Canada Alberta

Northern River Basins Study

QH 91.8 . B4 D924 1993



QH/91.8/.B4/D924/1993 Benthos field collections Dunnigan, Mark Edward

			147104
	Date	e Due	
3 <u></u>			
9			
4			

Prepared for the Northern River Basins Study under Project 2371-B2

by M. Dunnigan and S. Millar R.L. & L. Environmental Services Ltd.

> Community Contributors: Mark Spafford, Athabasca

NORTHERN RIVER BASINS STUDY PROJECT REPORT NO. 21 BENTHOS FIELD COLLECTIONS UNDER-ICE SAMPLING ATHABASCA RIVER FEBRUARY AND MARCH, 1993

Published by the Northern River Basins Study Edmonton, Alberta November, 1993

ATHABASCA UNIVERSITY

MAR 3 0 1995

LIBRARY

CANADIAN CATALOGUING IN PUBLICATION DATA

Dunnigan, Mark Edward, 1962-

Benthos field collections under-ice sampling: Athabasca River, February and March, 1993

(Northern River Basins Study project report, ISSN 1192-3571; no. 21) Includes bibliographical references. ISBN 0-662-21122-7 Cat. no. R71-49/3-21E

1. Benthos -- Alberta -- Athabasca River.
2. Organic water pollutants -- Alberta -- Athabasca River.
3. Athabasca River (Alta.) -- Environmental aspects. I. Millar S.
II. Northern River Basins Study (Canada).
III. Title. IV. Series.

QH91.8.B4D86 1993 574.97123'2 C93-980001-5

Copyright (c) 1993 by the Northern River Basins Study.
All rights reserved. Permission is granted to reproduce all or any portion of this publication provided the reproduction includes a proper acknowledgement of the Study and a proper credit to the authors. The reproduction must be presented within its proper context and must not be used for profit. The views expressed in this publication are solely those of the authors.

(A) 384 ·

PREFACE:

The Northern River Basins Study was initiated through the "Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies" which was signed September 27, 1991. The purpose of the Study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies.

This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release.

It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material.

This report contains referenced data obtained from sources external to the Northern River Basins Study. Individuals interested in using external data must obtain permission to do so from the donor agency.

NORTHERN RIVER BASINS STUDY PROJECT REPORT RELEASE FORM

This publication may be cited as: Dunnigan, M. and Millar, S., R.L. & L. Environmental Services Ltd., Northern River Basins Study Project Report No. 21, Benthos Field Collections, Under-ice Sampling, Athabasca River, February and March, 1993 Edmonton, Alberta, Canada, November, 1993. Whereas the above publication is the result of a project conducted under the Northern River Basins Study and the terms of reference for that project are deemed to be fulfilled. IT IS THEREFORE REQUESTED BY THE STUDY OFFICE THAT: this publication be subjected to proper and responsible review and be considered for pelease to the public. (Dr. F., Wrona, Ph.D., Science Director) Whereas it is an explicit term of reference of the Science Advisory Committee "to review, for scientific content, material for publication by the Board". IT IS HERE ADVISED BY THE SCIENCE ADVISORY COMMITTEE THAT; this publication has been reviewed for scientific content and that the scientific practices represented in the report are acceptable given the specific purposes of the project and subject to the field conditions SUPPLEMENTAL COMMENTARY HAS BEEN ADDED TO THIS PUBLICATION: [] Yes [] No (Dr. P. A. Larkin, Ph.D., Chair) Whereas it is the duty of the Operations Committee to attend to the day-today management of the Study on behalf of the Study Board, IT IS THEREFORE RECOMMENDED BY THE OPERATIONS COMMITTEE THAT; this publication be released to the public and it is reported that THIS PUBLICATION HAS BEEN REVIEWED BY THE HEALTH ASSESSMENT COMMITTEE AND Whereas the Study Board is satisfied that this publication has been reviewed for scientific content and for immediate health implications, IT IS HERE APPROVED BY THE BOARD OF DIRECTORS THAT: this publication be released to the public, and that this publication be designated for: [] STANDARD AVAILABILITY [] EXPANDED AVAILABILITY (Bev Burns, Co-chair) 3 NOV /93 (Lucille Partington, Co-chair) (Date)

BENTHOS FIELD COLLECTIONS, UNDER-ICE SAMPLING ATHABASCA RIVER FEBRUARY AND MARCH, 1993

STUDY PERSPECTIVE

Fundamental to understanding effects of industrial, agricultural, municipal-related contaminants within an aquatic ecosystem understanding their origin, pathway. and effects fate. on biological The Northern River communities. Basins Study is investigating the presence, absence, and distribution of these contaminants within the basins. Also being considered is how they enter the food chain, at what level, if they are being transferred upwards within the food chain, and if they are accumulating to concentrations concern to humans potential Detailed information is wildlife. therefore being assembled on the kinds and abundance of invertebrates in rivers, and the importance of these invertebrates in the food chain.

This report identifies and describes all field sampling methodologies, observations, schedules, and a listing of samples delivered to Northern River Basins Study as a result of conducting under-ice sampling of benthic aquatic macroinvertebrates, biofilm, and

Related Study Questions

- 1a) How has the aquatic ecosystem, including fish and/or other aquatic organisms, been affected by exposure to organochlorines or other toxic compounds?
- 2) What is the current state of water quality in the Peace, Athabasca, and Slave river basins, including the Peace-Athabasca Delta?
- 4a) What are the contents and nature of the contaminants entering the system and what is their distribution and toxicity in the aquatic ecosystem with particular reference to water, sediments, and biota?
- 13b) What are the cumulative effects of man made discharges on the water and aquatic environment?
- 14) What long term monitoring programs and predictive models are required to provide an ongoing assessment of the state of the aquatic ecosystems. These programs must ensure that all stakeholders have the opportunity for input.

forage fish as part of a synoptic survey on the Athabasca River. The late winter timing of the survey was chosen because organisms would be exposed to low, stable flows and relatively greater concentrations of effluent than during any other time of the year.

The analysis of these samples will provide key information for modelling the fate of pulp mill contaminants, for determining levels of contaminants in forage fish, and for assessing the impact of municipal and industrial effluents on species composition and health of aquatic macroinvertebrate communities. The results of analysing these samples will be documented in other reports.

EXECUTIVE SUMMARY

Under-ice sampling for bottom dwelling biota and forage fish was undertaken in the Athabasca River during late winter 1993. The objective of this project was to obtain samples of selected aquatic biota (i.e., invertebrates, "biofilm", and forage fish) from nine sites in the Athabasca River for contaminants analyses and quantitative analyses of invertebrate and biofilm abundance and biomass. Samples for contaminant analyses were destined for organic contaminant (e.g., dioxins, furans, chlorophenols, and polyaromatic hydrocarbons), metal (e.g., arsenic, vanadium, copper, chromium lead, zinc, and methyl mercury) and stable isotope (e.g., carbon, nitrogen, sulphur analyses). Quantitative samples of aquatic invertebrates were required for estimates of abundance and biomass. Quantitative biofilm samples were collected for chlorophyll *a* and loss on ignition; samples were also retained for taxonomic identification.

All sampling was conducted in February and March 1993 when low, stable flows created potentially greater concentrations of contaminants. Extensive ice-removal was performed in order to expose enough river bottom for completion of required tasks. Nine sites were sampled over 29 days. All requested samples were collected except for invertebrate tissues for trace contaminant analyses. Some sites had relatively low densities of invertebrates and/or were difficult to sample, thus complete complements of invertebrate tissue for contaminant analyses were not obtained at all sites.

ACKNOWLEDGEMENTS

The authors would like to thank Drs. Anne-Marie Anderson (Alberta Environment, Environmental Assessment Division) and Garry Scrimgeour (National Hydrology Research Institute) for providing information during the study. The field assistance provided at various sites by Dr. Garry Scrimgeour and Mr. Mark Spafford (Alberta-Pacific Corporation) is gratefully acknowledged.

Field collections were conducted by Mike Braeuer, Mark Dunnigan, Rob Durack, Howard Larson, Scott Millar and Rob Stack of R.L. & L. Environmental Services Ltd. Terry Clayton, Bruce Cole, Curtiss McLeod, Scott Morrison and Chantal Pattenden assisted in the acquisition and expedition of equipment and samples to and from the field. Figures were drafted by Mike Braeuer. Discharge data were supplied by Alberta Environment, Technical Services Division. Ms. Frances Baker assisted with report production.

TABLE OF CONTENTS

	Page #	f
EXECUTIVE SU	UMMARY	i
	GEMENTS	_
LIST OF TABLE	ES iv	7
LIST OF FIGUR	RES v	7
SECTION 1 INT	TRODUCTION	Ĺ
SECTION 2 ME	THODS 2	2
2.1 COL	LECTION SITES	2
	2.1.1 Sample Locations	2
	2.1.2 Sample Schedule	7
2.2 ICE	REMOVAL AND SAMPLE ACQUISITION	7
2.3 TRA	CE CONTAMINANT SAMPLING 18	3
	2.3.1 Handling and Quality Control	3
	2.3.2 Collection of Macroinvertebrate Tissue)
	2.3.3 Collection of Biofilm Tissue	
	2.3.4 Collection of Fish Tissues	
2.4 AQU	JATIC COMMUNITY SAMPLING 23	3
	2.4.1 Invertebrate Sampling	3
	2.4.2 Biofilm Sampling	-
2.5 FISH	H SAMPLING	ļ
SECTION 3 RES	SULTS	í
	TA COLLECTION	í
	GISTICS SUMMARY	
	3.2.1 Scheduling	
	3.2.2 Personnel and Equipment	
SECTION 4 SUI	MMARY AND CONCLUSION	,
SECTION 5 LIT	TERATURE CITED	3
APPENDIX A	TERMS OF REFERENCE	
APPENDIX B	PHOTOGRAPHIC PLATES	
APPENDIX C	MEAN DAILY DISCHARGE OF THE ATHABASCA RIVER AT	
	HINTON, ATHABASCA, AND FORT MCMURRAY.	
APPENDIX D	FISH COLLECTION DATA SHEETS	

LIST OF TABLES

	Page #	
Table 2.1	Summary of benthic invertebrate trace contaminant tissue samples collected under ice from the Athabasca River, February-March 1993	
Table 2.2	Summary of biofilm trace contaminant tissue samples collected under ice from the Athabasca River, February-March 1993	
Table 2.3	Summary of fish collected under ice for Multi-function oxidase and contaminant analysis from sites on the Athabasca River, February-March 1993	
Table 3.1	Summary of weather conditions measured in the field (February - March 1993) 27	
Table 3.2	Physical variables measured at benthic invertebrate community sample locations, Site 1	
Table 3.3	Physical variables measured at benthic invertebrate community sample locations, Site 2	
Table 3.4	Physical variables measured at benthic invertebrate community sample locations, Site 3	
Table 3.5	Physical variables measured at benthic invertebrate community sample locations, Site 4	
Table 3.6	Physical variables measured at benthic invertebrate community sample locations, Site 5	
Table 3.7	Physical variables measured at benthic invertebrate community sample locations, Site 6	
Table 3.8	Physical variables measured at benthic invertebrate community sample locations, Site 7	
Table 3.9	Physical variables measured at benthic invertebrate community sample locations, Site 8	
Table 3.10	Physical variables measured at benthic invertebrate community sample locations, Site 9	

LIST OF FIGURES

	Page #
Figure 2.1	Athabasca River under-ice sample locations, Site overview
Figure 2.2	Athabasca River under-ice sampling locations, Site 1 Control, near Entrance 4
Figure 2.3	Athabasca River under-ice sampling locations, Site 2 Weldwood Haul Bridge 5
Figure 2.4	Athabasca River under-ice sampling locations, Site 3 Obed Mountain Bridge 6
Figure 2.5	Athabasca River under-ice sampling locations, Site 4 Emerson Lakes Bridge 8
Figure 2.6	Athabasca River under-ice sampling locations, Site 5 Blue Ridge
Figure 2.7	Athabasca River under-ice sampling locations, Site 6 downstream of Athabasca Town, and Site 7 upstream of Athabasca Town
Figure 2.8	Athabasca River under-ice sampling locations, Site 8 Poacher's Landing
Figure 2.9	Athabasca River under-ice sampling locations, Site 9 upstream of Fort McMurray 12
Figure 2.10	Athabasca River through ice sampling locations and hole layout, Sites 1 through 9 13
Figure 2.11	Mean daily discharge rates in the Athabasca River at Hinton
Figure 3.1	Athabasca River ice holes and Neill sampling locations

SECTION 1 INTRODUCTION

The growing demand for supply and use of new chemicals in the industrialized society during the twentieth century has placed increasing stress on the natural environment (Jaffé 1991). Diverse contaminants (organic compounds and metals) enter the environment through industrial discharges and other anthropogenic activities. The toxicological characteristics and the ability of contaminants to accumulate in the environment are of particular concern. Many models explaining bioaccumulation (the ability of a living organism to concentrate, accumulate, and magnify a contaminant within it, either directly from surrounding medium or indirectly through the food chain) in aquatic systems have been developed (e.g., Norstrom *et al.* 1976, Thomann and Connolly 1984; Swackhammer and Hites 1988; Connolly and Pedersen 1988).

The objective of this project was to obtain under-ice samples of benthic aquatic macroinvertebrates, biofilm (algae, bacteria, and fungi that cover stones in aquatic systems) and fish from selected sites along the length of the Athabasca River (see Terms of Reference in Appendix A). The late winter timing of sampling was chosen because organisms would be exposed to low, stable, flows and relatively greater concentrations of effluent than during any other time of the year. Qualitative samples of aquatic invertebrates and biofilm were collected for analysis of organic contaminants (e.g., dioxins, furans, chlorophenols, and PCBs), resin acids, metals (e.g., arsenic, vanadium, copper, chromium, lead, zinc, and methyl mercury) and stable isotopes (e.g., carbon, nitrogen, and sulphur). Quantitative samples of aquatic invertebrates were collected to document differences among sites in species composition, numeric density and other relevant population or community characteristics. Quantitative biofilm samples will be analyzed for loss on ignition (LOI), chlorophyll a (Chla), and taxonomic identification. Biomass data from all quantitative samples will also be used to assess contaminant loads in aquatic invertebrates from the Athabasca River. All sites were sampled in an attempt to collect forage fish. Fish samples were dissected to provide liver tissue for multi-function oxidase (MFO) determination, while the remainder of the fish was retained for contaminant analysis.

This data report identifies and describes all field sampling methodologies, observations, schedules, and a listing of samples delivered to Northern Rivers Basins Study (NRBS).

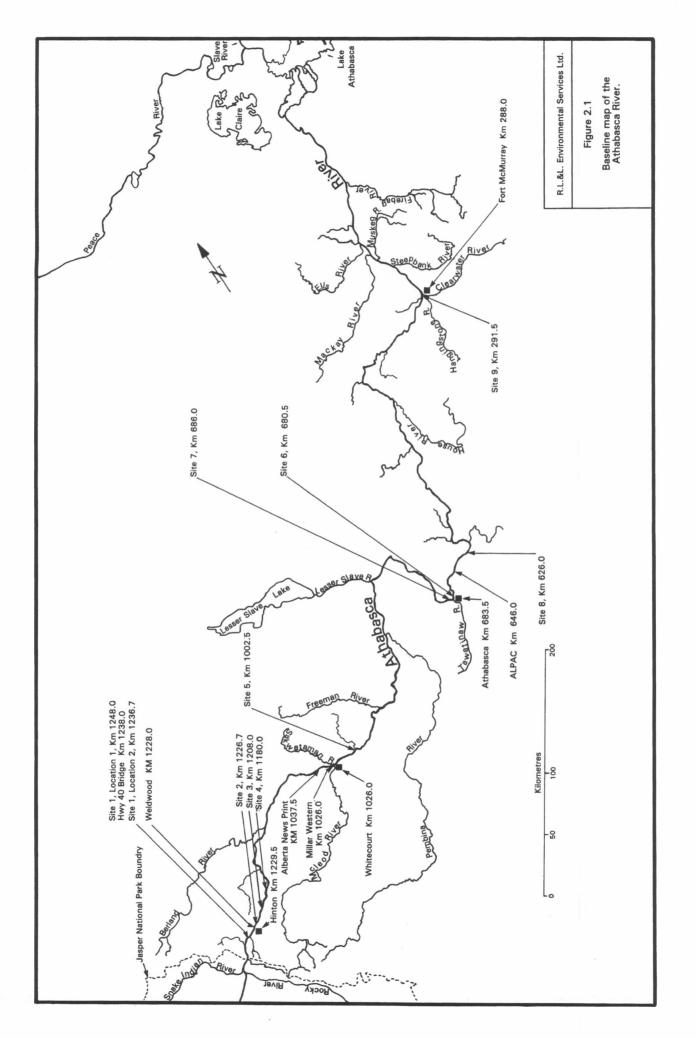
SECTION 2 METHODS

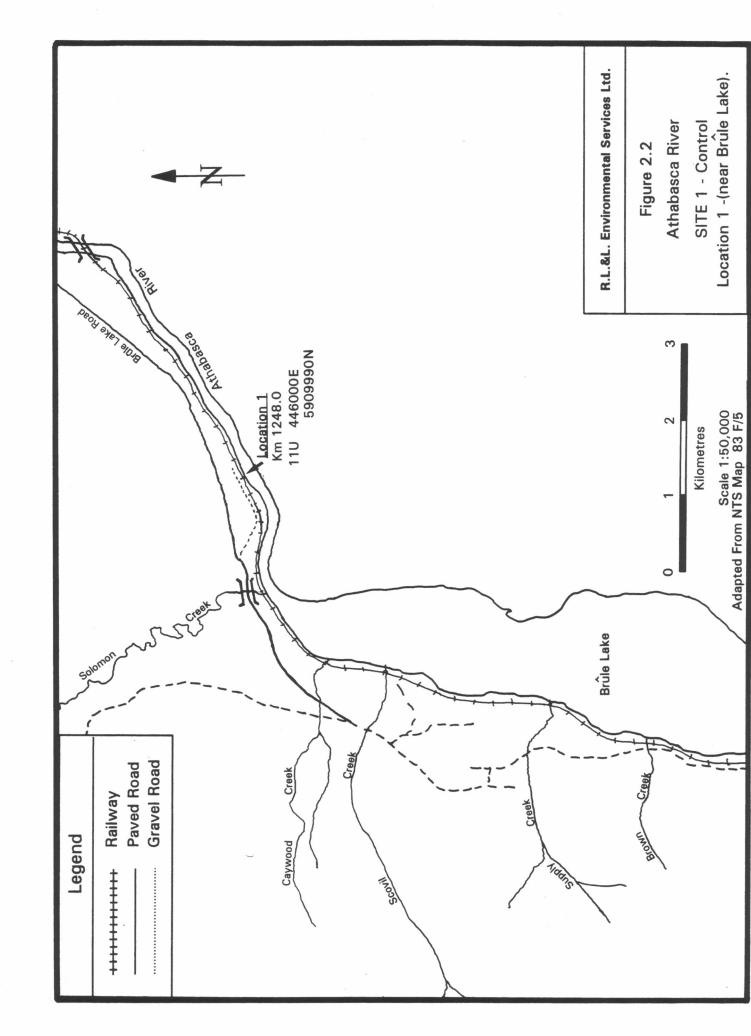
2.1 COLLECTION SITES

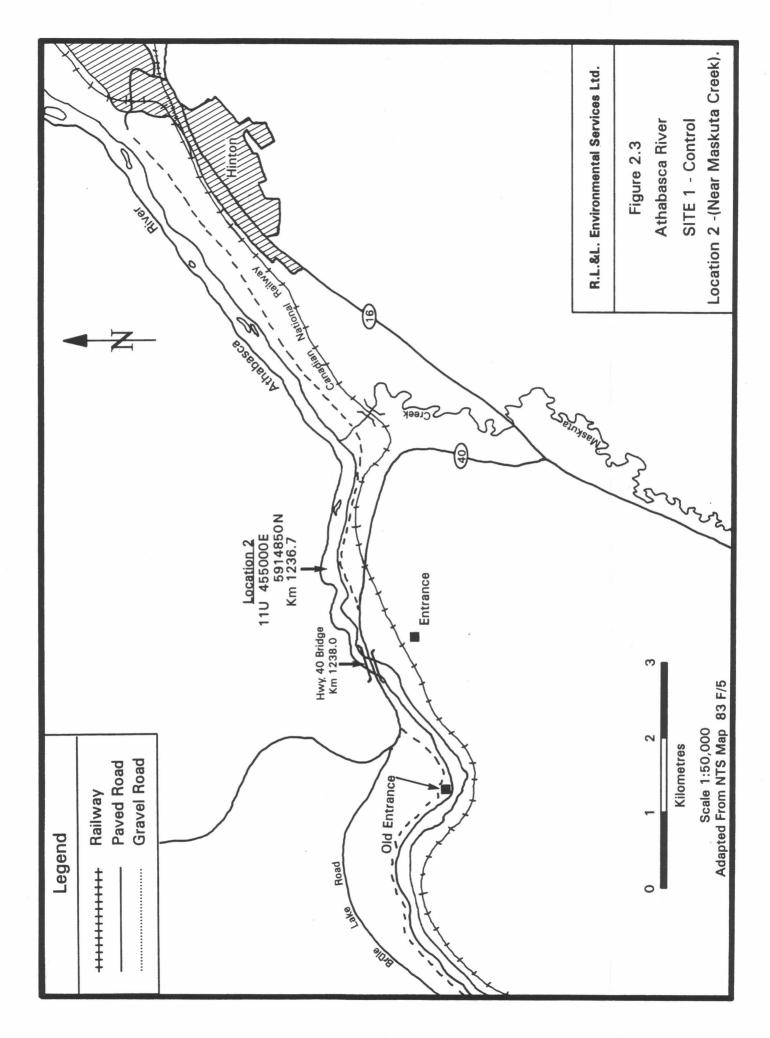
Nine benthic and fisheries sampling sites were established on the Athabasca River (Figure 2.1). Sites were situated both upstream and downstream of industrial (i.e., Millar Western Pulp Mill) and municipal (i.e., the Town of Athabasca) effluent discharge points. Sites were primarily located on the left upstream bank (left side looking upstream). After consultation with NRBS, two (upstream of Berland River and Windfall Bridge) of the original ten sampling sites described in the Terms of Reference were not sampled because of time constraints. One other site (downstream of Athabasca Town) was added to the sampling list. Photographs of all sample locations are provided in Appendix B.

