1005.5	0	412
ORANGE	3383 3384	MNWH	378 291	594 346	0	ES ES	26 26	4	92 92	ATHAB ATHAB	1005.5 1005.5	0	416 417
ORANGE	3385	MNWH	303	335	ő	ES	26	4	92	ATHAB	1005.5	Ö	418
ORANGE	3386	MNWH	380	772	Ō	ES	26	4	92	ATHAB	1005	Ö	428
ORANGE	3387	MNWH	328	525	0	ES	26	4	92	ATHAB	1005	٥	429
ORANGE	3388	MNWH	301	353	0	ES	26	4	92 92	ATHAB	1005	0	430
ORANGE ORANGE	3389 3390	HWMM	296 279	339 255	0	ES ES	26 26	4	92	ATHAB ATHAB	1005 1001.4	0	432 435
ORANGE	3391	MNWH	292	308	ŏ	ES	26	4	92	ATHAB	1001.4	ő	436
ORANGE	3392	WALL	470	1025	0	ES	28	4	92	PEMBI	845.5	0	498
ORANGE	3393	WALL	479	1148	0	ES	28	4	92	PEMB!	845.5	0	499
ORANGE ORANGE	3394 3395	BURB	378 341	236 220	0	ES ES	28 28	4	92 92	PEMBI PEMBI	845.5 845.5	0	500 501
ORANGE	3396	GOLD	397	775	20	ES	28	4	92	PEMBI	845.5	0	502
ORANGE	3397	GOLD	374	586	10	ES	28	4	92	PEMBI	845.5	0	503
ORANGE	3398	BURB	731	2291	0	ES	28	4	92	ATHAB	828.4	0	529
ORANGE ORANGE	3399 3400	WALL NRPK	353 778	384 4256	0	ES ES	28 28	4	92 92	ATHAB ATHAB	828.4 822.7	0	536 559
ORANGE	3401	BURB	697	1745	a	ES	28	4	92	ATHAB	822.7	0	597
ORANGE	3402	WALL	304	265	Ō	ES	28	4	92	ATHAB	822.7	ō	601
ORANGE	3403	WALL	269	199	0	ES	28	4	92	ATHAB	822.7	0	602
ORANGE	3404	BURB	407	306	0	ES	28	4	92	ATHAB	822.7	0	609
ORANGE ORANGE	3405 3406	LKWH MNWH	491 417	1240 813	0	ES ES	28 28	4	92 92	ATHAB ATHAB	819.7 819.7	0	635 646
ORANGE	3407	MNWH	379	740	Ö	ES	28	4	92	ATHAB	819.7	0	647
ORANGE	3408	WALL	337	333	8	ES	28	4	92	ATHAB	819.7	ō	665
ORANGE	3409	WALL	311	295	0	ES	28	4	92	ATHAB	819.7	0	666
ORANGE ORANGE	3411	HWMM	409 340	799 439	0 10	ES ES	29 29	4	92 92	ATHAB ATHAB	824.2 824.2	0	868 922
ORANGE	3412 3413	GOLD GOLD	340	365	10	ES	29	4	92	ATHAB	824.2	Ö	922
ORANGE	3414	GOLD	339	462	10	ES	29	4	92	ATHAB	824.2	ō	924
ORANGE	3415	GOLD	355	465	10	ES	29	4	92	ATHAB	824.2	0	925
ORANGE	3416	GOLD	361	567	20	ES	29	4	92	ATHAB	824.2	0	926
ORANGE ORANGE	3417 3418	GOLD WALL	319 290	348 221	10 0	ES ES	29 29	4	92 92	ATHAB ATHAB	824.2 824.2	0	927 928
ORANGE	3419	MNWH	335	462	Ö	ES	29	4	92	ATHAB	824.2	0	935
ORANGE	3419	NRPK	536	922	0	ES	29	4	92	ATHAB	821.9	0	936
ORANGE	3420	MNWH	357	597	0	ES	29	4	92	ATHAB	821.9	٥	937
ORANGE	3421 3422	MNWH	416 376	956 717	0	ES ES	29 29	4	92 92	ATHAB ATHAB	821.9 821.9	0	947 948
ORANGE ORANGE	3422	MNWH BURB	584	1008	0	ES	29	4	92	ATHAB	821.9	٥	957
ORANGE	3424	WALL	308	274	ŏ	ES	29	4	92	ATHAB	821.9	ō	994
ORANGE	3426	WALL	342	403	0	ES	29	4	92	ATHAB	821.9	0	995
ORANGE	3427	WALL	401	684	0	ES	29	4	92	ATHAB	821.9	0	996
ORANGE ORANGE	3428 3429	HWMM	364 419	688 921	0	ES ES	29 29	4	92 92	ATHAB BAHTA	819.5 819.5	0	998 999
ORANGE	3430	MNWH	378	707	o o	ES	29	4	92	ATHAB	819.5	٥	1001
ORANGE	3431	GOLD	352	516	10	ES	29	4	92	ATHAB	819.5	0	1024
ORANGE	3432	GOLD	326	408	20	ES	29	4	92	ATHAB	819.5	0	1025
ORANGE	3433	WALL	266	193 189	0	ES ES	29 29	4	92 92	ATHAB BAHTA	819.5	0	1027
ORANGE ORANGE	3434 3435	WALL WALL	279 254	439	0	ES	29	4	92	ATHAB	819.5 819.5	0	1028 1029
ORANGE	3436	WALL	323	291	ő	ES	29	4	92	BAHTA	819.5	ō	1030
ORANGE	3437	WALL	376	479	8	ES	29	4	92	ATHAB	819.5	0	1031
ORANGE	3438	WALL	404	638	0	ES ES	29	4	92 92	ATHAB BAHTA	819.5	0	1032 1033
ORANGE ORANGE	3439 3440	WALL WALL	477 267	1047 164	0	SŁ	29 30	4	92	ATHAB	819.5 820.4	0	1105
ORANGE	3441	HWMM	338	533	0	ES	2	5	92	ATHAB	780	ō	1188
ORANGE	3442	MNWH	394	681	0	ES	2	5	92	ATHAB	780	0	1189
ORANGE	3443	WHSC	420	1027	8	ES	2	5	92	ATHAB	780	0	1192
ORANGE ORANGE	3444 3445	WHSC NRPK	495 681	1998 2668	0	ES ES	2	5 5	92 92	ATHAB ATHAB	780 780	0	1194 1201
ORANGE	3446	LNSC	403	841	o	ES	2	5	92	ATHAB	780	0	1202
ORANGE	3447	HWMM	324	451	ō	ES	2	5	92	ATHAB	780	ā	1203
ORANGE	3448	HWMM	430	1106	0	ES	2	5	92	ATHAB	780	0	1204
ORANGE	3449	WHSC	313	419	0	ES ES	2	5 5	92 92	ATHAB	780	0	1205
ORANGE YELLOW	3450 373	WHSC NRPK	292 600	390 1479	0 7	ES	2 5	5	92	ATHAB ATHAB	780 627	0 2	1206 1678
YELLOW	665	NRPK	528	978	9	ES	5	5	92	ATHAB	630	2	1740
YELLOW	1260	MNWH	350	506	0	ES	5	5	92	ATHAB	630	2	1729
YELLOW	1686	WALL	315	284	0	ES	5	5	92	ATHAB	630	2	1730
YELLOW	2001 2002	LNSC BURB	408 835	824 3131	0	ES ES	2	5 5	92 92	ATHAB ATHAB	780 780	0	1207 1209
YELLOW	2002	WHSC	450	1349	Ö	ES	2	5	92	BAHTA	780	٥	1210
YELLOW	2004	WHSC	295	336	ō	ES	2	5	92	ATHAB	780	ō	1212
YELLOW	2005	WALL	322	300	0	ES	2	5	92	ATHAB	780	0	1216
ELLOW	2006	WHSC	413	1051	8	ES	2	5	92	ATHAB	780	0	1217
ELLOW	2007	LNSC LNSC	326 339	483 502	0	ES ES	2	5 5	92 92	ATHAB ATHAB	780 780	0	1218 1221
ELLOW	2009	MNWH	430	903	ō	ES	2	5	92	ATHAB	780	ō	1222
ELLOW	2010	WHSC	487	1769	0	ES	2	5	92	ATHAB	779.7	0	1227
ELLOW	2011	LNSC	305	351	0	ES	2	5	92	ATHAB	779.7	0	1228
ELLOW	2012 2013	BURB	688 361	2062 615	0	ES ES	2	5 5	92 92	ATHAB ATHAB	778.3 778.3	0	1234
VELL OW	2013	MNWH	366	632	0	ES	2	5	92	ATHAB	778.3 778.3	0	1235 1236
		WHSC	297	334	ō	ES	2	5	92	ATHAB	776.3	ő	1239
ELLOW	2015		536	3217	0	ES	2	5	92	ATHAB	776.3	0	1240
ELLOW ELLOW	2016	WHSC						5	92				4044
ELLOW ELLOW	2016 2017	LNSC	372	688	0	ES	2			ATHAB	776.3	0	1241
ELLOW ELLOW ELLOW	2016 2017 2018	LNSC WALL	372 295	248	0	ES	2	5	92	ATHAB	776.3	0	1242
ELLOW ELLOW ELLOW ELLOW ELLOW	2016 2017 2018 2019	LNSC WALL WHSC	372 295 430	248 1296	0	ES ES	2	5 5	92 92	ATHAB ATHAB	776.3 776.3	0	1242 1243
YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW	2016 2017 2018	LNSC WALL	372 295	248	0	ES	2	5	92	ATHAB	776.3	0	1242
YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW	2016 2017 2018 2019 2020	LNSC WALL WHSC MNWH	372 295 430 424	248 1296 1003	0 8 0	ES ES	2 2 2	5 5 5	92 92 92	ATHAB ATHAB ATHAB	776.3 776.3 776.3	0 0 0	1242 1243 1244