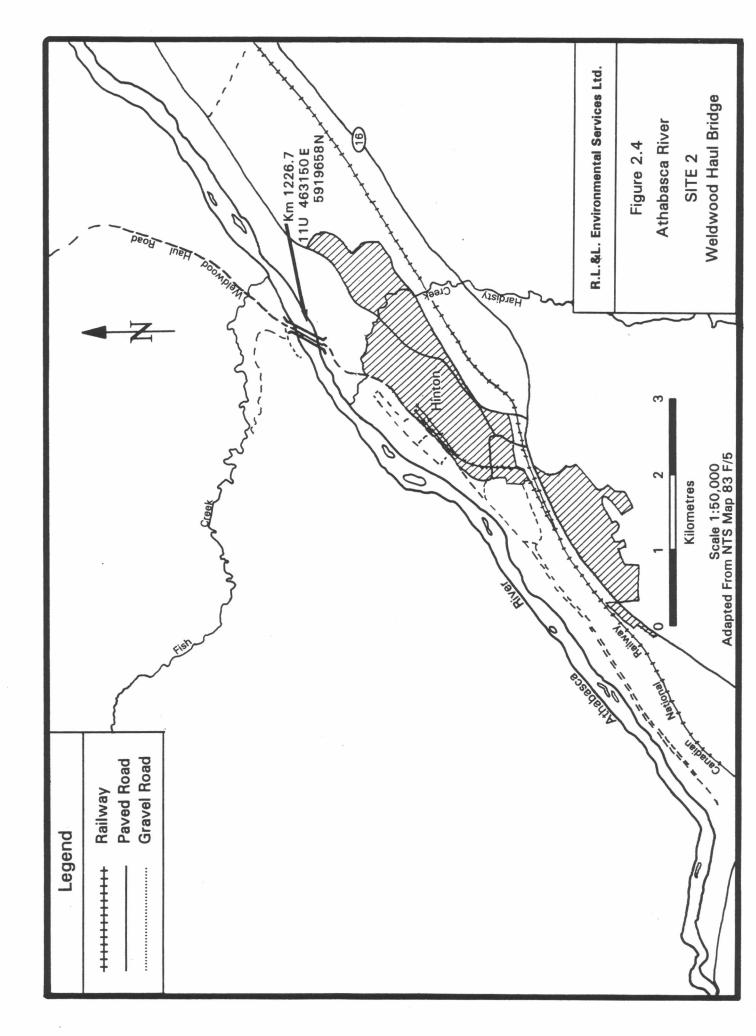
2.1.1 Sample Locations

Sample locations are referenced by kilometre (km) and by Universal Transverse Mercator Grid System (UTM). The kilometre reference for a location is based on the upstream distance from the mouth of the Athabasca River at Lake Athabasca (Km 0). Sample locations referenced according to the Universal Transverse Mercator Grid (UTM) were obtained in the field with the use of a Global Positioning System instrument (Trimble Transpak).


The sampling locations were as follows:


<u>Site 1 - Control</u> (Location 1: km=1248.0, UTM=11U 446000E 5909990N, and Location 2: km=1235.6, UTM=11U 455000E 5914850N)


Site 1 was divided into two sampling locations in order to capitalize on open water availability and reduce ice-removal effort. Sampling Location 1 was located immediately downstream of the outlet of Brûle Lake along the right upstream bank (RUB) (Figure 2.2). Sampling Location 2 was located 1.25 km downstream of the Highway 40 bridge and 1.75 km upstream of the confluence with Maskuta Creek, along the left upstream bank (LUB) (Figure 2.3). Three holes were cut at this location. The purpose of the control site was to provide reference data from an area that was minimally influenced by effluent discharge.


<u>Site 2 - Weldwood Haul Bridge</u> (km=1226.7, UTM=11U 463150E 5919658N)

Site 2 was located approximately 1.0 km downstream of Weldwood Pulp Mill and the Town of Hinton combined effluent discharge point, and approximately nine km downstream of control site Location 2. Sampling was conducted on the LUB and immediately downstream of the Weldwood Haul Bridge (Figure 2.4). This was an open water site.

Site 3 - Obed Mountain Coal Bridge (km=1208.0, UTM=11U 476450E 5930929N)

This site was located approximately 27.6 km downstream of control site Location 2. All sampling was near bank (LUB) and immediately upstream of the bridge (Figure 2.5). Four holes were cut at this site.

Site 4 - Emerson Lakes Road Bridge (km=1180.0, UTM=11U 489010E 5959000N)

Site 4 was located approximately 55.6 km downstream of control site Location 2. All sampling was conducted on the LUB and 0.8 km downstream of the bridge (Figure 2.6). One hole was cut.

<u>Site 5 - Blue Ridge</u> (Hole 1: km=1002.5, UTM=11U 605600E 6002450N, and Hole 2: km=1002.0, UTM=11U 606195E 6002500N)

Site 5 was situated approximately 233 km downstream of control site Location 2. Hole 1 was situated near an island point (RUB) and hole 2 was located on the LUB. Both holes were downstream of the bridge where Highway 658 crosses the Athabasca River (Figure 2.7).

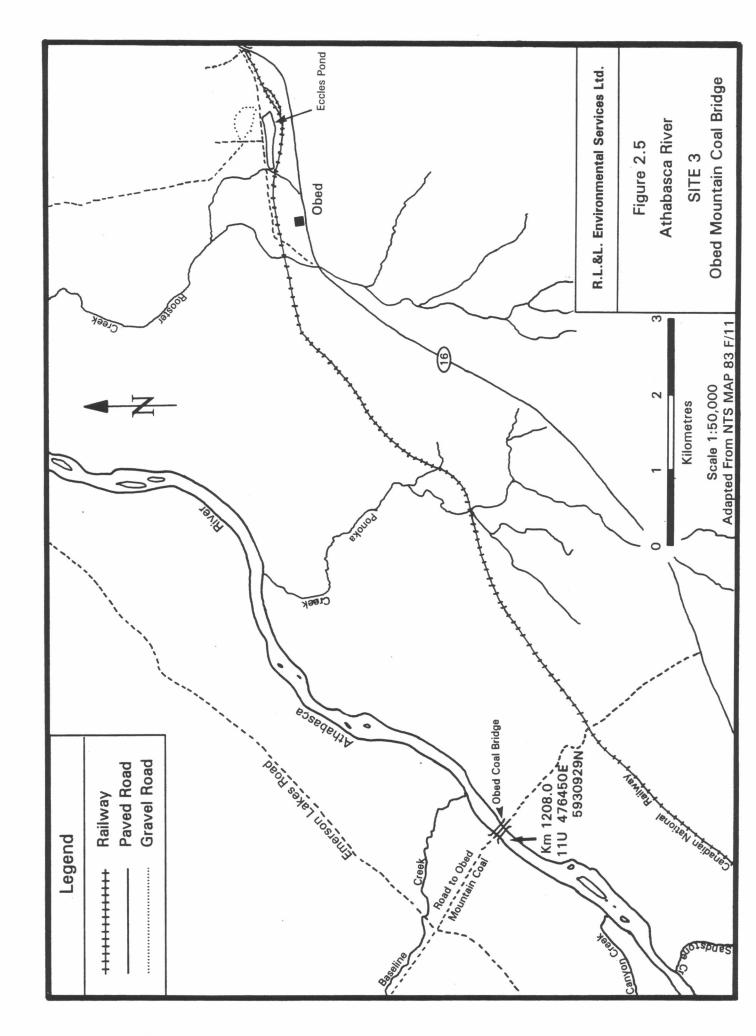
<u>Site 6 - Downstream of Athabasca Town</u> (Hole 1: km=681.9, UTM=12U 353956E 6067400N, and Hole 2: km=680.5, UTM=12U 353956E 6068500N)

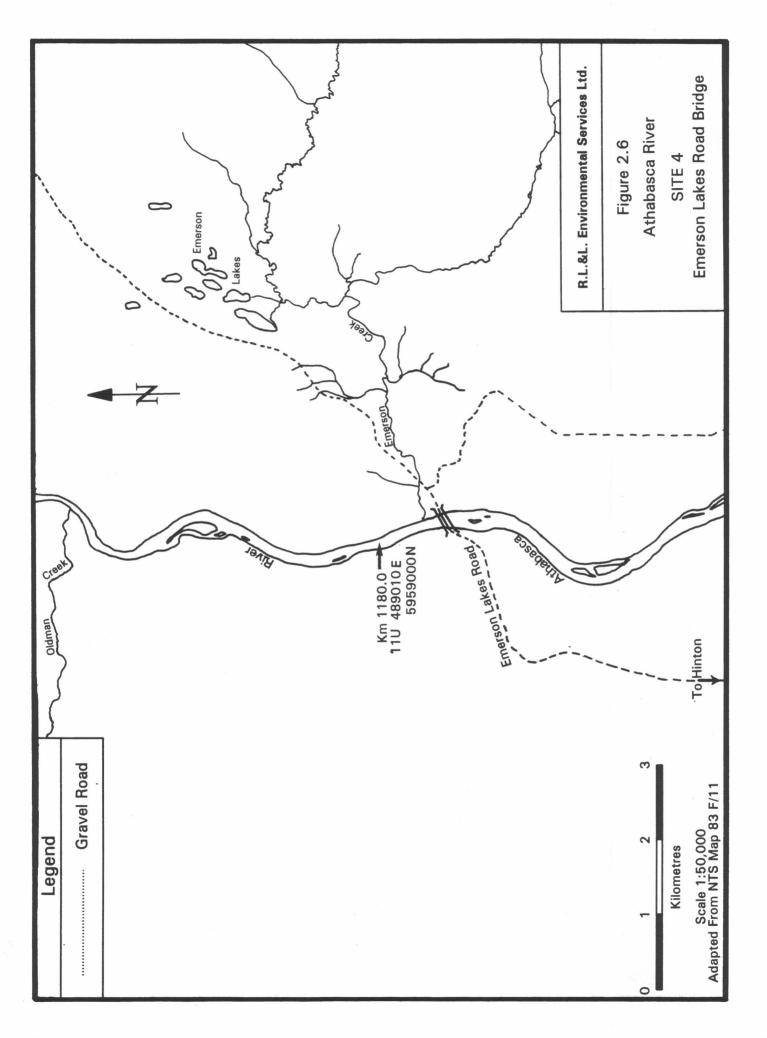
This site was established approximately 554 km downstream of control site Location 2. All sampling was near bank (LUB), 0.75 and 2.3 km downstream of Highway 813 bridge and below the Town of Athabasca's sewage treatment facility effluent outflow (Figure 2.8).

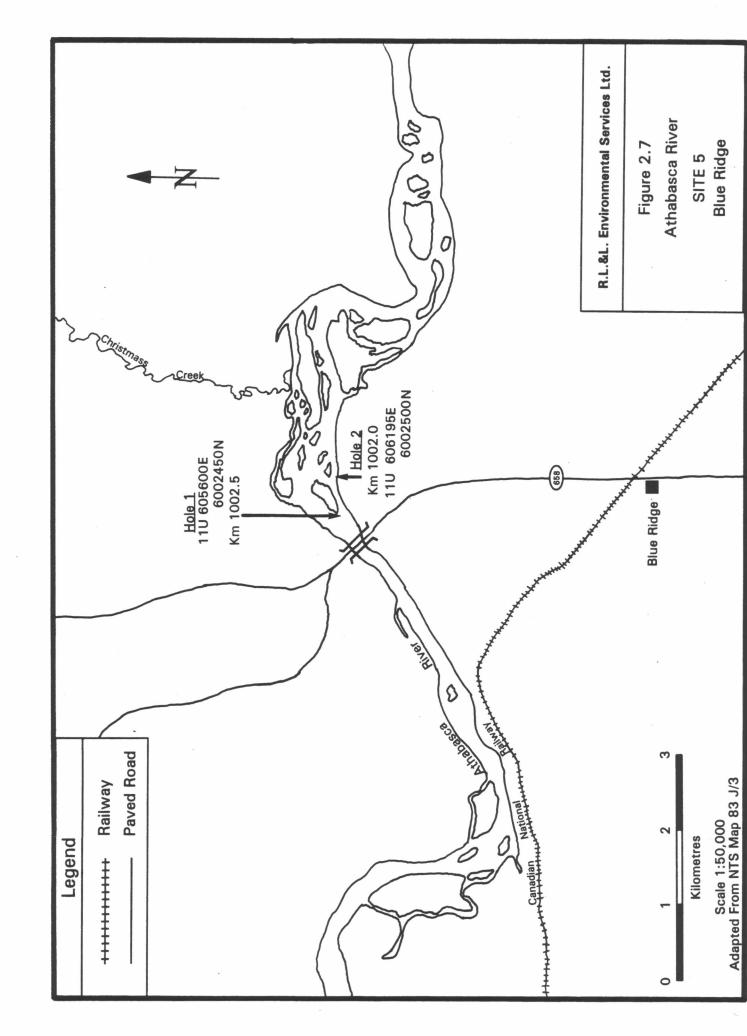
Site 7 - Upstream of Athabasca Town (km=686.0, UTM=12U 350900E 6068187N)

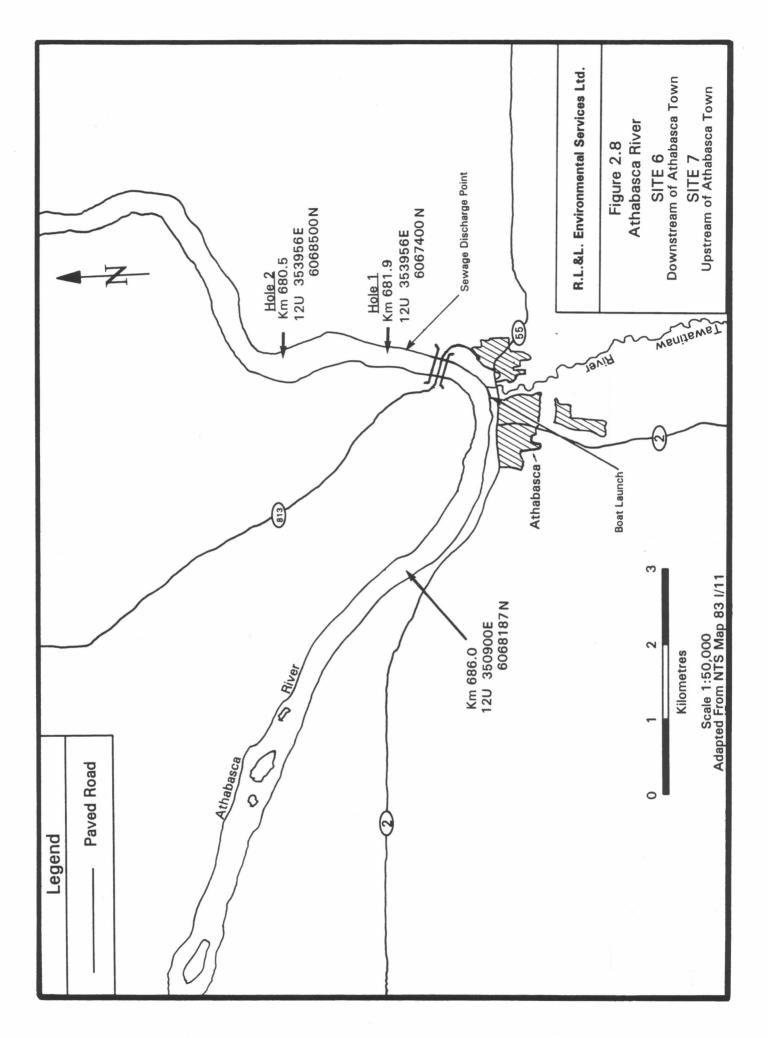
This site was situated approximately 549.6 km downstream of control site Location 2. Sampling occurred along the LUB, approximately 3.4 km upstream of Highway 813 bridge (Figure 2.8). Two holes were cut.