TAG COLOUR	NUMBER	SPECIES	LENGTH	WEIGHT		CAPTURE METHOD	DAY	MONTH	YEAR	RIVER	SITE (Km)	CAPT.	SAMPLE NUMBER
YELLOW	2025	LNSC	346	524	0	ES	2	5	92	ATHAB	776.3	0	1250
YELLOW	2026	WHSC	437	1320	8	ES	2	5	92	ATHAB	776.3	0	1251
YELLOW	2027	WHSC	510 451	2292 1306	0 8	ES ES	2	5 5	92 92	ATHAB	776.3 776.3	0	1252
YELLOW	2029	MNWH	369	655	ő	ES	2	5	92	ATHAB	776.3	o o	1253 1254
YELLOW	2030	GOLD	360	569	17	ES	2	5	92	ATHAB	776.3	0	1255
YELLOW	2031	GOLD	299	285	20	ES	2	5	92	ATHAB	776.3	0	1256
YELLOW	2032 2033	LNSC LNSC	319 332	418 480	0	ES ES	2	5 5	92 92	ATHAB	776.3 776.3	0	1258 1259
YELLOW	2034	WHSC	323	429	ō	ES	2	5	92	ATHAB	776.3	ő	1261
YELLOW	2035	LNSC	396	759	٥	ES	2	5	92	ATHAB	776.3	0	1262
YELLOW	2036 2037	BURB	411 454	451 1582	0	ES ES	2	5 5	92 92	ATHAB	776.3	0	1263
YELLOW	2037	LNSC	296	355	0	ES	2	5	92	BAHTA	776.3 776.3	0	1264 1265
YELLOW	2039	WHSC	478	1594	17	ES	2	5	92	BAHTA	776.3	ō	1268
YELLOW	2040	WHSC	518	2272	0	ES	2	5	92	ATHAB	776.3	0	1269
YELLOW	2041	WALL WHSC	318 441	345 1176	0 18	ES ES	2 2	5 5	92 92	ATHAB	776.3 776.3	0	1270 1271
YELLOW	2043	LNSC	401	854	0	ES	2	5	92	ATHAB	776.3	ō	1272
YELLOW	2044	WHSC	476	1886	0	ES	2	5	92	ATHAB	776.3	0	1273
YELLOW	2045 2046	NRPK WHSC	875 518	5000 2049	18 0	ES ES	2	5 5	92 92	ATHAB BAHTA	773.4 773.4	0	1274 1275
YELLOW	2047	WHSC	0	1780	ō	ES	2	5	92	ATHAB	773.4	ő	1276
YELLOW	2048	WHSC	476	1839	0	ES	2	5	92	BAHTA	773.4	0	1278
YELLOW	2049	WHSC WHSC	299 427	320 1196	0	ES ES	2	5 5	92 92	BAHTA	773.4 773.4	0	1279 1280
YELLOW	2051	WHSC	465	1503	ő	ES	2	5	92	ATHAB	773.4	Ö	1281
YELLOW	2052	LNSC	353	673	0	ES	2	5	92	ATHAB	773.4	0	1283
YELLOW	2053 2054	WHSC LNSC	298 361	368 576	0	ES ES	2 2	5 5	92 92	ATHAB	773.4 773.4	0	1284
YELLOW	2055	WHSC	454	1546	Ö	ES	2	5	92	ATHAB	773.4	0	1285 1286
YELLOW	2056	WHSC	425	1231	0	ES	2	5	92	ATHAB	773.4	Ö	1287
YELLOW	2057	WHSC	282	0	0	ES	2	5	92	ATHAB	781.2	0	1299
YELLOW	2058 2059	LNSC NRPK	295 423	0	0	ES ES	2	5 5	92 92	ATHAB ATHAB	781.2 781.2	0	1301 1304
YELLOW	2060	WHSC	387	ō	ō	ES	2	5	92	ATHAB	780.8	ō	1307
YELLOW	2061	BURB	286	0	0	ES	2	5	92	ATHAB	780.8	0	1310
YELLOW	2062 2063	LNSC MNWH	380 440	796 1172	0	ES ES	2	5 5	92 92	ATHAB	779.5 779.5	0	1311 1312
YELLOW	2064	WHSC	472	1653	Ö	ES	2	5	92	ATHAB	779.5	Ö	1313
YELLOW	2065	MNWH	306	0	0	ES	2	5	92	ATHAB	779.5	0	1315
YELLOW	2066	WHSC LNSC	312 363	0	0	ES ES	2	5 5	92 92	ATHAB	779.5 779.5	0	1318 1319
YELLOW	2068	FLCH	260	ō	ō	ES	2	5	92	ATHAB	779.5	ŏ	1323
YELLOW	2069	FLCH	271	0	0	ES	2	5	92	ATHAB	779.5	0	1324
YELLOW	2070 2071	WALL WALL	498 293	0	0	ES ES	2	5 5	92 92	ATHAB	779.5 779.5	0	1325 1330
YELLOW	2072	LNSC	391	ő	ō	ES	2	5	92	ATHAB	775.5	ő	1337
YELLOW	2073	WHSC	477	0	0	ES	2	5	92	ATHAB	775.5	0	1338