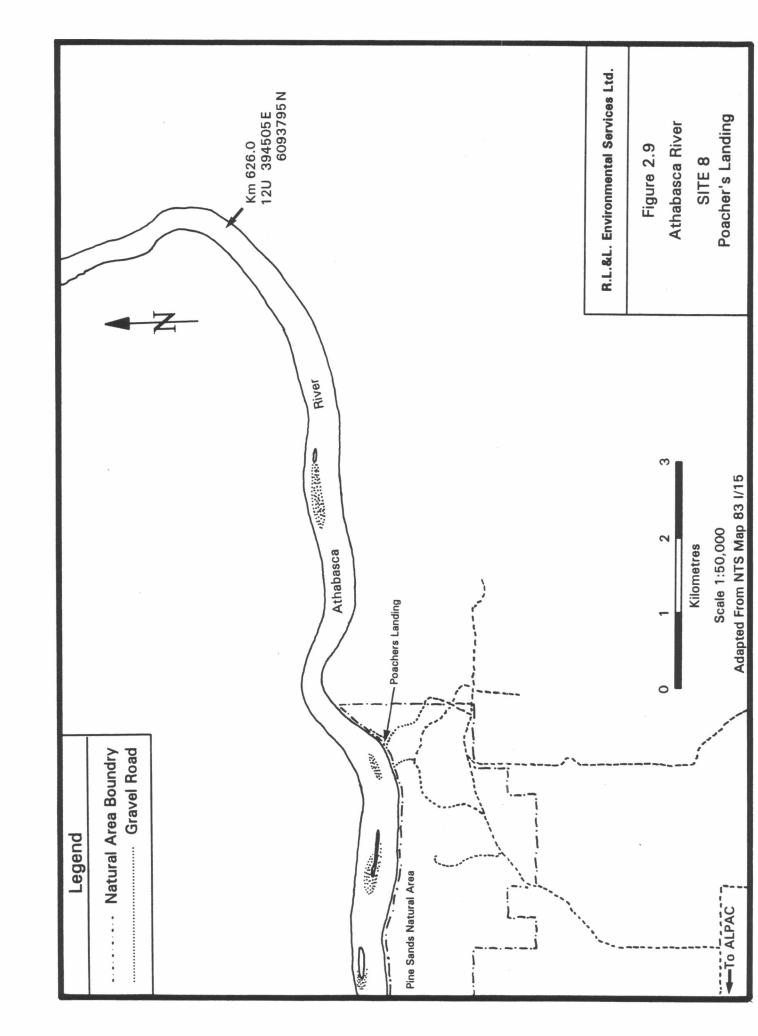
Site 8 - Poacher's Landing (km=626.0, UTM=12U 394505E 6093795N)

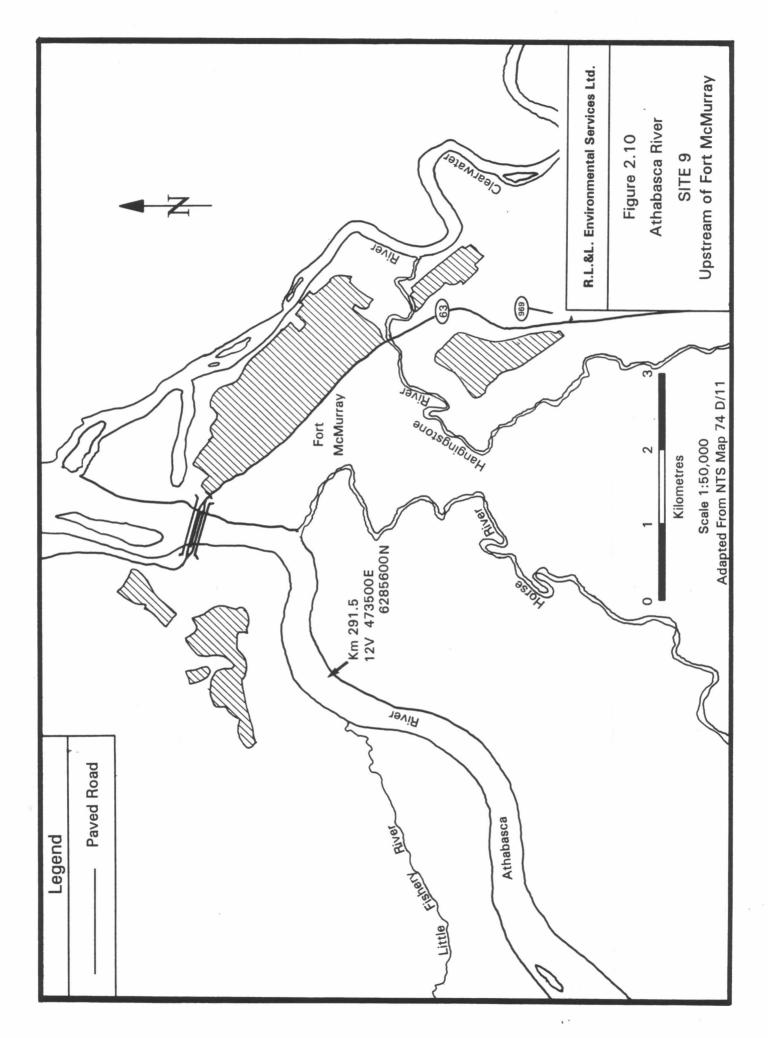

Site 8 was located 609.6 km downstream of control site Location 2. Sampling was near bank (LUB), and approximately 8.0 km downstream of Poacher's Landing boat launch (Figure 2.9). Two holes were cut at this site.

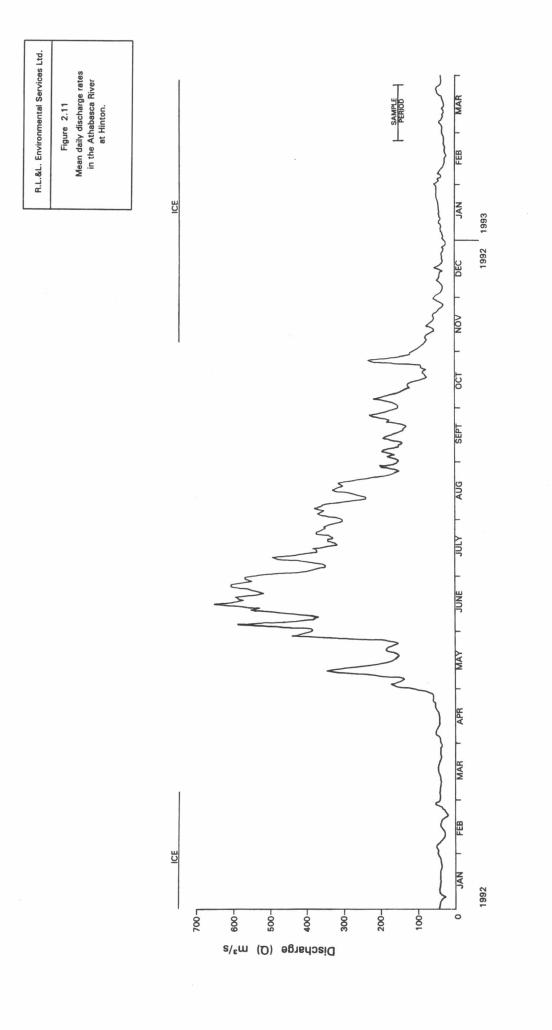

Site 9 - Upstream of Fort McMurray (km=291.5, UTM=12V 473500E 6285600N)

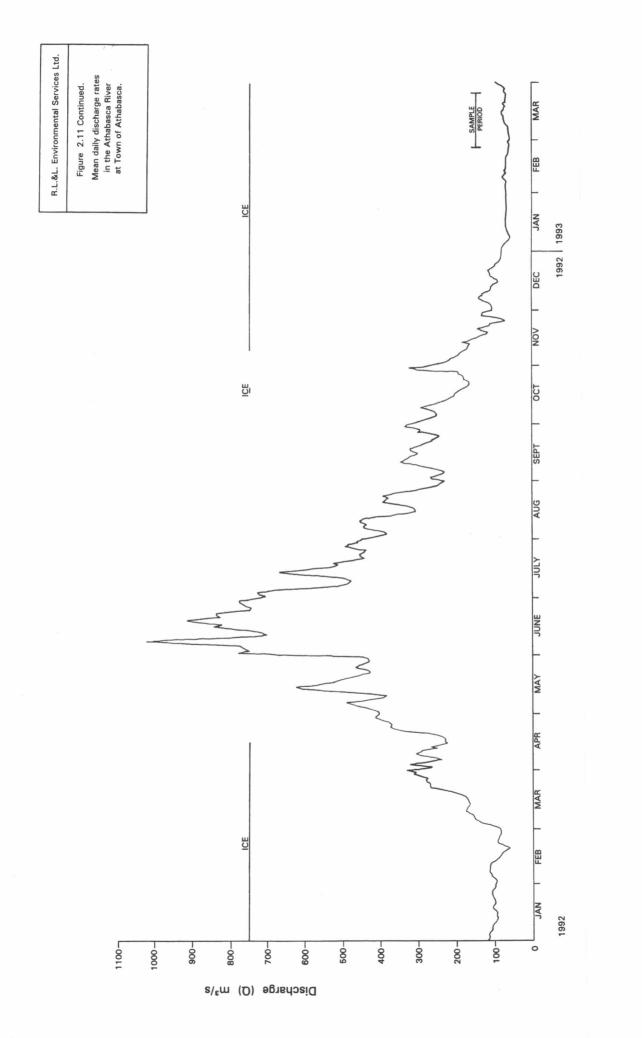

Site 9 was established approximately 944.1 km downstream of control site Location 2. All sampling was near the LUB, and approximately 2.0 km upstream of Fort McMurray's water treatment plant (Figure 2.10). One hole was cut.

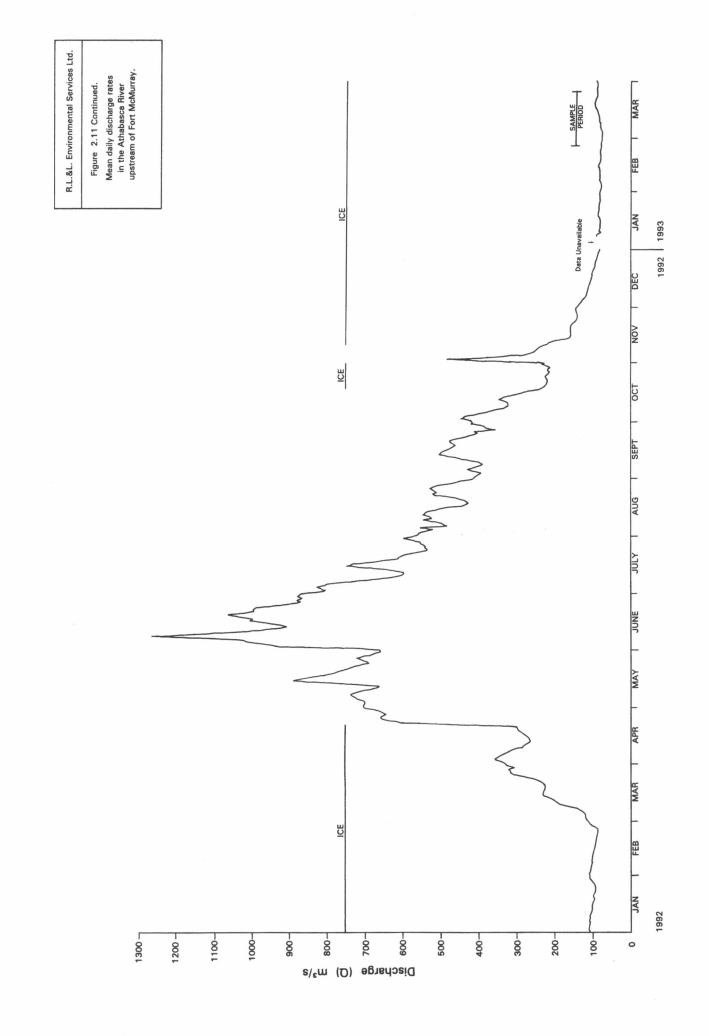

2.1.2 Sample Schedule


Sampling was conducted in late winter when low, stable, flows existed. Figure 2.11 depicts discharge rates in the Athabasca River at Hinton, Town of Athabasca, and upstream of Fort McMurray during 1992 and part of 1993 (raw data are presented in Appendix C). Benthic invertebrate, biofilm, and fish samples were collected









from 23 February to 27 March 1993. Two short breaks from the work schedule were taken during cold weather periods from 10 to 11 March and 16 to 17 March 1993.

2.2 ICE REMOVAL AND SAMPLE ACQUISITION

Benthic invertebrate, biofilm, and fish sampling necessitated the removal of large amounts of ice over areas of suitable habitat. Parameters used to select suitable sample areas included moderate water depth (<1.5 m), mostly cobble substrate, velocities from 0.25 to 0.80 m/s, and ice cover thickness of $\leq 1 \text{ m}$. To locate prime sampling areas, reconnaissance was conducted using a gasoline powered ice auger with a 10" auger stem. Under-ice flows, using a Marsh-McBirney Inc. Model 2000 current meter, substrate type, and depths were evaluated prior to any large scale ice removal. Chainsaws with 37" chain bars were used to cut the ice into approximately 0.3 m² (surface area) blocks for removal. All power equipment was serviced and refuelled away from sample holes to alleviate potential contamination. Vegetable oil was used as a chain lubricant to prolong chain life for all sites, except at Site 3 (the initial sample site), where chain lubricants were not used. Ice blocks were removed from the holes using ice tongs and pry bars.

Owing to the nature of the ice removal techniques, a number of safety precautions were taken. All crew members were equipped with spike boots for traction on wet ice. Chainsaw operators wore hard hats with ear and eye protection, Kevlar® chaps, and Kevlar® fronted chainsaw boots. In areas with questionable ice conditions (i.e., thin ice), chainsaw operators also wore safety harnesses and a tie-line. All chainsaw operators worked with a partner to ensure safety.

After ice was removed, samples were collected by entering the water while wearing a dry suit and/or neoprene chest waders. A six foot step ladder was used to climb in and out of the water. Only one person entered the water at any given time, and collected benthic samples while attending crew members processed samples on the ice. For safety (i.e., prevention of being swept downstream and under the ice), the person that entered the water wore a harness with a properly secured tie line. One crew member monitored the sampler and tie line, which was secured to a solid structure (e.g., a tree or snow machine). Slack on the tie line was not allowed to exceed 1 m beyond the downstream end of a hole.

2.3 TRACE CONTAMINANT SAMPLING

2.3.1 Handling and Quality Control

The following collection and handling procedures were taken to avoid contamination of samples:

- To avoid contamination of stable isotope samples, liquids high in nitrogen, carbon, or sulphur were not used.
- 2. All equipment that came in contact with the samples for trace organic contaminants was first rinsed in ultra-pure acetone, then in ultra-pure (pesticide grade) hexane.
- 3. All equipment that came in contact with the samples for trace metal analysis were soaked in a 10% acid bath made of reagent grade HCL.
- 4. Aluminum foil was baked at 350 °C for 6 to 12 h before being used to line lids and protect equipment.
- 5. Metal, Teflon®, or glass equipment was used for trace organic contaminant samples; plastic, Teflon®, or glass equipment was used for trace metal samples.
- 6. All reusable equipment was thoroughly cleaned between sites. This included scrubbing all debris off of forceps and scrapers prior to washing in acid (for metals) or rinsing with acetone and hexane (for organics).
- 7. All expendable equipment was replaced between sites. This included replacing all mesh screens between sites with lab prepared plastic and metal screen material, as well as using new scalpels and instruments for fish dissection.
- 8. All samples were stored in clean containers (glass jars with lids lined with treated aluminum foil for organic and stable isotope analyses; Teflon® coated or plastic containers for metals; Federal Department of Agriculture (FDA) approved, resin free bags for fish samples). N.B. Amber glass jars were not available in time for the scheduled field trip. Therefore, clear glass jars were used; precautions were taken to keep these samples out of direct light (e.g., placed in a box or cooler).
- 9. Precautions were taken so that samples were not contaminated during sampling or sample preparation. Combustion exhaust from running motors, smoke, dust, paper products, etc. was minimized (i.e. generators running downwind).
- 10. Blank (fish) tissue samples were provided by the Northern River Basins Study and subjected to routine handling procedures for benthic invertebrate, biofilm, and fisheries samples.
- 11. Additional sets (duplicates) of all types of samples were collected from various sites, and
- 12. All residual chemical solutions (e.g., acetone, hexane, and acid) were collected, stored and disposed of in a manner consistent with the Alberta Occupational Health and Safety Act.

Analytical laboratories required the following minimum amounts for tissue analyses:

Trace organic contaminants:

- dioxins and furans:

10 g wet weight

- chlorophenols:

5 g wet weight

- PAHs, PCBs, resin acids:

10 g wet weight

Trace metals:

5 g wet weight

Stable isotopes:

2 g wet weight

Fish samples

10 fish (of same species)

2.3.2 Collection of Macroinvertebrate Tissue

Macroinvertebrate tissue samples for trace contaminant analyses were collected from erosional habitats (Table 2.1). Three taxa were to be sampled (ephemeropterans, plecopterans, and trichopterans). Caddisfly (Trichoptera) and mayfly (Ephemeroptera) densities varied among sites. Thus, a full complement of wet weights required for contaminant analyses was not collected for these taxa at all sites. Stonefly (Plecoptera) larvae were more abundant at all sites, thus, a larger complement of contaminant samples was collected for this taxon. Although some brachycentrid caddisflies were present, only hydropsychids were collected.

Trace Organic Contaminants and Stable Isotope Sampling Methods

To collect invertebrate tissue samples, a coarse square mesh (1.5 x 1.5 mm) barrier net (metal mesh fastened between two wooden dowels) was used. The barrier was positioned downstream of a person overturning stones with their feet. Dislodged invertebrates were swept by the river current into the barrier mesh. Owing to the limited amount of sampling area within the hole, one person in waders or a dry suit and wearing a safety harness, held the barrier and disturbed the substrate. Surface personnel removed organisms from the mesh screens with metal forceps and placed each taxonomic group into properly prepared glass jars. Samples were then placed in appropriately prepared containers (scintillation vials with lined lids), fully labelled, and frozen on dry ice immediately after collection. Samples were kept frozen at all times. Labels on containers displayed the following information: river, site, taxon, date, number of replicate, wet weight in grams, and type of analysis (i.e., dioxins and furans, chlorophenols, etc.).

In addition, a representative sub-sample of approximately 10 to 20 organisms from each taxonomic group was collected for identification at each site except at Upstream of Athabasca Town, Downstream of Athabasca Town, and Poacher's Landing. At these sites, invertebrates were low in density and all specimens collected were allocated for contaminant analyses. These samples were preserved in 4% formaldehyde and labelled appropriately.

Trace Metal Contaminant Sampling Methods

Macroinvertebrates sampled for trace metal contaminants were collected using the methods outlined previously for organic contaminants. However, a plastic mesh (mesh size=1.5 mm) barrier was used instead of a metal mesh and Teflon® coated forceps were used during removal of organisms from the screen. Samples were stored in labelled 30 mL polyethylene vials.

Table 2.1 Summary of benthic invertebrate trace contaminant tissue samples collected under ice from the Athabasca River, February-March 1993.

	DATE	CONTABINA	WET WEIGHT COLLECTED (g)							
SITE	DATE	CONTAMINANT ANALYSIS*							Bla	nk
	COLLECTED	ANALISIS	Rep. 1	Rep.2	Rep.1	Rep. 2	Rep. 1	Rep. 2	Rep.1	Rep.2
		Dioxins and Furans	12		10	11	12		11	11
1		Isotopes	2		2	2	2		3	5
Control - Near	4 to 6 March	Chlorophenols	5		6	5	5		8	8
Entrance		PAH, PCB, etc.	10		11	10	10		12	15
		Metals	6		6	5	4	3	7	11
		Organic Agregate**			5					
		Dioxins and Furans	10	11	10		10		10	10
2		Isotopes	2	3	3		3		2	2
Weldwood	24 to 25	Chlorophenols	5	6	7		6		5	5
Haul Bridge	February	PAH, PCB, etc.	10	11	10		10		10	10
		Metals	11	8	4		5		5	5
		Organic Agregate**								
3		Dioxins and Furans	10							
Obed	28 February,	Isotopes	2		2		2			
Mountain	1 to 2	Chlorophenois	5		5					
Coal	March	PAH, PCB, etc.								1
Bridge		Metals								
		Organic Agregate**	2		2		3			
4		Dioxins and Furans	10	11	12		10		10	
Emerson		Isotopes	3	3	2		2		7	
Lakes	7 to 9	Chlorophenols	5	5	5		5		11	
Bridge	March	PAH, PCB, etc.	11	14	10		10		11	
		Metals	6	6	11	5	5		12	
		Organic Agregate**								
		Dioxins and Furans	10	11	10					
5		Isotopes	2	2			2			
Blue Ridge	13 to 14	Chlorophenols	6	6	5					
	March	PAH, PCB, etc.	10		10					
		Metals	7		3		<1			
		Organic Agregate**					<2			
		Dioxins and Furans								
6		Isotopes								
Downstream of	18 March	Chlorophenols								
Athabasca		PAH, PCB, etc.								
Town		Metals								
		Organic Agregate**	2	2	8	2	<2	<1		
		Dioxins and Furans								
7		Isotopes								
Upstream of	20 to 21	Chlorophenols								
Athabasca	March	PAH, PCB, etc.								
Town		Metals								
		Organic Agregate**	7	7	9	10	<1	<1		
		Dioxins and Furans								
8		Isotopes								
Poacher's	23 March	Chlorophenols								
Landing		PAH, PCB, etc.								
		Metals								
		Organic Agregate**	7	2	8		<1			
		Dioxins and Furans	10		10				10	
9		Isotopes	4		4				7	
Upstream of	26 to 27	Chlorophenols	5		8				6	
Fort	March	PAH, PCB, etc.	11		10				12	
McMurray	iviarch									
		Metals	4		4		0.00	<1	7	
		Organic Agregate**	6				2/2***	<1		

^{*} Samples for metal analyses were placed in 30 ml polyethylene vials. All other sample types were placed in 20 mL glass scintillation vials.