YELLOW	2074 2075	LNSC LNSC	375 361	0	0	ES ES	2	5 5	92 92	BAHTA	775.5 775.5	0	1339 1340
YELLOW	2076	WHSC	400	ő	8	ES	2	5	92	ATHAB	775.5	0	1341
YELLOW	2077	WHSC	341	0	0	ES	2	5	92	ATHAB	775.5	0	1342
YELLOW	2078 2079	WHSC MNWH	492 414	0	0	ES ES	2	5 5	92 92	ATHAB	775.5 775.5	0	1343 1344
YELLOW	2080	MNWH	404	Ö	Ö	ES	2	5	92	ATHAB	775.5	ő	1345
YELLOW	2081	MNWH	451	0	0	ES	2	5	92	ATHAB	775.5	0	1346
YELLOW	2082	GOLD GOLD	393 320	0	20 10	ES ES	2	5 5	92 92	ATHAB ATHAB	775.5 775.5	0	1347 1348
YELLOW	2084	FLCH	271	ŏ	0	ES	2	5	92	ATHAB	775.5	0	1349
YELLOW	2085	FLCH	253	0	0	ES	2	5	92	ATHAB	775.5	0	1356
YELLOW	2086 2087	LNSC WHSC	351 289	0	0	ES ES	2	5 5	92 92	ATHAB BAHTA	775.5 775.5	0	1361
YELLOW	2088	WHSC	293	ő	0	ES	2	5	92	ATHAB	775.5	0	1362 1363
YELLOW	2089	FLCH	252	0	0	ES	2	5	92	ATHAB	775.5	0	1364
YELLOW	2090 2091	MNWH GOLD	267 343	0 4 49	0 20	ES ES	2 3	5 5	92 92	ATHAB ATHAB	775.5 779.8	0	1365 1525
YELLOW	2092	MNWH	386	786	0	ES	3	5	92	ATHAB	779.8	0	1526
YELLOW	2093	LNSC	368	620	0	ES	3	5	92	BAHTA	779.8	0	1528
YELLOW	2094 2095	LNSC WHSC	385 294	633 364	0	ES ES	3	5 5	92 92	ATHAB	779.8 7 7 9.8	0	1529 1530
YELLOW	2096	LNSC	265	251	a	ES	3	5	92	ATHAB	779.8	Ö	1539
YELLOW	2097	HWMM	451	1100	0	ES	3	5	92	ATHAB	778.5	0	1542
YELLOW	2098	MNWH	410	755	0	€S ES	3	5	92	ATHAB	778.5	0	1551
YELLOW	2099 2100	MNWH GOLD	368 350	604 477	10	ES	3	5 5	92 92	ATHAB	778.5 778.5	0	1555 15 5 7
YELLOW	2101	LNSC	375	759	0	ES	3	5	92	BAHTA	778.5	ŏ	1564
YELLOW	2102	LNSC	307	374	0	ES	3	5	92 92	ATHAB	778.5	0	1565
YELLOW	2103 2104	LNSC LNSC	344 315	509 410	Ö	ES ES	3	5 5	92	BAHTA	778.5 778.5	0	1566 1567
YELLOW	2105	LNSC	327	501	0	ES	3	5	92	ATHAB	778.5	0	1568
YELLOW	2106	WALL	255	138	0	ES ES	3	5 5	92	ATHAB	778.5	0	1569
YELLOW	2107 2108	WHSC WHSC	295 298	321 313	0	ES	3	5	92 92	ATHAB ATHAB	778.5 778.5	0	1570 1571
YELLOW	2109	LNSC	260	201	0	ES	3	5	92	ATHAB	778.5	Ö	1574
YELLOW	2110	NRPK	369	338	0	EF EE	4	5	92	TAWTI	683.5	0	1672
YELLOW	2111	BURB WHSC	385 329	347 485	0	EF ES	5	5 5	92 92	TAWTI	683.5 625	0	1673 1677
YELLOW	2113	FLCH	270	221	0	ES	5	5	92	ATHAB	627	0	1681
YELLOW	2114 2115	FLCH	257	204	0	ES ES	5 5	5	92	ATHAB	627	0	1698
YELLOW	2116	WHSC FLCH	0 292	0 277	٥	ES	5	5 5	92 92	ATHAB ATHAB	627 630	0	1699 1739
YELLOW	2117	FLCH	262	177	0	ES	5	5	92	ATHAB	630	0	1765
YELLOW	2118 2119	WHSC WHSC	300 296	379 334	0	ES ES	5 5	5 5	92 92	BAHTA	630 630	0	1766
YELLOW	2120	BURB	417	377	0	ES	5	5	92	ATHAB	630	0	1767 1768
YELLOW	2121	WHSC	301	378	0	ES	5	5	92	ATHAB	630	0	1769
YELLOW	21 <u>22</u> 2123	WHSC WALL	262 416	a 0	0 8	ES ES	6 6	5 5	92 92	ATHAB	626 626	0	2084 2085
YELLOW	2124	WHSC	308	0	۵	ES	6	5	92	ATHAB	626	ō	2087

FISH CAPTURED AND TAGGED BY R.L.&L. ENVIRONMENTAL SERVICES LTD.

TAG	NUMBER	SPECIES	LENGTH	WEIGHT		CAPTURE		HTNON	YEAR	RIVER	SITE (Km)	CAPT.	SAMPLE
YELLOW	2125	WHSC	343	0	0	ÉS	6	5	92	ATHAB	626	0	2088
YELLOW	2126	FLCH	262	0	0	ES	6	5	92	ATHAB	626	ō	2096
YELLOW	2127	LNSC	331	0	0	ES	6	5	92	ATHAB	626	0	2118
YELLOW	2128	WALL	301	0	0	ES	6	5	92	ATHAB	626	0	2122
YELLOW	2129	MNWH	391	0 425	0	ES	9	5 5	92	BAHTA	457.7	0	2254
YELLOW	2130 2131	LNSC WALL	330 378	425	0	ES ES	9 9	5	92 92	ATHAB ATHAB	453.8 453.8	0	2260 2262
YELLOW	2132	LNSC	346	444	ō	ES	9	5	92	ATHAB	452.4	ő	2263
YELLOW	2133	LNSC	341	369	0	ES	9	5	92	ATHAB	458.5	ō	2279
YELLOW	2134	LNSC	371	537	0	ES	9	5	92	ATHAB	458.5	0	2280
YELLOW	2135	LNSC	375	0	0	ES	9	5	92	ATHAB	458.5	0	2281
YELLOW	2136	LNSC	325	441	0	ES	9	5	92	ATHAB	458.5	0	2282
YELLOW	2137	LNSC	275	215	0	ES	9	5 5	92 92	ATHAB	458.5	0	2283
YELLOW	2138 2139	LNSC	254 358	194 520	0	ES ES	9	5	92	ATHAB ATHAB	458.5 458.5	0	2286 2287
YELLOW	2140	LNSC	251	165	o o	ES	9	5	92	ATHAB	458.5	0	2288
YELLOW	2141	LNSC	355	540	0	ES	9	5	92	ATHAB	458.5	ō	2289
YELLOW	2142	LNSC	319	427	0	ES	9	5	92	ATHAB	458.5	0	2290
YELLOW	2143	LNSC	360	502	0	ES	9	5	92	ATHAB	458.5	0	2291
YELLOW	2144	LNSC	400 319	811	0	ES ES	9	5 5	92 92	ATHAB	456.6	0	2293 2294
YELLOW	2145 2146	LNSC LNSC	360	356 525	0	ES	9	5	92	ATHAB	456.6 455.3	0	2309
YELLOW	2147	LNSC	270	201	Ö	ES	9	5	92	ATHAB	455.3	0	2311
YELLOW	2148	LNSC	316	323	0	ES	9	5	92	ATHAB	455.3	0	2314
YELLOW	2149	LNSC	402	653	10	ES	9	5	92	ATHAB	452.5	۵	2316
YELLOW	2150	LNSC	291	280	0	ES	9	5	92	ATHAB	452.5	0	2317
YELLOW	2151	BURB BURB	438 583	420 1012	0	SL SL	10 10	5 5	92 92	ATHAB ATHAB	456.4 456.4	0	2321 2322
YELLOW	2153	WALL	346	339	0	ES	13	5	92	ATHAB	299.8	0	2740
YELLOW	2154	WALL	317	287	ō	ES	13	5	92	ATHAB	299.8	ō	2741
YELLOW	2155	WALL	413	652	7	ES	13	5	92	ATHAB	299.8	0	2742
YELLOW	2156	WALL	438	847	8	ES	14	5	92	ATHAB	298.7	٥	2763