^{**} Organic agregate indicates a sample collected, but not designated to a specific contaminant analysis.

^{***} x/x indicates two seperate samples. Three samples were collected for emphemeroptera and not designated to a specific analysis.

Blank Tissue Handling Methods

Northern River Basins Study provided blank (fish) tissue. This tissue was handled using the same equipment and procedures as were the macroinvertebrate tissue samples. A full complement of blank samples, including duplicates, were processed at Sites 1 and 2. Blank tissue samples also were processed at Sites 4 and 9 (Table 2.1).

2.3.3 Collection of Biofilm Tissue

Biofilm refers to the assemblage of algae and associated organisms (algae, fungi, bacteria, protozoans, etc. and their secretions) that surround solid surfaces in aquatic systems. Biofilm was sampled at the nine sites, within the same general area as benthic invertebrates (Table 2.2). Samples were collected from a least 10 stones chosen at random from erosional areas at each site. Scrapings from the stones were combined and mixed to form a composite sample for each site and type of analysis (organic or metal contaminants). Care was taken to avoid inclusion of macroinvertebrates and large organic debris in the composite samples. Aliquots were withdrawn and apportioned to the appropriate sample containers as described in Section 2.3.1.

Additional biofilm samples were reserved for taxonomic identification. At each site, two aliquots from the composite organic contaminant sample were preserved; one with a modified Lugol's solution and the other with 4% formaldehyde. At sites 1 and 2, identification samples were replicated for both Lugol's and formaldehyde preservation methods.

2.3.4 Collection of Fish Tissues

Fish sampling was carried out at all nine sites. Mountain whitefish were captured at four of nine sites (Sites 1 to 4) and dissected to obtain liver tissue for MFO determination (Table 2.3). All remaining fish tissue was individually bagged (in FDA approved, resin free bags), labelled, and frozen for contaminant analysis. Data collected on individual fish are in Appendix D.

Gee-traps for small fish were used with a variety of baits (i.e., cheese, crackers, and Lunker® lights) at open water Site 2 and ice covered Site 3. No fish were caught using Gee-traps. All sites were electrofished using a Smith-Root Type XII backpack electrofisher, and all fish caught were obtained by this method.

Table 2.2 Summary of biofilm trace contaminant tissue samples collected under ice from the Athabasca River, February-March 1993.

	DATE	CONTAMINANT	WET WEIGHT	COLLECTED (g)
Site	COLLECTED	ANALYSIS*	Rep. 1	Rep.2
1		Dioxins and Furans	15	11
Control -		Isotopes	3	5
near	3 &5 March	Chlorophenols	9	5
Entrance		PAH, PCB, etc.	12	12
		Metals	9	8
2		Dioxins and Furans	11	11
Weldwood		Isotopes	7	7
Haul Bridge	24 February	Chlorophenols	8	8
,		PAH, PCB, etc.	15	16
		Metals	17	25
3		Dioxins and Furans	10	
Obed	26 to 28	Isotopes	2	
Mountain	February,	Chlorophenols	5	
Coal	1 March	PAH, PCB, etc.	10	
Bridge		Metals	6	
4		Dioxins and Furans	15	12
Emerson	7 to 8	Isotopes	17	9
Lakes	March	Chlorophenols	12	15
Bridge		PAH, PCB, etc.	10	14
		Metals	11	24
		Dioxins and Furans	10	
5		Isotopes	4	
Blue Ridge	14 March	Chlorophenols	6	
		PAH, PCB, etc.	14	
		Metals	7	
6		Dioxins and Furans	12	14
Downstream of		Isotopes	4	3
Athabasca Town	19 March	Chlorophenols	8	7
		PAH, PCB, etc.	12	12
		Metals	10	11
7		Dioxins and Furans	11	12
Upstream of		Isotopes	3	4
Athabasca Town	20 March	Chlorophenols	6	7
Adiabassa rowiii	20 11101011	PAH, PCB, etc.	11	11
		Metals	8	7
		Dioxins and Furans	13	12
8		Isotopes	5	5
Poacher's	23 March	Chlorophenols	7	7
Landing		PAH, PCB, etc.	12	12
Landing		Metals	10	8
9		Dioxins and Furans	11	12
Upstream of		Isotopes	3	5
Fort McMurray	26 March	Chlorophenols	9	7
. or chilomatray	20 141011	PAH, PCB, etc.	13	12
		Metals	17	9

^{*} Samples for metal analysis were placed in 30 ml polyethylene vials. All other samples were placed in 20 ml glass scintillation vials.

Table 2.3 Summary of fish collected under ice for Multi-function oxidase and contaminant analysis from sites on the Athabasca River, February-March 1993.

				CATCH (#	's)		
SITE	SAMPLE DATE	SAMPLE NUMBERS	CONTAMINA	NT ANALYSIS	MFO AI	VALYSIS	BLANK
	DAIL	I TO WIDE TO	MW*	SCUL**	MW*	SCUL**	
1 Control - near Entrance	4 to 5 March	15 to 44	30		30		1
2 Weldwood Haul Bridge	24 February	1 to 10	9	1	9		1
3 Obed Mountain Bridge	27 February	11 to 14	4		4		
4 Emerson Lakes Bridge	8 March	45 to 46	2		2		1
5 Blue Ridge	13 March						
6 Downstream of Athabasca Town	21 March						
7 Upstream of Athabasca Town	21 March						
8 Poacher's Landing	24 March						
9 Upstream of Fort McMurray	27 March						

^{*} MW = mountain whitefish

2.4 AQUATIC COMMUNITY SAMPLING

2.4.1 Invertebrate Sampling

Aquatic macroinvertebrate community samples were collected from the Athabasca River concurrent with the collection of invertebrate tissue samples for trace contaminant analyses. Ten replicate samples were collected from erosional habitats at each of sites 4 to 9. Additional samples were collected at Site 1 (14 Neills), as well as sites 2 and 3 (13 Neills each). Sampling occurred prior to disturbance by previous sampling programs. All methods used in sampling aquatic invertebrates followed procedures outlined in Alberta Environment (1990). A modified Neill (1938) cylinder sampler (0.1 m² and 0.210 mm mesh) and a deep-water sock secured over the top of the cylinder were used to collect animals from erosional habitats. The deep water sock was used to enclose the top of the cylinder because combined ice and water depths for areas of appropriate flow averaged 1 m, well above the top of the cylinder (approximately 60 cm high). Areas with shallower depths could not be sampled because they were frozen from surface to substrate. Large surface substrate (boulder, cobble, large

^{* *} SCUL = sculpin

gravel) delineated by the Neill cylinder was removed by an individual completely submerging in a dry suit to hand pick stones from the river bottom. These stones were then scrubbed with a small brush to remove adhering organisms into a 20 L bucket. Individual samples were stored in labelled, 1.5 L, wide-mouthed plastic bottles and preserved, in the field, with 4% formaldehyde. Prior to placement in these bottles, the samples were elutriated and sieved (212 μ m mesh) to separate organic and inorganic materials. The inorganic portion was visually scanned for animals before it was discarded. Variables that may influence invertebrate distribution (e.g., current velocity, substrate characteristics, depth, etc.) were recorded and are described below in Section 3. Mean current velocity (0.6 depth from the substrate to the bottom of the ice) over sampling locations was measured with a Marsh-McBirney, Inc. Model 2000 current meter. Substrate composition was visually assessed according to a modified Wentworth (1922) scale (Cummins 1962).

2.4.2 Biofilm Sampling

Biofilm sampling was conducted in conjunction with trace contaminant tissue sample collection. Ten replicate samples for both taxonomic identification and Chla/LOI analysis were collected from all sites except sites 1 and 4. Five additional biofilm samples (total of 15) were collected for taxonomic identification at Site 1 and for Chla/LOI analysis at Site 4, respectively. Each sample consisted of biofilm scraped from a 9 cm² area (as delineated by a circular template) and placed into labelled 20 mL, plastic scintillation vials. Samples for taxonomic identification were preserved in Lugol's solution. Samples collected for Chla/LOI analysis were placed on dry ice.

2.5 FISH SAMPLING

The following handling and collection procedures were observed when sampling for MFO analysis of liver tissue:

- 1. A single species (i.e., mountain whitefish) at all sites was collected for MFO tissue sampling for comparable results.
- 2. All fish collected were transferred to a portable live well and experienced minimal handling prior to dissection.
- Each sample fish was examined for abnormalities. A Gross Pathology Sheet was completed if any abnormalities were found.
- 4. Length and weight were recorded on a Fish Collection Sheet (Appendix D).
- 5. The dissection area was covered with FDA approved, resin-free plastic and disposable scalpels were used to process fish.

- 6. Any contact with gall bladder bile was avoided; all livers were rinsed in 0.15 M KCl solution prior to placement in an appropriate container.
- 7. Large livers were subsampled, with excess liver tissue bagged and labelled separately to be used in conjunction with whole fish tissue for contaminant analysis, and
- 8. Each liver was packaged in a cryovial, labelled, and immediately frozen on dry ice (-80 °C).

Liver tissue for MFO analysis was removed from all mountain whitefish captured. One sculpin was captured at Site 1, but the liver was not sampled.

SECTION 3 RESULTS

3.1 DATA COLLECTION

The field survey commenced on 24 February 1993 and terminated on 27 March 1993, with two short breaks due to cold weather (10-11 March and 16-17 March). In general, the weather was seasonably mild for the majority of the survey (Table 3.1). Water temperature at all sites (open and ice-covered) was 1 - 2 °C. Owing to the mild weather, snow on river banks and surface ice was generally non-existent. Snow was present mainly during storms. Biofilm, macroinvertebrate, and fish tissue were processed inside of an electrically heated, 14-foot cargo van that was established as a mobile lab. Electricity for heat and lighting was provided by gas generators located approximately 300 m downwind of the van. Photographs of equipment, sample sites, and procedures are included in Appendix B.

Densities of benthic macroinvertebrates varied among the nine sites. Plecoptera (stoneflies) were generally more abundant than Trichoptera (caddisflies) or Ephemeroptera (mayflies). A full complement of trace contaminant samples for all three taxa were collected at Sites 1, 2, and 4. Insufficient macroinvertebrate biomass was collected at sites 3 and 5 through 9 to complete a full complement of all contaminant analyses for all taxa. Invertebrate density appeared to be much lower at sites (downstream and upstream of Athabasca and Poacher's Landing) around the town of Athabasca.

Taxonomic composition also varied among the sampling sites. Stoneflies tended to be relatively consistent in taxonomic composition among all sites. The stoneflies, *Claassenia*, *Hesperoperla*, *Pteronarcella*, and *Isogenoides* were observed at all sites; however, *Pteronarcella* tended to be greatest in density at the Athabasca Town sties. Adult stoneflies (possibly Nemouridae) were observed at Poacher's Landing. It was also observed that capniid-chloroperlid-type stoneflies became more abundant further downstream. Hydropsychid caddisflies mainly consisted of *Arctopsyche* at Site 1, the upper-most site. *Hydropsyche* and *Cheumatopsyche* predominated as sampling progressed downstream. *Brachycentrid* caddisflies also became less abundant at downstream sites. The mayflies, *Drunella*, *Ameletus*, and *Ametropus* were mainly observed at upstream sites, while *Baetis* and *Heptegenia* were observed to be more abundant at downstream sites. Gomphid-type dragonflies were observed at Blue Ridge (Site 5) and all remaining downstream sites.

Mountain whitefish were more abundant at upstream sites. Fish were only collected at Sites 1 through 4, although sampling effort was relatively consistent at all nine sites. Of the fish collected, none were observed to have any gross pathological conditions.

Table 3.1 Summary of weather conditions measured in the field (February - March 1993).

		TEMPERA	TURE ^a (°C)	
SITE	DATE	WATER	AIR	DESCRIPTION
2	24 Feb	1	-8	overcast, breezy
2/3	25 Feb	1	-3	overcast, breezy
2/3	26 Feb	1	0	overcast, breezy
3	27 Feb	1	6-10	gusty wind to 120 kph
3	28 Feb	1	13	gusty wind to 80 kph
1	1 Mar	1	13	gusty wind to 120 kph
1/3	2 Mar	1	8	sunny, breezy
1/2	3 Mar	1	11	sunny, breezy
1	4 Mar	2	12	sunny, wind gusts to 100 kph
1	5 Mar	2	11	sunny, wind gust to approx. 50 kph
1/4	6 Mar	2	15	cloudy, calm, slight breeze, 10 kph
4	7 Mar	1	15	sunny, calm
4	8 mar	1	-2	snowing all day
4	9 Mar	1	-3	overcast, calm
5	12 Mar	1	5	overcast, calm
5	13 Mar	1	2	sunny, breezy to 10-15 kph
5	14 Mar	1	0	morning cold (-5°C), breezy to 25-30 kph
6	17 Mar	1	3	30-50 kph winds, sunny
6	18 Mar	1	4	breezy
7	19 Mar	1	6	breezy (15 kph), sunny
7	20 Mar	1	6	windy, 30-40 kph, overcast
7/6	21 Mar	1	10	breezy, 20-30 kph, overcast in pm
8	22 Mar	1	12	sunny, calm
8	23 Mar	1	12	sunny to overcast in pm, breezy at 10-20 kph
8	24 Mar	1	12	windy, 30-40 kph
9	25 Mar	1	8	windy, 20-60 kph
9	26 Mar	1	6	calm, sunny
9	27 Mar	1	10	calm, sunny

^a Temperatures were recorded between 1300 to 1500 h.

Biofilm was relatively abundant at all sites. For example, duplicate biofilm contaminant samples were collected at all sites except 3 and 5, where single samples were collected (see Table 2.2). At each site, biofilm varied from encrusting diatoms to large masses of macroalgae. At the five upstream sites, macroalgae consisted of a gelatinous mass that may have been bacteria and/or a winter form of the blue-green algae *Nostoc*. At the four downstream sites, macroalgae consisted of the aforementioned gelatinous mass as well as various amounts of a filamentous green algae (possibly *Cladophora*) and mosses (Bryophytes).

Benthic macroinvertebrate and biofilm quantitative samples were collected in association of one another. In other words, quantitative biofilm replicates were collected in the same area as corresponding invertebrate quantitative replicates (i.e., Chla/LOI and Lugol's replicates 1 through 3 were collected in the vicinity of Neill replicates 1 through 3).

To perform quantitative sampling of benthic invertebrates and biofilm, ice had to be removed from eight of the nine sites that were sampled. The number of holes produced at a site varied from one to four and the total area of exposed river bottom ranged from approximately 43 to 144 m² (Figure 3.1). The smallest single-holed site was approximately 94.5 m² in surface area.

Although the Terms of Reference states, and NRBS managers implied, that not less than three to five holes, approximately 3 x 5 m in size, were required for quantitative sampling, most sites were sampled through one or two large holes. Fewer holes were produced in order to save time and expedite sampling. Reconnaissance took from two to eight hours at each location to find a suitable sampling site. For example, reconnaissance at Fort McMurray took approximately four hours. Subsequently, ice cutting was undertaken while a second work crew of two people continued reconnaissance activities for more sampling locations. After expending at least six more hours and travelling approximately 500 m upstream and downstream of the original sampling location, no other sampling areas could be found, therefore, a decision was made to produce one large hole at this site. Two ice-cutting crews worked on opposite ends of the hole to ultimately expose approximately 94 m² of river bottom.

Cutting fewer than three holes did not compromise the total area of river bottom that was exposed at a given site. Three to five holes of 3 x 5 m size exposed 45 to 75 m² of river bottom. The smallest area of river bottom that was exposed in this project was 43 m², with two holes at Site 6 (Downstream of Athabasca Town).

Individual site observations are as follows:

Site 1 - Control - near Entrance

All ice removal and sample collections occurred at two locations from 1 to 6 March 1993. Sampling Location 1, near Brûle Lake, consisted of open water sampling in an ice-free area approximately 4 km long and along the RUB. Sampling location 2, near Maskuta Creek, involved three ice-holes (7.5 x 2.1 m, 6.2 x 2.8 m, and 7.9 x 1.8 m, respectively; Figure 3.1) in 0.6 m ice thickness. Holes were cut along the LUB and sampling occurred in 0.8 to 1.18 m of water. Biological tissue samples for trace contaminant analyses were collected from both locations and all quantitative samples were collected from Location 2. Fish samples were collected from Location 1.

Plecoptera and Trichoptera samples destined for PAH, PCB, etc. analysis may have been contaminated by water that was inadvertently added to the sorting tray. This water was from a plastic fish livewell that contained live fish. Additional replicates (five extra, n=15) of quantitative biofilm (taxonomic identification and Chla/LOI) were collected due to spillage and improper storage of the original ten samples. Table 3.2 summarizes the physical variables measured at the benthic invertebrate community sample locations.

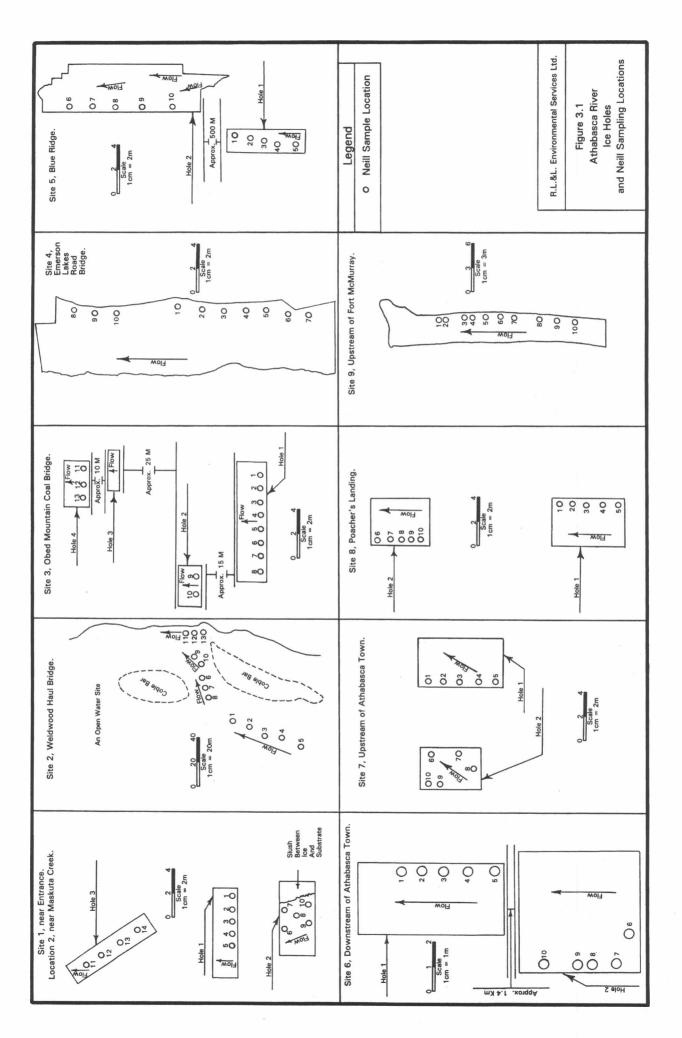


Table 3.2 Physical variables measured at benthic invertebrate community sample locations, Site 1.

	DATE	DATE MEAN CURRENT SUBSTRATE (% Composition)					sition)
SAMPLE	COLLECTED	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt
Neill 1	2 March	43	100		50	25	25
Neill 2	2 March	83	100		70	5	25
Neill 3	2 March	65	80		40	40	20
Neill 4	2 March	76	100		10	80	10
Neill 5	2 March	84	100		85	10	5
Neill 6	2 March	76	118			80	20
Neill 7	2 March	42	112		60	20	20
Neill 8	2 March	33	115		60	30	10
Neill 9	2 March	76	115		75	20	5
Neill 10	2 March	64	112		30	60	10
Neill 11	3 March	39	114		70	20	10
Neill 12	3 March	27	114		60	35	5
Neill 13	3 March	29	96		60	25	15
Neill 14	3 March	79	80		80	10	10

Site 2 - Weldwood Haul Bridge

Site 2 was entirely ice free with minimal shore ice (Figure 3.1). Sampling occurred on 24 and 25 February and 3 March 1993, approximately 100 to 500 m downstream of the Weldwood Haul Bridge. Baited Gee-traps and backpack electrofishing were used to collect fish. Nine fish were caught by electrofishing, while Gee-traps produced no fish even though small schools of fish were observed in areas where the Gee-traps were set. All sampling was conducted along the LUB. Physical variables measured at each benthic invertebrate sample site are summarized in Table 3.3.