YELLOW	2157	WALL	484	1234	8	ES	14	5	92	BAHTA	298.7	0	2764
YELLOW	2158	WALL	438	828	8	ES	14	5	92	ATHAB	298.7	0	2765
YELLOW	2159	WALL	404 388	663 597	0	ES ES	14 14	5 5	92 92	ATHAB ATHAB	298.7 298.7	0	2766 2767
YELLOW	2160	WALL WALL	385	533	a	ES	14	5	92	ATHAB	298.7	٥	2768
YELLOW	2162	WALL	342	384	ō	ES	14	5	92	ATHAB	298.7	ō	2769
YELLOW	2163	WALL	292	237	0	ES	14	5	92	ATHAB	298.7	0	2770
YELLOW	2164	WALL	331	359	0	ES	14	5	92	ATHAB	298.7	0	2771
YELLOW	2165	WALL	478	1003	0	ES	14	5	92	ATHAB	298.7	0	2772
YELLOW	2166 2167	WALL	425 405	767 694	8	ES ES	14 14	5 5	92 92	ATHAB ATHAB	298.7 298.7	0	2773 2774
YELLOW	2168	WALL	365	471	0	ES	14	5	92	ATHAB	298.7	0	2775
YELLOW	2169	WALL	338	336	ō	ES	14	5	92	ATHAB	298.7	ā	2776
YELLOW	2170	WALL	402	601	8	ES	14	5	92	ATHAB	298.7	0	2777
YELLOW	2171	WALL	446	905	9	ES	14	5	92	ATHAB	298.7	0	2778
YELLOW	2172	WALL	343 388	394 578	0	ES ES	14 14	5 5	92 92	ATHAB ATHAB	298.7 298.7	0	2779 2780
YELLOW	2174	WALL	313	304	0	ES	14	5	92	ATHAB	298.7	٥	2780
YELLOW	2175	WALL	320	314	Ö	ES	14	5	92	ATHAB	298.7	ő	2782
YELLOW	2176	GOLD	396	739	18	ES	14	5	92	ATHAB	298.7	Ō	2784
YELLOW	2177	GOLD	399	772	18	ES	14	5	92	ATHAB	298.7	0	2785
YELLOW	2178	GOLD	362	476	10	ES	14	5	92	ATHAB	298.7	0	2786
YELLOW	2179	GOLD	321	357	9	ES	14	5	92	ATHAB	298.7	0	2787
YELLOW	2180 2181	NRPK NRPK	570 571	1231 1158	7	ES ES	14 14	5 5	92 92	ATHAB ATHAB	298.7 298.7	0	2788 2789
YELLOW	2182	GOLD	390	677	20	ES	14	5	92	ATHAB	296.4	0	2805
YELLOW	2183	GOLD	375	695	18	ES	14	5	92	ATHAB	296.4	Õ	2806
YELLOW	2184	WALL	264	176	0	ES	14	5	92	ATHAB	296.4	0	2807
YELLOW	2185	WALL	363	455	0	ES	14	5	92	ATHAB	296.4	0	2808
YELLOW	2186	WALL	446	961	9	ES	14	5	92	ATHAB	296.4	0	2809
YELLOW	2187 2188	WALL	461 285	925 225	8	ES ES	14 14	5 5	92 92	ATHAB ATHAB	296.4 296.4	0	2810 2811
YELLOW	2189	WALL WALL	425	738	8	ES	14	5	92	ATHAB	296.4	0	2812
YELLOW	2190	WALL	310	264	Ö	ES	14	5	92	ATHAB	296.4	ō	2813
YELLOW	2191	WALL	373	558	0	ES	14	5	92	ATHAB	296.4	0	2814
YELLOW	2192	GOLD	390	753	20	ES	14	5	92	ATHAB	296.4	0	2815
YELLOW	2193	GOLD	338	473	10	ES	14	5	92	ATHAB	296.4	0	2816
YELLOW	2194 2195	GOLD GOLD	382 3 7 0	652 609	20 20	ES ES	14 14	5 5	92 92	ATHAB ATHAB	296.4 296.4	0	2818 2819
YELLOW	2196	GOLD	358	532	10	ES	14	5	92	ATHAB	296.4	0	2820
YELLOW	2197	GOLD	257	116	20	ES	14	5	92	ATHAB	296.4	ō	2823
YELLOW	2198	GOLD	332	363	10	ES	14	5	92	ATHAB	296.4	0	2824
YELLOW	2199	GOLD	370	700	20	ES	14	5	92	ATHAB	296.4	Q	2828
YELLOW	2200	GOLD	315	361	18	ES	14 14	5	92 92	ATHAB	296.4	0	2829
YELLOW	2201 2202	GOLD WALL	375 418	571 712	1 8 8	ES SL	14	5 5	92	ATHAB ATHAB	296.4 299.9	0	2830 2834
YELLOW	2203	WALL	475	1173	8	SL	14	5	92	ATHAB	299.9	Ö	2835
YELLOW	2205	WALL	330	349	Ō	SL	14	5	92	ATHAB	299.9	Ō	2840
YELLOW	2206	BURB	675	1520	0	SL	14	5	92	ATHAB	299.9	۵	2842
YELLOW	2207	BURB	430	320	0	SL	14	5	92	ATHAB	299.9	0	2843
YELLOW	2208 2209	WALL	401	574 253	8 0	ES ES	15	5 5	92	CLEAR CLEAR	286.5 286.5	0	2948
YELLOW	2210	NRPK WHSC	340 283	268	0	ES	15 15	5	92 92	CLEAR	286.5	0	2949 2950
YELLOW	2211	WHSC	416	1040	9	ES	15	5	92	MUSKE	239.2	0	2955
YELLOW	2212	WHSC	447	1612	0	ES	15	5	92	MUSKE	239.2	0	2956
YELLOW	2213	WHSC	450	1463	9	ES	15	5	92	MUSKE	239.2	0	2957
YELLOW	2214	WHSC	444	1365	9	ES	15	5	92	MUSKE	239.2	0	2958
YELLOW	2215 2216	WHSC WHSC	448 391	1352 798	9	ES ES	15 16	5 5	92 92	MUSKE ATHAB	239.2 230.4	0	2959 2984
YELLOW	2217	WHSC	523	1985	0	ES	16	5	92	BAHTA	230.4	0	2985
YELLOW	2218	WALL	403	637	ō	ES	16	5	92	MACKA	235.3	ō	3044
YELLOW	2219	GOLD	313	302	10	ES	17	5	92	ATHAB	231.5	0	3114
YELLOW	2220	WHSC	419	1109	0	ES	17	5	92	ATHAB	231.5	0	3137
YELLOW	2221 2222	NRPK	368	332	0	ES	19	5	92	ATHAB	128	0	3292
YELLOW	2222	GOLD	331 302	219 320	10	ES ES	19 19	5 5	92 92	ATHAB ATHAB	128 128	0	3293 3295
YELLOW	2224	GOLD	310	302	10	ES	19	5	92	ATHAB	128	0	3296
YELLOW	2225	NRPK	608	1400	0	SL	20	5	92	ATHAB	129	ő	3309