Table 3.3 Physical variables measured at benthic invertebrate community sample locations, Site 2.

	DATE	MEAN CURRENT		SUBSTRATE (% composition)					
SAMPLE	COLLECTED	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt		
Neill 1	24 February	48	36	20	40	20	20		
Neill 2	24 February	41	35	10	30	40	20		
Neill 3	24 February	45	28	10	50	30	10		
Neill 4	24 February	53	38	10	40	40	10		
Neill 5	24 February	44	46	10	50	35	5		
Neill 6	24 February	36	54	20	40	30	10		
Neill 7	24 February	28	46	10	60	25	5		
Neill 8	24 February	58	35		20	50	30		
Neill 9	24 February	37	39		25	60	15		
Neill 10	24 February	65	28	20	55	10	15		
Neill 11	3 March	28	61	5	60	15	20		
Neill 12	3 March	19	55		40	50	10		
Neill 13	3 March	21	59			80	20		

Site 3 - Obed Mountain Coal Bridge

All samples were collected approximately 100 to 500 m upstream of the Obed Mountain Coal Bridge on 25 to 28 February and 2 March 1993. Site 3 was the first ice removal and through ice sampling site undertaken for the study. Four holes were cut at the Obed site (10 x 1.5 m; 3.5 x 2.0 m; 3 x 1 m and 4 x 2.5 m, respectively) in 0.65 m of ice thickness along the LUB (Figure 3.1). Total water depth varied from 1.0 to 1.14 m.

Neills 1 through 3 were collected with the use of an open Neill (i.e., without a deep water sock that sealed the top of the cylinder) and a bar for substrate disturbance, while Neills 4 through 13 used a sock and substrate was removed and scrubbed as described in Section 2.4.1.

Invertebrate tissues for contaminant analysis were collected using both kick nets and the Neill cylinder. Geetraps were set over two nights and were unsuccessful. Backpack electrofishing produced four mountain whitefish for contaminant and MFO tissue analysis. Physical variables measured at benthic invertebrate community sample points are summarized in Table 3.4.

Table 3.4 Physical variables measured at benthic invertebrate community sample locations, Site 3.

	DATE	MEAN CURRENT		SUBSTRATE (% Composition)					
SAMPLE	COLLECTED 1993	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt		
Neill 1	26 February	24	110		30	60	10		
Neill 2	26 February	19	110		25	60	15		
Neill 3	26 February	21	110		40	40	20		
Neill 4	28 February	27	100		70	15	15		
Neill 5	28 February	26	100		50	45	5		
Neill 6	28 February	23	104	5	40	40	15		
Neill 7	28 February	33	102		70	20	10		
Neill 8	28 February	41	104		30	60	10		
Neill 9	28 February	33	103		70	20	10		
Neill 10	28 February	41	112		20	60	20		
Neill 11	28 February	41	114		10	80	10		
Neill 12	28 February	34	108		70	25	5		
Neill 13	28 February	41	116	5	70	15	10		

Site 4 - Emerson Lakes Bridge

Biofilm and benthic invertebrate samples were collected from 6 to 9 March 1993, approximately 800 m downstream of the Emerson Lakes Bridge. One hole, approximately 6 x 25 m in size, was cut in ice that varied from 0 to 70 cm in thickness (Figure 3.1).

Quantitative biofilm samples were collected over two days (7 and 8 March 1993). On the first day, 20 taxonomic identification and Chla/LOI samples were collected from stones that had encrusting diatomaceous biofilm. The scrapings of these samples had to be washed into sample containers using unfiltered river water (2 to 5 mL). On the second day, biofilm consisting of macroalgae (gelatinous material) was found in another reach of the sampling hole; therefore, an additional five taxonomic identification and five Chla/LOI samples were collected to properly represent site diversity.

Two mountain whitefish were collected by backpack electrofisher and processed for contaminant and MFO analysis. A summary of variables measured when collecting quantitative benthic invertebrate samples is presented in Table 3.5.

Table 3.5 Physical variables measured at benthic invertebrate community sample locations, Site 4.

	DATE			SUBSTRATE (% Composition)					
SAMPLE	COLLECTED 1993			Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt		
Neill 1	7 March	23	16		60	30	10		
Neill 2	7 March	24	118		65	25	10		
Neill 3	7 March	29	112		65	25	10		
Neill 4	7 March	32	114		70	20	10		
Neill 5	7 March	44	110		75	15	10		
Neill 6	7 March	24	112		80	10	10		
Neill 7	7 March	31	108		70	20	10		
Neill 8	8 March	25	118		70	25	5		
Neill 9	8 March	25	116	40	30	15	15		
Neill 10	8 March	28	130		80	10	10		

Site 5 - Blue Ridge

Sampling occurred 0.5 to 1.0 km downstream of the Blue Ridge bridge (secondary highway 658) from 12 to 14 March 1993. Two large holes were cut in 0.68 m ice thickness. The upstream hole (2 x 6.5 m) was located on the RUB off the point of a large island in 1.0 to 1.10 m water depth. The downstream hole (4 x 13 m) was located 0.5 km downstream of the upstream hole, close to the LUB with sampling in 0.88 to 0.90 m water depth (Figure 3.1). Both sample holes were backpack electrofished, but no fish were captured. Physical variables measured at benthic invertebrate community sample sites are outlined in Table 3.6.

Table 3.6 Physical variables measured at benthic invertebrate community sample locations, Site 5.

	DATE	DATE CURRENT SUBSTRATE (% Composition)					tion)
SAMPLE	COLLECTED 1993	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt
Neill 1	13 March	21	110		70	20	10
Neill 2	13 March	24	100		80	10	10
Neill 3	13 March	15	106		80	10	10
Neill 4	13 March	18	102		80	10	10
Neill 5	13 March	32	100		80	10	10
Neill 6	13 March	22	90		60	30	10
Neill 7	13 March	19	100		80	10	10
Neill 8	13 March	21	90		80	10	10
Neill 9	13 March	29	90	10	70	10	10
Neill 10	13 March	26	88	50	30	10	10

Site 6 - Downstream of Athabasca Town

On 17, 18, and 21 March 1993, samples were collected downstream of the town of Athabasca, below the municipal sewage treatment discharge point. Two holes (3 x 6 m and 5 x 5 m) were cut 1.4 km apart along the LUB in 0.68 m ice thickness. Sampling occurred in 0.94 to 1.12 m water depth (Figure 3.1). A full complement of quantitative samples and biofilm contaminant tissue was collected. Substrate at this site was compacted and very difficult to turnover. Backpack electrofishing was ineffectual, and no mountain whitefish were captured. All physical measurements and variables for benthic invertebrate community samples are summarized in Table 3.7.

Table 3.7 Physical variables measured at benthic invertebrate community sample locations, Site 6.

	DATE	MEAN CURRENT		SU	BSTRATE (9	6 Composition	on)
SAMPLE	COLLECTED 1993	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt
Neill 1	18 March	27	96	70	10	10	10
Neill 2	18 March	30	94	70	10	10	10
Neill 3	18 March	28	98	80	5	5	0
Neill 4	18 March	27	96	te.	80	10	10
Neill 5	18 March	35	98	10	70	10	10
Neill 6	21 March	29	112	10	70	15	5
Neill 7	21 March	26	110		75	20	5
Neill 8	21 March	24	110		70	20	10
Neill 9	21 March	25	110		70	20	10
Neill 10	21 March	18	108	10	70	10	10

Site 7 - Upstream of Athabasca Town

This site was included to provide an Athabasca area site that was not under the direct influence of a municipal effluent discharge. Sampling occurred on 19-21 March 1993 in two ice holes approximately 3.4 km upstream of the Highway 813 bridge. Sampling was performed in two holes (7 x 4 m and 5 x 3.5 m) cut in 0.68 m ice thickness on the LUB, in 0.88 to 1.20 m water depth (Figure 3.1). Substrate conditions were very similar to Site 6 (compacted). No fish were caught for MFO or tissue analysis. A summary of physical attributes measured or observed at Neill community sample sites is in Table 3.8.

Table 3.8 Physical variables measured at benthic invertebrate community sample locations, Site 7.

	DATE	MEAN CURRENT		SUBSTRATE (% Composition)					
SAMPLE	COLLECTED 1993	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt		
Neill 1	20 March	43	88		80	15	5		
Neill 2	20 March	48	88		75	15	10		
Neill 3	20 March	57	84	5	70	15	10		
Neill 4	20 March	57	90		70	20	10		
Neill 5	20 March	62	94	20	60	10	10		
Neill 6	20 March	35	116	10	60	15	15		
Neill 7	20 March	55	120		75	15	10		
Neill 8	20 March	63	120		75	15	10		
Neill 9	20 March	53	114		75	15	10		
Neill 10	20 March	47	114		10	60	30		

Site 8 - Poacher's Landing

This site was sampled from 22 to 24 March 1993 approximately 8 km downstream of the Poacher's Landing boat launch. Two large holes (6 x 4 m and 5 x 4 m) were cut approximately 10 m apart along LUB in 0.40 to 0.50 m ice thickness (Figure 3.1). Sampling occurred in 0.9 to 1.8 m water depth. The stony substrate at this site was imbedded in a clay-silt material. Biofilm was thick and abundant, with gelatinous material especially prevalent. All sample holes were backpack electrofished, but no mountain whitefish were found. Table 3.9 summarizes all physical variables measured at benthic invertebrate community sample sites.

Table 3.9 Physical variables measured at benthic invertebrate community sample locations, Site 8.

	DATE				JBSTRATE	TE DESCRIPTION		
SAMPLE	COLLECTED 1993	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt	
Neill 1	23 March	30	140		30	30	40	
Neill 2	23 March	32	120		60	20	20	
Neill 3	23 March	35	120		70	20	10	
Neill 4	23 March	35	90		70	20	10	
Neill 5	23 March	39	100		70	20	10	
Neill 6	23 March	14	160		50	20	30	
Neill 7	23 March	20	170		50	10	40	
Neill 8	23 March	21	180		50	10	40	
Neill 9	23 March	19	114	5	50	10	35	
Neill 10	23 March	20	112		70	20	10	

Site 9 - Upstream of Fort McMurray

From 25 to 27 March 1993, one ice-hole upstream of the Fort McMurray water treatment plant was sampled. One very large hole (27 x 3.5 m) was cut along the left upstream side in 0.25 to 1.0 m ice thickness. Sampling was conducted in 1.02 to 1.20 m water depth (Figure 3.1). A full complement of biofilm contaminant samples and quantitative samples were collected. No fish were collected. Physical variables measured at benthic invertebrate community sites are outlined in Table 3.10.

Table 3.10 Physical variables measured at benthic invertebrate community sample locations, Site 9.

	DATE	MEAN CURRENT		SUBSTRATE DESCRIPTION					
SAMPLE	COLLECTED 1993	VELOCITY (cm/s)	DEPTH (cm)	Boulder	Cobble/ Pebble	Pebble/ Gravel	Sand/Silt		
Neill 1	26 March	65	120	30	40	20	10		
Neill 2	26 March	85	116		70	20	10		
Neill 3	26 March	76	110		70	20	10		
Neill 4	26 March	82	112		30	40	20		
Neill 5	26 March	72	108		40	60	10		
Neill 6	26 March	72	108		70	20	10		
Neill 7	26 March	70	102		70	20	10		
Neill 8	26 March	71	106		70	20	10		
Neill 9	26 March	56	104		70	20	10		
Neill 10	26 March	52	106		70	20	10		

3.2 LOGISTICS SUMMARY

3.2.1 Scheduling

On average, it took 3.22 d to sample one site (nine sites over 29 days). In general, the schedule of events at a given site was as follows:

- Day 1: Reconnaissance to locate prime sampling areas. Ice removal initiated to expose river bottom.
- Day 2: Completed ice removal and began sampling quantitatively for benthic invertebrates. If possible, sampling quantitatively for biofilm and qualitatively for all contaminant tissue (biofilm and invertebrates) was undertaken.
- Day 3: Completed all biological sampling, including electroshocking for fish.

The extra 0.22 d was expended through travelling to sites as well as maintenance and repair of equipment.

3.2.2 Personnel and Equipment

There were five field staff present on site at any given time, comprising two work crews of two and three persons each. Work was physically demanding, both removing ice and under water sampling in the river. A total of 288 tonnes of ice was removed from the Athabasca River. At a given site, a mean of 31 988 kg (range=18 186 to 54 249 kg) of ice was removed before any biophysical sampling could commence.

There was a large degree of logistical support required on this project. In addition to the equipment described above, a four wheel drive pickup and trailer for the snow machines were utilized. Other support equipment included gas generators, electric heaters, lighting fixtures, and equipment associated with the maintenance and repairs of sampling equipment. In addition, solvents, solutions, laboratory supplies, and personnel were acquired or assigned to perform QA/QC procedures prior to and during the field sampling. While in the field, support staff in Edmonton expedited samples, dry ice, and other supplies to and from the field on a weekly basis.

The study was fortunate to encounter seasonably mild weather. Work would have been extremely slow and more difficult if temperatures were below -10 to -15 °C. Wall tents were available for sampling in adverse weather; however, they were not required. The use of wall tents would have greatly increased the sampling time, as they require several hours to set up and pack away; furthermore, their size (approximately 4 x 6 m) would only allow small holes to be cut through the ice.

SECTION 4 SUMMARY AND CONCLUSION

Aquatic insects play an important role in energy transfer through trophic levels in fresh water habitats (Resh and Rosenberg 1984). Larvae feed on a variety of materials, including detritus, bacteria, algae, plant material, and other invertebrates. Aquatic insect larvae in polluted water bodies may be exposed to high concentrations of contaminants through uptake from water and feeding (Landrum and Poore 1988; Novak et al. 1988). By converting food materials and potentially associated contaminants into readily available living tissue, benthic invertebrates allow organisms at higher trophic levels (fish and invertebrate predators) to bioaccumulate pollutants.

In this project, quantitative benthic community samples (Neills, biofilm identification, and Chla/LOI) and qualitative benthic tissue (contaminants) samples were collected in late winter. At this time, the winter flora and fauna that was sampled would have been subjected to low flow volumes and potentially greater concentrations of contaminants. Industrial and municipal effluent may have the greatest impact on benthic community structure and contaminant loadings in biological tissues at this time of year.

All quantitative community samples were collected at all sites; however, complete complements of invertebrate tissue samples for contaminant analyses were not obtained (see Table 2.1). Success of field collections of aquatic invertebrates for contaminant monitoring is often limited in large rivers (Kovats and Ciborowski 1989; Kovats 1990), even during optimal, open-water conditions. Benthic invertebrates are difficult to sample because they are patchy in distribution (Downing 1979) and require specialized collection equipment; furthermore, aquatic invertebrates are often collected with large amounts of sediment that requires extensive processing prior to analysis (Kovats & Ciborowski 1989) and may make the collection of adequate biomass (i.e., 32 g in this study) impractical. For example, at seven of the nine sampling sites, ice was removed to expose at least 43 m³ of river bottom. At these ice removal sites, all of the exposed area was sampled for invertebrate tissue after quantitative community samples were collected. The mass of invertebrate tissue collected at a site reflected the relative density of animals and ease of sampling. Some sites had substrate that was difficult to sample because it was imbedded in sand/clay or had relatively greater numbers of boulders that could not be overturned.

This project required extensive effort to sample one site (mean= $3.22\,$ d; five crew members). A large amount of time (>1 d) and effort (mean= $36\,$ tonnes/site) was invested in ice removal so that enough river bottom could be exposed for biological sampling. Extensive time (>1 d) also was required to perform all biological sampling. Weather conditions confounded all work and equipment and personal gear had to be modified to function in a harsh environment (cold and wet).

In future projects of this nature, it is important that the difficulty, and costs, of under-ice sampling be realized prior to project initiation, with sufficient time and contingencies allowed to meet the objectives.

SECTION 5 LITERATURE CITED

- Alberta Environment. 1990. Selected methods for the monitoring of benthic invertebrates in Alberta rivers. Environmental Quality Monitoring Branch. Environmental Assessment Division. 41 p.
- Connolly, J.P., and C.J. Pedersen. 1988. A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ. Sci. Technol. 22: 99-103.
- Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Amer. Midland Nat. 67: 477-504.
- Downing, J.A. 1979. Aggregation, transformation, and the design of benthos sampling programs. J. Fish. Res. Board Can. 36: 1454-1463.
- Jaffé, R. 1991. Fate of hydrophobic organic pollutants in the aquatic environment: a review. Environ. Pollut. 69: 237-257.
- Kovats, Z.E., and J.J.H. Ciborowski. 1989. Aquatic insect adults as indicators of organochlorine contamination. J. Great Lakes Res. 15: 623-634.
- Kovats, Z.E. 1990. Adult aquatic insects as biomonitors of organochlorine contamination in freshwater habitats. M.Sc. thesis, University of Windsor. 197 p.
- Landrum, P.F., and R. Poore, 1988. Toxicokinetics of selected xenobiotics in *Hexagenia limbata*. J. Great Lakes Res. 14: 427-437.
- Neill, R.M. 1938. The food and feeding of brown trout (Salmo trutta L.) in relation to the organic environment. Trans. R. Soc. Edinb. 59: 481-520.
- Norstrom, R.J., A.E. McKinnon, and A.S.W. deFreitas. 1976. A bioenergetics based model for pollutant accumulation by fish. Simulation of PCB and methyl mercury residue level in Ottawa River yellow perch (*Perca flavescens*). J. Fish Res. Board Can. 28: 815-819.
- Novak, M.A., A.A. Reilly, and A.J. Jackling. 1988. Long-term monitoring of polychlorinated biphenyls in the Hudson River (New York) using caddisfly larvae and other macroinvertebrates. Arch. Environ. Contam. Toxicol. 17: 699-710.
- Resh, V.H., and D.M. Rosenberg. 1984. The ecology of aquatic insects. Praeger, New York. 625 p.
- Swakhammer, D.L., and R.A. Hites. 1988. Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Roysle, Lake Superior. Environ. Sci. Technol. 22: 543-548.
- Thomann, R.V., and J.P. Connolly. 1984. Model of PCB in the Lake Michigan Lake Trout food chain. Environ. Sci. Technol. 18: 65-71.
- Wentworth, C.K. 1922. A scale of grade and class terms for elastic sediments. J. Geol. 30: 377-392.

APPENDIX A

Terms of Reference

NORTHERN RIVER BASINS STUDY

SCHEDULE A - TERMS OF REFERENCE

PROJECT 2371-B2: BENTHIC FIELD COLLECTIONS (SYNOPTIC SURVEY)

I. GENERAL OBJECTIVES

The objective of this project is to obtain samples of selected aquatic biota (i.e., invertebrates, "biofilm" and forage fish) from eleven sites in the Athabasca River for contaminants analyses and quantitative analyses of invertebrate and biofilm abundance and biomass. Samples for contaminant analyses will be analyzed for organic contaminants (e.g. dioxins, furans, chlorophenols and PAH), metals (e.g. arsenic, vanadium, copper, chromium, lead, zinc and methyl mercury) and stable isotopes (e.g., carbon, nitrogen, sulphur). Quantitative samples of aquatic invertebrates are required for estimates of abundance and biomass. Quantitative biofilm samples will be analyzed for chlorophyll-a and loss on ignition; samples will also be retained for taxonomic identification.