FISH CAPTURED AND TAGGED BY R.L.&L. ENVIRONMENTAL SERVICES LTD.

Date Printed was 03/14/94

TAG	1				C	APTURE					SITE	CAPT.	SAMPLE
COLOUR	NUMBER	SPECIES	LENGTH	WEIGHT	SEXM	ETHOD	DAY	MONTH	YEAR	RIVER	(Km)	CODE	NUMBER
YELLOW	2226	NRPK	805	3350	18	SL	17	5	92	ATHAB	235.2	0	3181
YELLOW	2227	WALL	412	607	8	SL	17	5	92	ATHAB	235.2	0	3182
YELLOW	2251	NRPK	729	2190	18	SL	20	5	92	BAHTA	129	0	3308
YELLOW	3089	MNWH	260	205	0	ES	29	5	92	BERLA	1129.2	0	4519
YELLOW	3090	MNWH	301	364	0	EF	29	5	92	BERLA	1129.2	0	4520
YELLOW	3091	MNWH	272	247	0	ES	29	5	92	BERLA	1129.2	0	4521
YELLOW	3092	MNWH	255	205	٥	ES	29	5	92	BERLA	1129.2	۵	4538
YELLOW	3093	ARGR	252	196	0	ES	29	5	92	BERLA	1129.2	0	4549
YELLOW	3094	BURB	453	661	0	ES	29	5	92	BERLA	1129.2	0	4550
YELLOW	4820	MNWH	275	270	0	ES	26	4	92	SAHTA	1235.9	0	3599
YELLOW	4821	MNWH	266	221	0	ES	26	4	92	ATHAB	1235.9	0	3611
YELLOW	4822	MNWH	355	449	0	ES	26	4	92	ATHAB	1233.3	0	3622
YELLOW	4823	MNWH	281	298	٥	ES	26	4	92	ATHAB	1233.3	0	3625
YELLOW	4824	MNWH	256	207	0	ES	26	4	92	ATHAB	1233.3	0	3627
YELLOW	4825	RNTR	285	286	0	ES	26	4	92	ATHAB	1233.3	0	3638
YELLOW	4826	MNWH	254	183	0	ES	26	4	92	BAHTA	1233.3	0	3641
YELLOW	4828	MNWH	269	207	0	ES	26	4	92	BAHTA	1232.3	0	3673
YELLOW	4830	MNWH	300	247	٥	ES	26	4	92	ATHAB	1232.3	0	3674
YELLOW	4831	MNWH	435	865	0	ES	26	4	92	ATHAB	1232.3	0	3686

Capture Code:

0 is initial capture and release 2 is recapture and release

Capture Method:

ES is boat electroshocking EF is backpack electroshocking SL is set line

Site:

Distance upsteam from Lake Athabasca

Species: ARGR
BLTR
FLCH
GOLD
BURB
LNSC
MNWH
NRPK
RNTR Arctic grayling Bull trout Flathead chub Goldeye Burbot Longnose sucker Mountain whitefish Northem pike Rainbow trout White sucker Walleye WHSC WALL

Reference file: 334\tagdata.wk3

	The state of the state of			
				4
			1 1	

				14.7			
					Tarrie		
	100						
S							
	1000						
	a year						
		150					