II. REQUIREMENTS

A. SAMPLES FOR CONTAMINANT ANALYSES

Al Benthic Invertebrates

- 1. The study area stretches from the outfall of Jasper Lake to Windfall bridge west of Whitecourt. See attached Northern River Basins Study map of the upper Athabasca River. Sampling sites should be chosen for their suitability, but should be located in the vicinity of the following ten sites:
 - near Entrance (near Highway #40 Bridge) (1)
 - Weldwood Haul Bridge (1)
 - Obed Mountain Coal Bridge (2)
 - Emerson Lakes Bridge (1)
 - upstream of Berland River (2)
 - Windfall Bridge (2)
 - Blue Ridge (2)
 - at Athabasca (2)
 - Downstream of ALPAC site (2)
 - upstream of Fort McMurray (2)

Note: (1): high priority

(2): medium priority

Sampling should be initiated in mid-February and most of the sampling will have to be carried out under ice. Recognizing the potential logistic difficulties that may be encountered under such sampling conditions, two sampling scenarios are to be considered.

Scenario 1

- Initiate sampling in mid-February. Sampling dates may be adjusted because of unfavourable weather, but sampling must be carried out under ice conditions.

la - Sample high priority sites as defined above, first.

If sampling of these sites can be carried out successfully, proceed with medium priority sites (sites

flagged as (2), above).

1b If sampling of high priority sites far exceeds the time allotment or is impractical for other logistic reasons. interrupt sampling, preferably after completion of all sampling at high priority sites. Assess the feasibility of collecting the quantitative invertebrate and biofilm samples described in part B of the Terms of Reference. If practical collect these samples at all medium priority sites; else, proceed with scenario 2.

Scenario 2

Conduct sampling at all sites in April, shortly after icebreakup, but before flows increase in mid-spring (normally before late April - early May). If quantitative invertebrate and biofilm samples have been collected under 1b., only tissue samples for contaminant analyses would have to be collected at this time.

Decisions about shifts in sampling schedules should be made after communication with NRBS scientific staff (Dr. Anne-Marie Anderson, Alberta Environmental Protection, Edmonton and Dr. Gary Scrimgeour, National Hydrology Research Institute, Saskatoon) and the NRBS Project Liaison Officer (Greg Wagner).

Sufficiently large numbers of invertebrates should be collected from 2. erosional habitats to carry out analyses. Under scenario 1 as defined above, several invertebrate taxa may be combined to yield the required sample weight unless it is practical to collect tissue samples for individual taxa. Under scenario 2, tissue samples must consist of individual taxa. Hydropsychid caddisflies, mayflies, and stoneflies will likely be selected. Up to 39 samples would be collected from erosional habitats (i.e. 3 taxa, 3 sites, aborted scenario 1; 3 taxa, 10 sites, scenario 2).

The analytical laboratories require the following minimum amounts for analysis as follows:

trace organic contaminants:

dioxins and furans: 10 gram wet weight (ww) chlorophenols: 5 gram ww

PAH's: 10 gram ww

trace metals: 5 gram ww stable isotopes: 2 gram ww

Specimens for each analysis must be kept in separate containers.

A variety of sampling methods may be employed to collect specimens. 3. These may include the use of pole mounted screens, dipnets, Ekman or Ponar dredges, air lift samplers and hand-picking. Field sorting will likely be required for practical reasons.

Drift samples are not recommended because they may contain organisms which have travelled a long distance downstream and which may have a chemical composition which does not reflect that of the local fauna.

Specimens must not be damaged during sorting and handling as this will result in loss of body fluids and possibly of contaminants.

Organic debris and fine sediments must be removed from samples.

Specimens must be placed in appropriate, fully labelled containers and frozen on dry ice immediately after collection. Samples must remain frozen at all times until they are analyzed. Sample labels should have a consistent format and must include river, site and taxon name, date, number of replicate, type of analysis required.

- 4. A representative sub-sample of 10 to 20 organisms from each sample should be retained for taxonomic identification. Preserve these samples in 4% formaldehyde. Do not freeze. Label appropriately.
- 5. Sampling and sample handling procedures must be appropriate for trace organic compounds and trace metals. Precautions must be taken at all times to avoid contamination of the samples, namely:
 - To avoid contamination of stable isotope samples, liquids high in nitrogen, carbon or sulphur must not be used.
 - Clean all equipment that will contact the samples for trace organics by rinsing first in ultra-pure acetone then in ultrapure (pesticide grade) hexane.
 - Soak equipment that will contact the samples for trace metal analysis in an acid bath made of high grade acid.
 - Bake aluminium foil at 350°C for 6 to 12 hours before using it to line lids or protect equipment, or rinse in ultra-pure acetone, then in ultra-pure (pesticide grade) hexane.
 - Use metal or teflon coated equipment for trace organic samples and plastic or teflon coated equipment for trace metal samples.
 - Clean equipment between sites.
 - Store tissue samples in clean containers (glass jars with baked aluminum foil or teflon lid liners for trace organics and stable isotopes; teflon coated or plastic containers for trace metals).
 - Ensure that samples do not get contaminated during sampling or sample preparation especially by combustion sources such as running motors; smoke, dust, paper products, etc. may also contribute contaminants.
- 6. Collect samples for quality control and quality assurance.

- Blank tissue samples will be provided by the Project Manager and should be subjected to routine handling procedures.
 Include a blank sample for each contaminant group at each site.
- At least two additional sets (i.e. a sample for each group of contaminants) should be obtained from a taxon which is easiest to sample. Duplicate samples should be obtained from a different location at the sampling site. These samples will be used as replicates or for spiking as directed by the Project Manager.

A2. Epilithic "Biofilm"

The "biofilm" refers to the assemblies of algae and associated organisms (fungi, bacteria, protozoans, etc.) growing on the river bottom. Varying amounts of this biofilm occur in the Athabasca in the study area. The biofilm tends to be more abundant downstream of the Hinton combined effluent. In that area tufts and mats of benthic algae are also more abundant. The biofilm needs to be sampled at the same time as benthic invertebrates.

- 1. Sample the biofilm on rocks (epilithic) at the ten river sites, in the same general location as for benthic invertebrates in Part Al. Collect samples from at least 10 rocks or spots distributed within each site and combine them to form the composite sample for that site. Sample weight requirements are similar to Part Al. Minimize the amount of inorganic sediment collected with the biofilm as much as possible. Handling of equipment and sampling procedures should follow those of Part Al with respect to avoiding contamination of the samples.
- 2. The composite sample should be well mixed; macroinvertebrates and large organic debris should be removed. Withdraw aliquots allowing excess water to drain out, and apportion them to the appropriate sample containers as described in Part A. Freeze samples. Reserve 2 aliquots of at least 5 mL for subsequent taxonomic examination. Preserve one with Lugol's solution, the other with formaldehyde.
- 3. Collect additional samples for quality assurance as per Part Al.

A3. Forage fish

Forage fish (true minnows, salmonid minnows or young suckers) are to be collected at each of the ten sampling sites. Fish will be used for tissue analyses of contaminants and for MFO determination.

- 1. Fish may be collected using a variety of techniques including:
- Electro-fishing
- Trap nets
- Gill nets
- Seines
- Set lines
- Angling

It would be preferable to use fish tissue to bait traps or lines.

- 2. Follow protocols outlined in Al for samples destined for tissue analysis. However, instead of using separate containers for the various analyses, store all fish from one site in a single DFO approved plastic bag. These bags can be obtained from the Project Liaison Officer. Fish will be homogenized at a later date and aliquots apportioned to the various types of analyses.
- 3. Protocols for MFO sampling are listed below:
 - It is important to obtain liver tissue samples for analyses from <u>freshly killed fish only</u>, which have experienced minimum handling stress.
 - 2. A sample numbering system must be designed and used to facilitate tracking of samples from the same fish (see note about salmonid forage fish).
 - 3. Captured fish may be stunned by a knock on the head before removing the liver.
 - 4. Record the fish length and weight to nearest mm and 0.1 g, respectively. Also record sex, degree of maturity and species.
 - 5. Examine fish for external lesions and record any abnormalities. Complete the Gross Pathology Sheet (Appendix 1).
 - 6. Open fish ventrally and examine fish for internal lesions and record any abnormalities.
 - 7. Remove liver and place in specially labelled cryovial. Freeze on dry, weigh and record weight to nearest 0.1 gm. Livers must be sub-sampled immediately. Mixed-function oxidase (MFO) activity decreases and the variability increases within 15 minutes of death, depending on external temperatures. Livers must be removed carefully, avoiding the rupture of the gall bladder and avoiding contact with bile.

For tissue storage, all MFO samples must be stored and maintained at -60°C or lower; storage at -20°C is not acceptable.

- 8. Collect up to ten minnow livers per site/species and treat each liver as an individual sample (ie. do not pool livers).
- 9. Ship frozen samples as soon as possible. Samples of liver tissue for MFO analysis must be stored at -60°C or colder. Closely follow shipping instructions outlined in Appendix 2.

Note: Livers for MFO analysis may be removed from salmonids, and the rest of the body, including remaining viscera can be used for tissue analyses.

B. **QUANTITATIVE SAMPLES**

B1. Aquatic Invertebrate Collections (Species Composition, Abundance, Biomass)

The objective of this component is to collect quantitative samples of aquatic invertebrate assemblies at eleven sites on the Athabasca River.

These samples will be used to document differences among sites in species composition, numeric density and other relevant population or community characteristics. Biomass data from this project will be used in conjunction with contaminant concentration data (component Al samples) to assess overall contaminant loads in aquatic invertebrates.

Requirements

- 1. Collect aquatic invertebrate samples from the Athabasca River, concurrently to the tissue sampling described under Al. A minimum of 10 replicate samples is required from erosional habitats at each of the eleven sites specified in Section A; the exact sampling location will depend on substrate suitability and availability. The sampling location must not be disturbed by previous sampling. Individual replicate samples should be taken from not less than 5 holes through the ice along a 100 to 200 m long reach at each site.
- The methods used in sampling aquatic invertebrates should follow procedures outlined in Alberta Environment (1990). A Neill cylinder (Hess type sampler) equipped with a collecting net (mesh size 210 um) is available from Alberta Environment for use on this project, subject to return in good working condition.
- 3. In addition to the procedures outlined under 2 above, further onsite processing will be required to separate invertebrates and organic material from inorganic material (e.g. gravel and sand). Samples should be swirled in a pail of water and organic material decanted onto a sieve with mesh aperture of 210 um. The sieve contents should be preserved in 10% formaldehyde. Ensure that samples preserved in formaldehyde do not freeze.
- 4. Obtain and record measurements of physical characteristics at each site (i.e. sampling depth, ice thickness, current velocity measured at 6/10 of total depth, substrate size). Obtain photographs of all sampling sites and substrates sampled.

B2 <u>Biofilm Collections (Chlorophyll-a, Loss on ignition, Taxonomic Identification</u>

- 1. Sample the biofilm at the ten river sites in the same general locations as for benthic invertebrates in part B1. Collect samples from ten rocks distributed within each of the eleven sites.
- 2. For each rock the biofilm from an area of about 9 cm² will be removed and preserved in Lugol's solution. Each sample is to be labelled and stored in an individual scintillation vial. Enough Lugol's should be added so that the sample is a dark brown colour). Total number of samples: 10 samples x 10 sites = 100 samples.
- 3. In addition, a second sample of about 9 cm² will be removed from each rock. labelled and placed in an individual scintillation vial.

These samples must be frozen immediately. Total number of samples: 10 samples X 10 sites= 100 samples.

Note: The National Hydrology Research Institute, Saskatoon, will supply the appropriate equipment to collect quantitative samples and a scientist to demonstrate the appropriate use of the equipment.

III. Deliverables

1. Samples

Frozen samples (packed in dry ice) of invertebrate and fish tissues, biofilm (samples for contaminant analyses, chlorophyll and ash-free dry weight determination), invertebrate samples preserved in formaldehyde and biofilm samples preserved in Lugol's solution should be returned to the project manager as directed. A detailed listing of all samples and detailed field notes should be provided with the samples. The sample listing is to <u>include</u> information such as sample type, sample label, estimated weight of sample material for contaminant analyses, destination of sample, (i.e., type of analysis). The field notes are to <u>include</u> information such as the exact sampling location, selected sampling methods, details regarding the sample handling procedures, field notes describing substrate characteristics, or any other relevant information.

2. Reporting Requirements

- The consultant is to prepare a comprehensive data report that includes the following information: sampling methodology, sample type, sample location, sample number and label, weight of sample material for contaminant analyses, sampling handling, substrate characteristics and other relevant information. The report is to contain a number of tables and figures specifying the collections made. The report should contain high contrast black and white photographs showing, where appropriate, sampling locations.
- 2) Ten copies of the draft report are to be submitted to the Project Liaison Officer by March 31st, 1993.
- Three weeks after the receipt of review comments the consultant is to submit ten cerlox bound copies and two unbound, camera-ready originals of the final report to the Project Liaison Officer. An electronic copy of the report, in Word Perfect 5.1 format, is to be submitted to the Project Liaison Officer at the same time as the final report. Data presented in tables, figures appendices, etc. in the final report are also to be submitted in electronic form (dBase IV format preferred) to the Project Liaison Officer. The final report is to contain a table of contents, list of figures, list of tables, acknowledgements, executive summary and an appendix containing the Terms of Reference for this contract. All sampling locations presented in the report and electronic format should be geo-referenced (lat./long. preferred).

IV. Additional Comments

The distribution of the Hinton Combined Effluent must be taken into account when sampling at the Weldwood Haul Bridge (sample in it), as must the Berland River Plume at the site near the Berland River (avoid it). Coordinate with water sampling crew to estimate plume locations.

V. Project Coordination

This project is being coordinated by the Nutrients Group of the Northern River Basins Study. This group is led by Dr. Patricia Chambers, National Hydrology Research Institute (NHRI), Saskatoon. Dr. Anne-Marie Anderson, Alberta Environmental Protection has been designated as the scientific authority on this project by Dr. Chambers. Dr. Gary Scrimgeour will be assisting the contractor in the field and providing advice on sampling methods and sampling design. Costs associated with Dr. Scrimgeor's involvement in this project will be assumed by the Northern River Basins Study. Greg Wagner will act as the Project Liaison Officer on behalf of the Northern River Basins Study.

VI. Literature Cited

Alberta Environment. 1990. Selected Methods for the Monitoring of Benthic Invertebrates in Alberta Rivers. 41 p.

Page 1 of 2 Appendix 1

DATE:

NORTHERN RIVER BASINS STUDY EXAMINATION SHEETS GROSS PATHOLOGY

SAMPLE N	ю.:		LOCATION:
SPECIES:			CAPTURE METHOD:
CAPTURE	TIME:		EXAMINATION TIME:
GROSS EX	TERNAL EXAMINATION		
Skin: (() Normal () () Lesions () () Open () () Blister ()	Excessive mucus Single Haemorrhagic Tumour	() Abnormal Colour () Multiple () Closed () Necrotic () Ulcer () Lost Scales ()
Abrasion	ns		
I	Location:		
V	Wet mount/smear:		
Eyes:	() Normal () Opaque cornea	() Exophthalmia () Lens lost	() Cataract () Haemorrhagic () Parasites () Bilateral
Fins:	() Normal () Eroded	() Frayed	() Haemorrhagic () Deformed
-			
Gills:	() Normal () Necrotic () Telangiectasia () Large Parasites	() Pale () Excessive muc () Gas emboli	() Mottled () Haemorrhagic us () Hyperplasia () Cysts () Fungus Visible
1	Wet amount/smear:		
-			
GROSS I	NTERNAL EXAMINATION		
Haemorr			Reduced () Petechial Cysts
		Enlarge ()	Reduced Colour: () Pale ()
Mottled (Fluid)	() Other () Lesions: () S () Necrotic ()		le () Tumour Cyst (parasite) () Cyst
Spleen:	: () Normal	() Enlarged	() Reduced () Raspberry
surface			() Colour
	Stained smear:		

SCHEDULE A

_					
Tm	*	童堂	1 9	-	6 1

								•		pendix	
Tumour	()	Normal Flaccid	()	Distended (fluid Haemorrhagic	1)	() Distended (muc () Cysts(parasite	oid))	()
Kidney,	())	terior: Normal Multiple	()	Enlarge (Gritty, white ()	Lesions (Cyst (parasite) ()	Single) Cy	i it
,	(•	Tumour ned smear:								
OTHER:	***************************************	_									_

N.B. In the event that a significant number of specimen at any site have abnormalities, the contractor is asked to immediately notify the Study Office.

Phone: 427-1742 or fax to 422-3055

NORTHERN RIVER BASINS STUDIES SHIPPING INSTRUCTIONS FOR MFO SAMPLES

Any contractor/consultant or government personnel that is transporting fish to Edmonton must contact one of the following people before leaving place of origin:

Earle Baddaloo Work: (403) 427-6102 Home: (403) 434-8967

Sub Ramamoorthy Work: (403) 427-6102 Home: (403) 435-8137

If the above personnel are not in, a message indicating fish is on its way and approximate time of arrival in Edmonton must be left with the secretary (in office) between 8:15 a.m. and 4:30 p.m., or on an answering machine (home) after 4:30 p.m., before leaving place of origin.

Upon arrival in Edmonton with specimens from Northern River Basins Study projects, contractor(s) or consultant(s) should contact one of the above personnel again.

If the above personnel cannot be contacted on a weekday (Monday to Friday), contractor(s)/consultant(s) should proceed directly to VERSACOLD only between 8:00 a.m. and 4:00 p.m. Drop cargo (fish) off at VERSACOLD under the name of Earle Baddaloo, Alberta Environment. DO NOT LEAVE FISH OUTSIDE OF VERSACOLD!!

VERSACOLD IS OPEN BETWEEN 0800 AND 1600 HOURS, MONDAY THROUGH FRIDAY.

ADDRESS: 9002 - 20 Street Edmonton, Alberta

TELEPHONE: (403) 464-1770 CONTACT: Mr. Merve Permann

If fish tissue arrive after 4:00, contractor(s)/consultant(s) must make <u>every effort</u> to contact Mr. Baddaloo or Dr. Ramamoorthy so that alternate storage for the night or weekend may be found.

It is, therefore, imperative to call contacts before leaving place of origin so that they (contacts) will be aware of the transport activity and can make arrangements for the arrival of the specimens.

WEEKEND TRANSPORT

If fish has to be transported to Edmonton on the weekend (Saturday, Sunday or public holiday), the contractor(s)/consultant(s) or government personnel should contact Mr. Baddaloo or Dr. Ramamoorthy on the last working day before the weekend or public holiday. (If contacts are not available, messages must be left with the secretary.) Again, before leaving place of origin, please call contacts at home and leave a message if they are not there; and upon arrival in Edmonton, please call contact again.

Page 2 of 2 Appendix 2

Any deviation from the above established protocol/procedure should be justified and accounted for in writing and a detailed description of what was done is to be submitted with the fish sample; this is to assure credibility and validity of results.

APPENDIX B

Photographic Plates

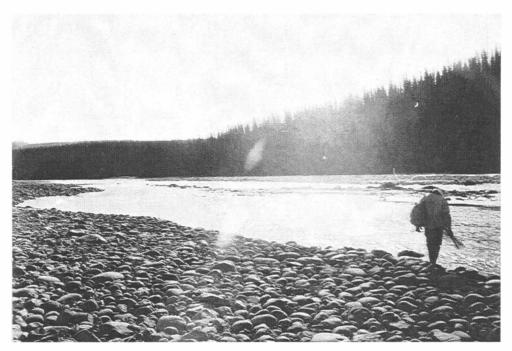


Plate 1. Downstream view from Site 1 - Control (Location 1 near Brûle Lake).

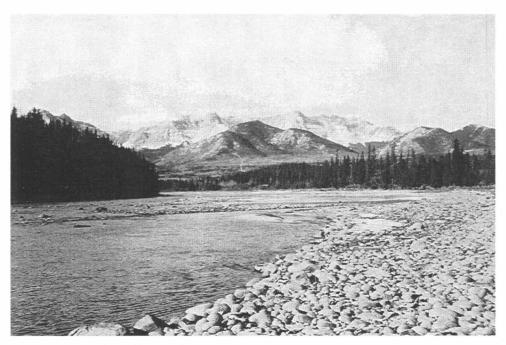


Plate 2. Upstream view from Site 1 - Control (Location 1 near Brûle Lake).

Plate 3. Upstream view of Site 1 - Control (Location 2 near Maskuta Creek).

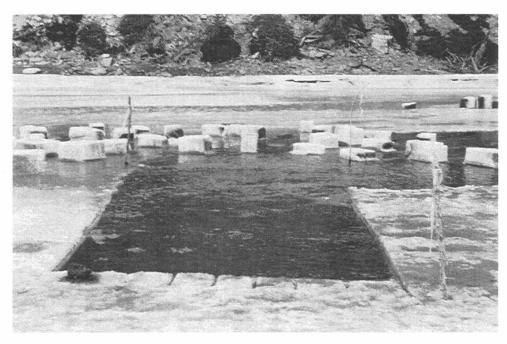


Plate 4. Sampling area exposed at Site 1 - Control (Location 2 near Maskuta Creek).

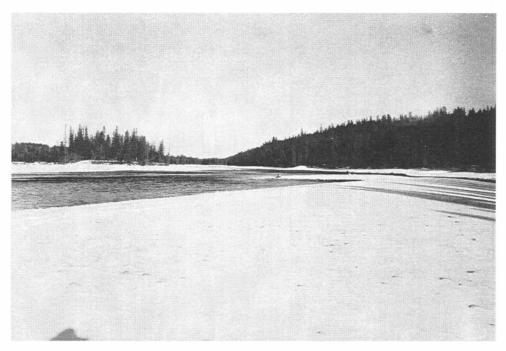


Plate 5. Downstream view of open water site at Site 2 - Weldwood Haul Bridge.

Plate 6. View from road of sample holes cut at Site 3 - Obed Mountain Coal Bridge.

Plate 7. Ice removal in progress at two of four holes cut at Site 3 - Obed Mountain Coal Bridge.

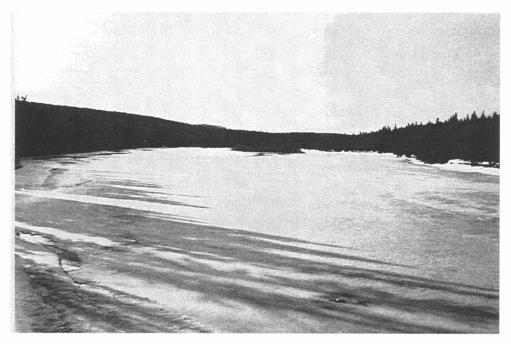


Plate 8. Upstream view from Site 4 - Emerson Lakes Road Bridge.

Plate 9. Downstream view of Site 4 - Emerson Lakes Road Bridge (during snowfall).

Plate 10. Downstream view from Blue Ridge Bridge (Site 5) towards sample areas.

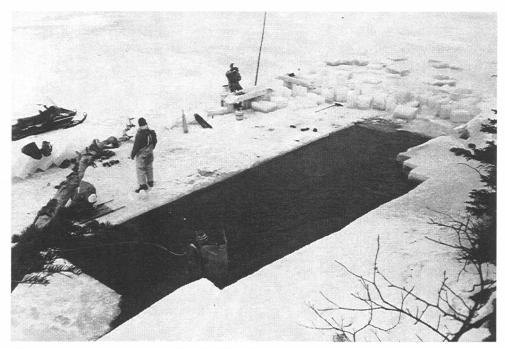


Plate 11. View of downstream hole at Site 5 - Blue Ridge. Invertebrate sampling in progress.

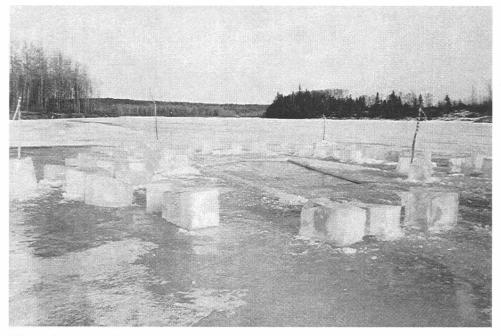


Plate 12. View of upstream hole at Site 5 - Blue Ridge.

Plate 13. View of one sampling hole at Site 7 - Upstream of Athabasca Town. The town can be seen in the background.

Plate 14. View of second sampling hole at Site 7 - Upstream of Athabasca Town.

Plate 15. Upstream view at Site 8 - Poacher's Landing.

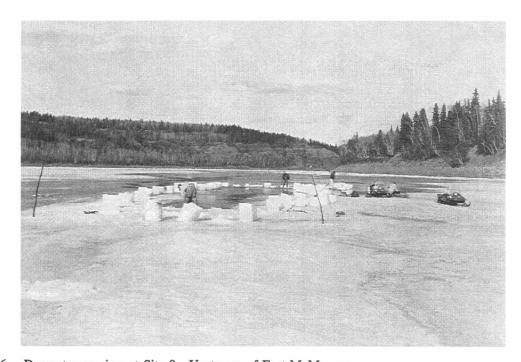


Plate 16. Downstream view at Site 9 - Upstream of Fort McMurray.

Plate 17. Downstream view of Site 9 - Upstream of Fort McMurray.

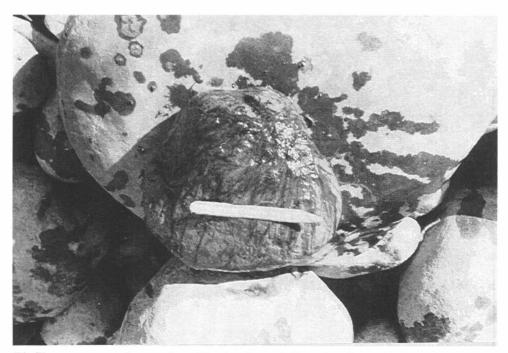


Plate 18. Biofilm cover on substrate from Site 1 - Control (Location 1 near Brûle Lake).

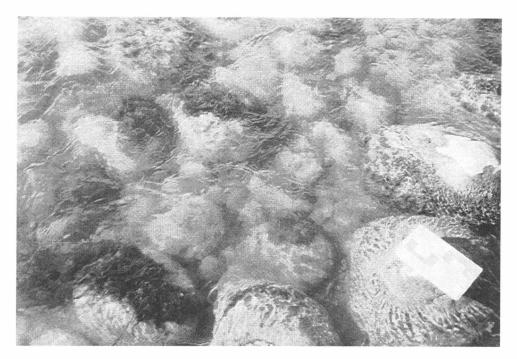


Plate 19. Submerged substrate at Site 1 - Control (near Brûle Lake).

Plate 20. Substrate sample removed from Site 1 - Control (Location 2 near Maskuta Creek).

Plate 21. Substrate sample from Site 3 - Obed Mountain Coal Bridge.

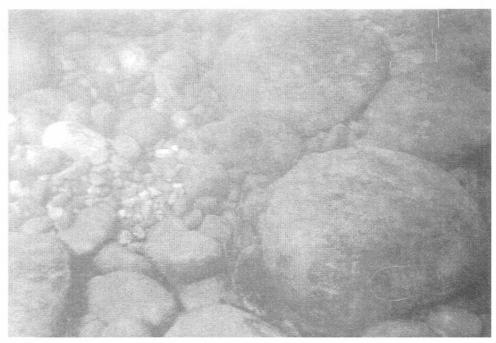


Plate 22. Underwater view of substrate at Site 5 - Blue Ridge. Note disturbed area from Neill cylinder.

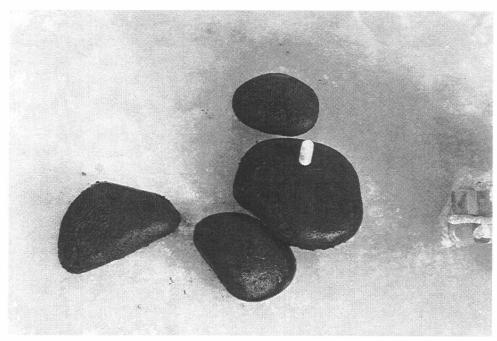


Plate 23. Substrate removed for quantitative biofilm sampling at Site 5 - Blue Ridge.

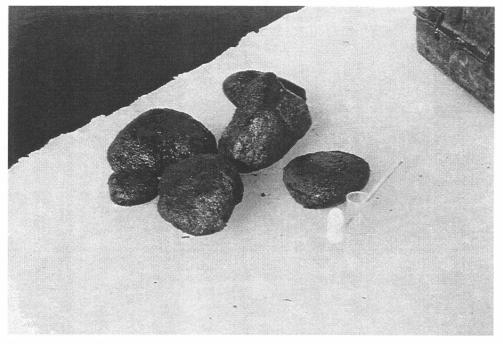


Plate 24. Substrate from Site 6 - Downstream of Athabasca Town.

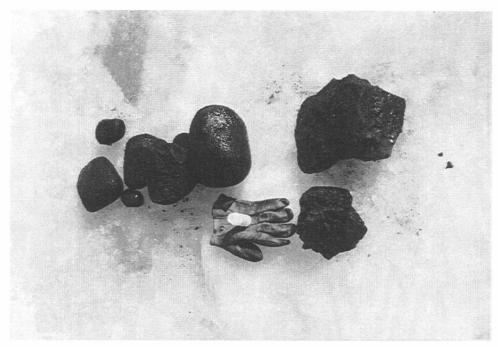


Plate 25. View of substrate removed from Site 7 - Upstream of Athabasca Town.

Plate 26. Substrate from Site 8 - Poacher's Landing boat launch, showing quantitative biofilm sampling in progress.

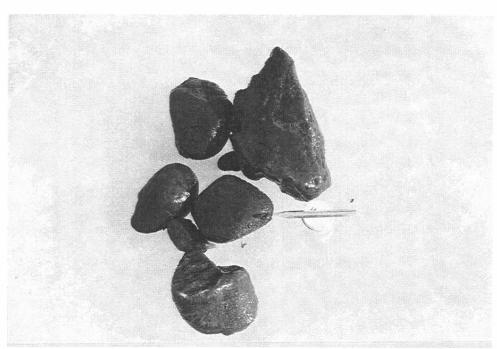


Plate 27. View of substrate from Site 9 - Upstream of Ft. McMurray.

Plate 28. Auger reconnaissance team trying to locate prime sampling areas at Site 9 - Fort McMurray, using 10" power auger.

Plate 29. Checking depth and velocity with Marsh-McBirney velocity meter.

Plate 30. Ice removal at Site 7 - Upstream of Athabasca Town.

Plate 31. Ice removal from Site 8 - Poacher's Landing boat launch.

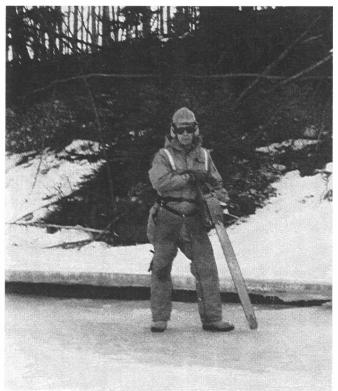


Plate 32. Safety gear: hard hat, ear and eye protection, Kevlar® chaps and boots, gloves, Mustang® survival suit and chainsaw with chain brake.

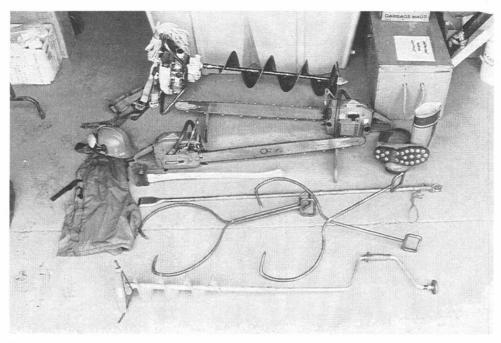


Plate 33. Ice sampling gear.

Plate 34. Setting the Neill cylinder without deep water sock. Site 3 - Obed Mountain Coal Bridge.

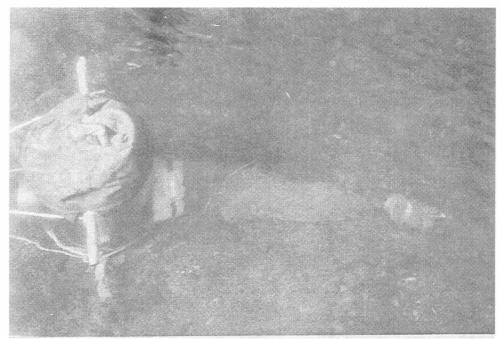


Plate 35. Neill sampler set. Note deep water sock covering cylinder top.

Plate 36. Scrubbing large rocks collected from Neill cylinder to remove invertebrates.

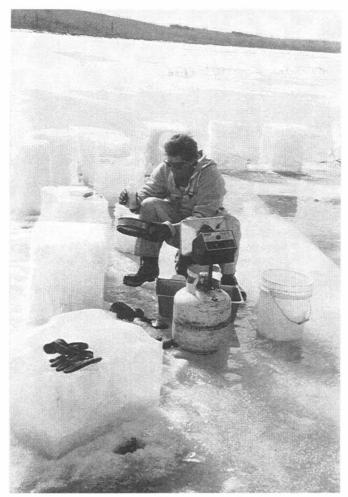


Plate 37. Elutriating and sieving Neill samples in field to remove inorganic and organic debris.

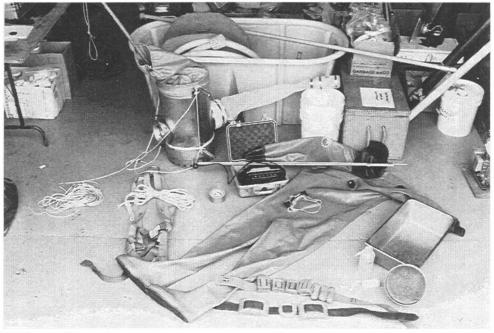


Plate 38. Neill sampling gear.

Plate 39. Lifting substrate with a steel shovel for biofilm sampling.

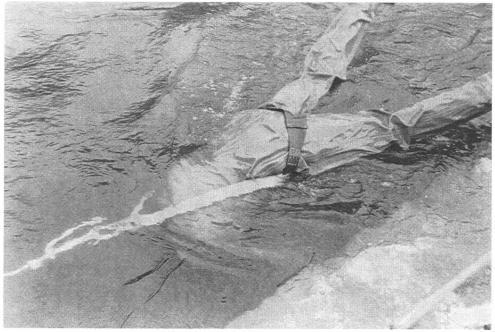


Plate 40. Lifting substrate for biofilm sampling by submerging and hand picking stones.

Plate 41. Open water kick netting of invertebrates for contaminant analysis at Site 2 - Weldwood Haul Bridge.

Plate 42. Through ice kick netting of invertebrates for contaminant analysis at Site 5 - Blue Ridge.

Plate 43. Removing invertebrates from kick screens at Site 2 - Weldwood Haul Bridge.

Plate 44. Backpack electrofishing at Site 1 - Control (near Brûle Lake) using a Type XII electroshocker.

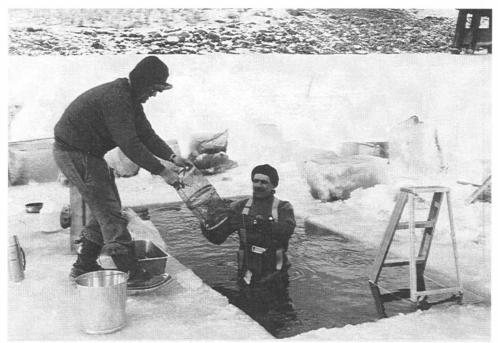


Plate 45. Setting a Gee-minnow trap at Site 3 - Obed Mountain Bridge.

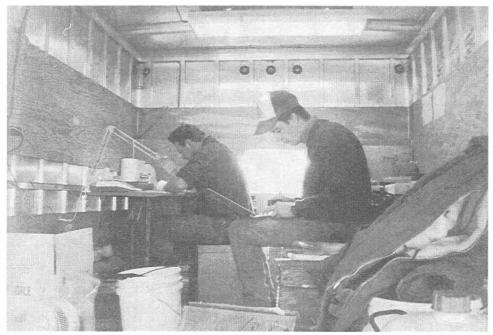


Plate 46. Inside mobile lab (14 ft box van). Multifunction oxidase sampling in progress.

APPENDIX C

Mean Daily Discharge of the Athabasca River at Hinton, Athabasca, and Fort McMurray.

Estimates of discharge upstream of Fort McMurray were derived from subtracting discharge rates of the Clearwater River from the Athabasca River rates obtained from a gauging station downstream of the confluence of these two rivers.

=
Ξ
AT
RIVER
THABASCA
A

WATER SURVEY OF CANADA MAR 10 1993 PAGE 11 CALGARY, ALTA 08:20

07AD002	
NO.	
STATION	
HINTON	
AT	
04	

(PRELIMINARY) DAILY DISCHARGE IN CUBIC METRES PER SECOND FOR 1992

DEC DAY 53.2 B 1 48.0 B 2 38.2 B 3 34.0 B 4 32.0 B 5	32.3 B 6 34.0 B 7 38.1 B 8 49.7 B 9 44.9 B 10	41.7 B 11 41.7 B 12 37.0 B 13 31.0 B 14 44.7 B 15	52.0 B 16 45.2 B 17 39.3 B 18 30.9 B 19 30.7 B 20	34.6 B 21 31.8 B 22 33.1 B 23 34.9 B 24 30.2 B 25	28.6 B 26 30.3 B 27 24.0 B 28 23.0 B 29 24.0 B 30 28.1 B 31	1121.2 TOTAL 36.2 MEAN 53.2 MAX 23.0 MIN	A-MANUAL GAUGE B-ICE CONDITIONS E-ESTIMATED	WITH DATA WITH ICE MANUAL DATA ESTIMATED WITH NO DATA
NOV 102 95.1 89.6 84.0 78.9	76.2 B 79.3 78.3 B 76.9 B 66.7 B	56.5 B 54.8 B 60.7 B 77.0 B	60.5 B 56.6 B 53.6 B 55.8 B	54.6 B 47.2 B 44.2 B 35.1 B	29.7 B 36.1 B 48.7 B 56.2 B 54.2 B	1871.7 62.4 102 29.7	A-MANUAL GA B-ICE CONDI E-ESTIMATED	366 DAY(S) 118 DAY(S) 9 DAY(S) 1 DAY(S) 0 DAY(S)
0CT 149 155 163 181 A 219 A	197 A 174 A 154 A 145 A	122 127 126 117 97.8	80.0 75.2 80.2 84.9 85.6	78.0 91.3 91.7 94.1	235 186 148 123 121	4164.8 134 235 75.2		
SEP 150 164 181 163 176	196 191 152 152 143	142 171 193 186 170	159 140 139 131 128	152 181 176 186 219	224 202 181 165 151	5064 169 224 128		
AUG 327 358 372 361 356	378 364 359 321 275	246 241 254 274 315	333 321 304 311 316	278 245 206 177 162	153 195 200 169 153	8482 274 378 153		14
JUL 477 419 383 360 350	353 373 404 470 470	451 406 377 377 386	348 322 345 343	334 342 376 378 360	353 354 340 321 306 306	11535 372 496 306		JUN 14 FEB 20 663 M3/S AT 12: 6 MST ON JUN
JUN 396 486 590 513 428	382 372 397 441 507	551 533 599 652 614	574 592 597 558 523	536 560 580 608 609	568 554 573 571 571	16005 534 652 372		ÁT 12: 6
MAY 165 174 153 140	175 260 319 348 312	267 229 A 198 A 177 170	163 153 151 171 189	188 175 161 176 A 171 E	212 A 368 443 408 390 386	7112 229 443 140		ON JUN 14 ON FEB 20 663 M3/S
APR 40.0 40.3 44.6 51.1	53.0 50.1 47.2 47.0 44.4	43.3 43.7 44.1 44.4	45.2 47.4 50.3 53.8 54.0	54.2 57.4 60.0 61.4 60.1	59.5 63.8 75.6 97.7	1656.4 55.2 124 40.0	DAM3	RGE, 652 M3/S C RGE, 21.9 M3/S C S DISCHARGE,
MAR 40.0 B 40.5 B 41.5 B 43.2	41.1 42.2 41.2 39.6 39.2	40.2 39.3 41.4 43.6 44.2	, 44.2 44.7 44.7 44.4 43.8	41.4 40.6 39.2 39.5 40.3	38.5 39.2 41.2 38.4 37.4 38.8	1276.2 41.2 45.7 37.4	166 M3/S 5240000 DAM3	RGE, RGE, S D19
FEB 47.2 B 49.2 B 52.3 B 51.6 B 43.3 B	41.0 B 34.4 B 31.9 B 29.8 B	27.0 B 29.0 B 36.4 B 41.3 B	38.9 B 37.8 B 36.0 B 30.1 B 21.9 B	23.5 B 25.1 B 27.6 B 34.0 B 40.3 B	54.9 B 53.1 B 42.1 B 41.5 B	1090.0 37.6 54.9 21.9	THE YEAR 1992 MEAN DISCHARGE, TOTAL DISCHARGE,	MAXIMUM DAILY DISCHA MINIMUM DAILY DISCHA MAXIMUM INSTANTANEOU
JAN 41.5 B 43.1 B 42.3 B 42.3 B	40.6 B 36.1 B 29.2 B 39.8 B 42.0 B	44.0 B 44.0 B 43.3 B 41.1 B	39.8 B 42.2 B 41.0 B 40.5 B	41.0 B 39.9 B 38.5 B 37.0 B	37.0 B 37.5 B 39.2 B 42.8 B 47.2 B	1257.3 40.6 48.0 29.2	FOR THE YE MEAN DI TOTAL D	MAXIMUM MINIMUM MAXIMUM
DAY 3 2 3 2 5 4 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	6 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1	113 113 114 115 115 115 115 115 115 115 115 115	16 17 18 19 20	21 22 23 24 25	26 27 28 29 30 31	TOTAL MEAN MAX MIN	SUMMARY	

"Advance information subject to correction." For private information only, pend: so

STATION NO. 07AD002	S NOV DEC DAY	- N W 4 IV	6 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	11 12 13 14 15	16 17 18 19 20	21 22 23 24 Advance information subject to correction Por	private information only, pending publication in 27 Annual Department Report.* 28 29 30 31	TOTAL MEAN DAM3 MAX MIN	B-1CE CONDITIONS E-ESTIMATED	262 DAY(S) WITH DATA 91 DAY(S) WITH ICE 0 DAY(S) MANUAL DATA 13 DAY(S) ESTIMATED 107 DAY(S) UTTH NO PATA	
	FOR 1993				•	e inforr	Jepartn				
	SECOND	280 303 309 305 300	279 258 238 241 242	234 244 229 199 187	176 164 153 152	*Advano	private i				
	METRES PER AUG	327 292 283 281 288	298 325 340 335	374 385 346 329 322	298 296 297 297	302 320 326 338 352	299 277 288 310 301 282	9766 315 844000 285 277	VALID)	15	
AT HINTON	IN CUBIC METRES JUL AUG	296 289 293 299 328	361 392 405 430 429	382 348 320 305 300	310 311 313 314	325 351 365 352 339	336 325 324 331 368 377	10528 340 910000 430 289	AY NOT BE .	M3/S AT 20:29 MST ON MAY	
CA RIVER	DISCHARGE	366 400 451 431 389	355 338 347 390 363	317 287 264 253 257	283 318 334 375 443	412 373 372 342 301	296 318 366 367 323	10431 348 901000 451 253	SUMMARY DATA MAY NOT BE	s AT 20:29	
ABAS	AILY	****	M M G M .+		шшшш				UMM	M3/8	
ATH	(PRELIMINARY) DAILY APR MAY	38.7 38.7 38.4 38.0 38.0	45.3 58.3 72.0 71.8 65.4	63.3 108 261 456 580	574 580 540 520 500	479 456 412 365 336	353 379 383 380 381 370	8980.7 290 776000 580 38.0	YEAR, S	ON ON 605	
	MI	ω 			шш		шш		1	M3/S M3/S	
	(PREL)	31.0 35.3 36.1 36.9 36.9	36.4 34.8 35.1 37.2 38.3	39.4 38.5 37.9 33.3	33.5 36.6 41.5 44.0 47.0	50.0 52.0 54.0 54.0 52.0	48.0 44.0 40.6 38.1 37.9	1213.7 40.5 105000 54.0 31.0	(INCOMPLETE /S AM3	E, M3 E, M3 DISCHARGE,	
	MAR	31.2 8 31.3 8 31.0 8 31.4 8 32.0 8	35.0 8 35.5 8 35.0 8 33.3 8 30.0 8	28.5 B 27.0 B 26.0 B 25.5 B 25.0 B	24.4 B 24.9 B 25.5 B 27.0 B 27.0 B	31.6 B 37.0 B 38.6 B 38.6 B	33.4 B 32.6 B 31.7 B 32.4 B 32.8 B 33.6 B	969.1 31.3 83700 1 38.6 24.4	(IN M3/S DAM3	9 9	
CANADA SE 8 13:33	FEB	38.0 8 36.0 8 34.5 8 32.4 8 32.0 8	31.5 8 31.2 8 31.0 8 30.2 8 29.9 8	28.7 B 26.6 B 25.8 B 25.7 B 24.1 B	23.6 B 22.9 B 24.7 B 27.3 B	25.5 8 27.6 8 29.2 8 27.1 8 27.9 8	28.3 B 27.3 B 30.3 B	806.6 28.8 69700 38.0 22.9	YEAR 1993 DISCHARGE, DISCHARGE,	DAILY DAILY INSTA	
WATER SURVEY OF CANADA SEP 29 1993 PAGE 8 CALGARY, ALTA 13:33	JAN	29.0 B 28.7 B 31.1 B 31.9 B 35.1 B	35.1 8 37.1 8 34.1 8 38.6 8 40.1 8	39.08 36.18 35.38 35.08	35.1 B 35.5 B 36.0 B 36.6 B 37.2 B	37.9 B 38.1 B 38.0 B 38.0 B 38.2 B	38.5 B 39.1 B 39.6 B 39.8 B 39.6 B	36.4 36.4 97400 60.1 28.7	FOR THE YEAR 1993 MEAN DISCHARGE TOTAL DISCHARG	MAXIMUM MINIMUM MAXIMUM	
WATER S SEP 29 CALGARY	DAY	- N M 4 N	6 8 9 10	11 12 14 15	16 17 18 19 20	21 22 23 24 25	26 27 28 29 30 31	TOTAL 1 MEAN DAM3 972 MAX MIN	SUMMARY FO		

(PRELIMINARY) DAILY DISCHARGE IN CUBIC METRES PER SECOND FOR 1992

	DAY 32 1 24	9 2 8 4 0	1727	16 17 19 20	22 23 23 23 23 23 23 23 23 23 23 23 23 2	26 27 28 28 29 30 31	TOTAL MEAN MAX MIN		4 ¥
		8 8 8 8 8						SNS	WITH DATA WITH ICE MANUAL DATA ESTIMATED WITH NO DATA
	DEC 05 08 18 31	08187	109 107 99.0 91.9	92.0 102 110 112	115 109 99.7 97.9 92.3	86.3 85.1 82.2 82.4 81.6 81.2	279.6 106 140 81.2	AUGE 1710	H IC
	105 106 108 118 118	140 138 131 128 117	55500	96111	10000	80 80 80 80 80	3279.6 106 140 81.2	A-MANUAL GAUGE B-ICE CONDITIONS E-ESTIMATED	WITH DATA WITH ICE MANUAL DA ESTIMATED WITH NO DA
								NUA E CO TIM	
	>				128 112 109 71.7 75.8	90.9 30 33 28 05	4. 1.	-IC	DAY(S) DAY(S) DAY(S) DAY(S) DAY(S)
	251 232 232 222 215 204	193 191 184 174 167	169 164 183 163 155	139 120 118 133 142	128 112 109 17	90 133 133 128 105	4602.4 153 251 71.7	≪ 8 m	
							4		366 161 2 2 0
2	291 291 272 272 256 256 250	253 258 274 293 280	256 238 227 217 209	206 202 191 180 169	166 165 173 181 180	184 193 193 302 321 277	821 129		
1992	2 2 2 2 2 2	22222	22222	2255	22122	5 5 5 W W W	7168 231 321 165		
Š									
SECOND FOR	264 268 251 236 233	22222	83000	27.25	ი ი ი ი ი	o ≈ 40 ←	∞ ← ∞ w		
	SEP 264 268 251 236 236 233	253 282 302 332 348	338 326 320 303 303	319 324 307 295 281	263 263 249 245 265	299 295 304 336 331	8738 291 348 233		
IN CUBIC METRES PER	-011-8	49049	08-46	04044		000000	0110 50 01		
RES	AUG 421 399 385 391 418	444 439 446 446 446 446	440 418 371 334 309	307 317 346 384 396	389 382 394 376 339	310 280 259 248 238 238	11322 365 456 232		
Ä							-		•
2						_			N N
3	JUL 723 727 698 644 575	524 490 483 482 507	555 631 667 631 578	534 519 525 500 564	448 456 457 448 442	470 485 464 463 452	6537 533 727 442		N
							16		ST
KGE									8:46 MST ON JUN
CHA	750 753 774 774 929	931 817 738 706	714 753 808 841 824	878 914 872 827 838	838 800 749 746 758	25 77 85 77 85 75 85 75 85 75 85 75 85 75 85 75 85 75 85 75 85 75 85 75 85 75 85 85 85 85 85 85 85 85 85 85 85 85 85	24114 804 1020 706		8:4
DIS	7	- qua					24		¥
(PRELIMINARY) DAILY DISCHARGE									N JUN 6 FEB 19 1030 M3/S AT
DA	MAY 415 439 462 479 492	459 423 395 384 432	534 605 623 584 550	524 507 490 472 452	430 429 456 469 460	441 422 422 439 439 615	15081 486 777 384		N 0 E
3	3,,,,,	4 4 10 10 14	0.000.01	m m a a a	4444	444401	150		FEB 030
N N			m m m ≪ ш	w «					RGE, 1020 M3/S ON JUN (RGE, 62.0 M3/S ON FEB 19 S DISCHARGE, 1030 M3,
LIM	APR 260 321 305 266 242	256 295 306 294 290	253 266 244 228 230	230 243 243 279 339	363 373 374 371 377	397 413 414 406 404	273 309 414 228		43/8 8/8
PRE	Aumun	00000	20000	MUNN	мимим	W 4 4 4 4	26 30	ñ	SGE,
								08 M3/S 9720000 DAM3	iE, 1020 M3 iE, 62.0 M3 DISCHARGE,
		***	~ ~ ~ ~ ~				0 0	s/ 000	E, DIS
	MAR 99.0 116 136 146 151	153 159 175 175	173 167 168 168	173 182 196 216 244	268 270 270 278 278 281	277 294 311 304 330 277	6491.0 209 330 99.0	M3	ARG ARG US
					NNNNN	NAMMMA	20 W	200	SCH
		8 8 8 8 8	88888	88888		0 0 0 0		-ш	DI
	FEB 96.8 97.8 103 108	113 113 113 113 113 113 113 113 113 113	110 102 94.0 87.6 85.1	82.7 76.5 67.6 62.0 73.4	87.4 93.9 94.0 89.8 87.5	85.0 83.1 85.5 91.0	2718.7 93.7 114 62.0	ARCHAR	VILY VILY ISTA
						2 2 2 2	1	EAR I SC	20 =
				888888	80 80 80 80	~~~~~		SUMMARY FOR THE YEAR 1992 MEAN DISCHARGE, TOTAL DISCHARGE,	MAXIMUM DAILY DISCHA MINIMUM DAILY DISCHA MAXIMUM INSTANTANEOU
	JAN 118 117 115 113	87750	98.5 96.0 94.5 97.3	5.0 7.7 16	98.9 99.4 101 103	08 04 99.8 98.7	3222.8 104 118 94.5	TH MEA TOT	MIN
	118 117 116 115 113	108 107 107 105	00000	95 107 106 106	00000	108 104 99 98 98	3222 104 118 94	FOR	
								RY	
	1 1 2 2 3 3	9 2 8 9 0	13 12 15	16 17 18 19 20	21 22 23 24 25	26 27 28 28 29 30 31	TOTAL MEAN MAX MIN	MMA	
							HEAL MAX MIN	S	

"Advance information subjection private processing the second of the sec For privite 1-10.8 in Annual Department Report."

6.8

STATION NO. 07BE001	STREAM VAX MAR/92	DEC DAY 1 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 17 17 18 19 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 23 33 31 31	TOTAL MEAN MAX MIN B-ICE CONDITIONS	DAY(S) WITH DATA DAY(S) WITH ICE DAY(S) MANUAL DATA DAY(S) ESTIMATED DAY(S) WITH NO DATA
S		SEP OCT NOV			"Advance information exhibit to correction for private Information only, pending publication in Assuel Department Report."		e c L : i A Digge		151 DAY 111 DAY 0 DAY 0 DAY 214 DAY
. ATHABASCA	(PRELIMINARY) DAILY DISCHARGE IN CUBIC METRES PER SECOND FOR 1993	JUL AUG S			2.7 P		*Advance information audient for privers information only, pass in Annual Department Report."	T BE VALID)	N MAY 18
ATHABASCA RIVER AT ATHABASCA	ILY DISCHARGE IN	C OUN	¥			er Kilonia	Samuel Sept.	5653.2 14499 188 468 289 849 93.0 222 (INCOMPLETE YEAR, SUMMARY DATA MAY NOT BE VALID)	861 H3/6 AT 16:32 NST ON MAY 18
œ.	PRELIMINARY) DA	APR MAY 94.7 B 233 93.0 B 232 95.5 B 228 101 B 224 106 B 222	113 B 224 126 B 225 126 B 241 133 B 327 141 B 436	143 B 426 152 B 383 169 B 350 183 B 319 205 B 294	247 B 345 212 B 666 271 B 849 282 B 818 289 B 749	270 B 710 258 682 250 667 225 675 220 651	223 603 232 234 513 234 513 233 521 232 535	5653.2 14499 188 468 289 849 93.0 222 COMPLETE YEAR, SU	M3/S ON M3/S ON 6E, ?
	3)	MAR 57.1 B 59.9 B 60.9 B 62.1 B	63.2 B 68.2 B 72.2 B 74.3 B	74.8 B 75.0 B 77.8 B 80.8 B	75,4 B 74,4 B 72,8 B 74,3 B	71.0 B 68.3 B 68.0 B 69.8 B 72.9 B	74.2 B 74.5 B 76.2 B 81.3 B 89.4 B	2245.2 72.4 95.3 97.1 97.1	SCHAR
WATER SURVEY OF CANADA JUN 9 1993 PAGE 6		JAN FEB 81,0 B 70.0 B 77.6 B 70.5 B 77.6 B 70.4 B 72.5 B 69.6 B 65.7 B 69.3 B	62.1 B 71.5 B 60.6 B 77.1 B 61.4 B 78.3 B 63.4 B 71.8 B 65.5 B 71.8 B	69.0 B 59.3 B 69.3 B 69.3 B 71.6 B 70.3 B 72.1 B 70.0 B 70.6 B	69.8 B 69.2 B 70.8 B 69.1 B 77.1 B 68.5 B 67.4 B 67.7 B 66.2 B	69.2 B 64.6 B 69.2 B 63.2 B 68.8 B 61.7 B 68.8 B 60.6 B 69.0 B 59.9 B		TDTAL 2150,3 1905,0 MEAN 69.4 68.0 MAX 81.0 78.3 MIN 60.6 58.0 SUMMARY FOR THE YEAR 1993 MEAN DISCHARGE, TOTAL DISCHARGE,	MAXIMUM DAILY DISCHARGE, HINIMUM DAILY DISCHARGE, MAXIMUM INSTANTANEGUS DISCHAR
WATER SURVEY JUN 9 1993		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	·0 V BB V O	11 67 12 68 13 69 14 70	16 17 18 18 71 19 70 20 69	222222232232232323232323232323232332323323323333		TOTAL 215 MEAN 6 MAX 8 MIN 6 SUMMARY FOR	- P4

0709001	8/92	DAY	-				8	40	1 1			-		11			14		B 16	B 17						B 22	B 23	B 24	B 23	. B	B 27	B 28				TOTAL	MAG		2 > 2	Z	1.6	-	ŭ	2	
BTATION NO. 07	READGO VAX APR/92	DEC	190				172	170										SEL	149										134 1	132					_	4703		404000	0000	126			A-DAMONAL GALLER	10000	
BTATIC	READ	NO.	48.7	10	4	366	900	338	902	128	77.	292 B	8	CHZ			227 B		221 8	220 B					213 8		201 B	199 B	196 B	197 8	_	200 B				8117	***	701000	170	196			P-174N		
	1992	DCT	420	7000	343	314	489	263	470	40.00	418	413		46.5	044	427	400	3/0	360	320 B	310 B		300 B		Z98 B				302 B	295 B	g oct	300 B	297 B		313	11771	2890	102000	2000	3 2					
	ECOND FOR	200	A 6 FI	462	4	477	488	469	450	448	4.42	464	,	0.10	7	1000	267	000	537	1143	542	000	523	}	41	220	900	483	303	493	436	493	526	222		15271	00	1220000	447	448			1	•	
	IN CUBIC METRES PER BECOND FOR 1992	AU5.	424	624	404	287	260	440	68.8	574	607 0		8	200	600	000	391	989	523	404	479	484	200		200	270	279	269	571	282	268	344	519	487	471	17282	1	1490000		471			subject to correction	For private enformation only, pending publication	
MC MURRAY	IN CUBIC P	JUE	948	920	828	922	894	836	797	74%	200	681		7 10	4 /0	90	757	A10	BO3	758	719	692	683		424	640	613	401	613	611	623	427	634	999	643	22652	1	1960000	948	407			Pointramental and	House enformetion of	ALM LOVE
HABASCA RIVER BELOW FORT MCMURRAY	DISCHARGE	3CN	862	1050	1090	1140	1180	1190	1320	1430	1340	1230	4	200	0.01	0001	1070	0111	1130	1120	1150	1180	1160		1130	1130	1120	1070	1010	266	1000	566	1000	986		33423	1110	2890000	1430	832				Forp	28
SCA RIVER	YY) DAILY	MAY	873	876	876	882	404	913	922	911	888	8027	120		200	717		200	1020	986	936	935	913		969	879	827	400	B40	Base	839	839	811	792	787	27587	890	2380000	1030	787			S NE N		
ATHABAS	(PRELIMINARY)	APR	399 8	419 8	425 B	420 B	410 B	405 B			371 8	370 B	24.6			202	1000 E	200	390 B	400 B	410 B	415 8	420 B		260 B	726	762	788	299	798	796	813	837	863		15626	321	1350000	8983	360		TO ACT	MAXIMUM DAILY DISCHARGE, 1430 MAZE ON HIN	126 H3/S ON DEC 31	
	J	MAR	165 8					176 B		214 B		Z38 B	244 B				270 0		276 B	273 B	Z72 B	272 B	272 B		279 B				337 8	365 B	366 B	371 8		¥ 98€.	390 B	6389	271	725000	390	164	!	475 M3/8	SCHARGE. 1	SCHARGE, 1	
CANADA	08:20	FEB	158 8	156 B			152 B	131 B	150 B			149 B	147 1				142 B		141 B	140 B	139 B		138 B						133	146 B	1.00 m	159 B	163 B			4243	146	367000	163	135		MEAN DISCHARGE, 475 M3/5	S DAILY DE	HINIMUM DAILY DISCHARGE.	
WATER SURVEY OF CANADA	2	JAN	137 8					155 B									000		148 B	146 B	144 B	147 B	147 B						141 B	143 B	146 B				157 B	4672	121	404000	160	140	BUMMARY FOR THE YEAR 1992	MERN D	MAXIMU	HINIME	
WATER	CALGA	VAC	1	8	n	*	n	9	7	100	0-	10	;		7 7	7 .	- r	3	16	17	18	19	20		21	22	i 13	47	23	26	27	26	29	30	31	TOTAL	MEAN	DAMS	MAX	MIN	SUMMARRY				

-Advance information subject to correction. For private enformation cash; pending publication on Advant Department Report.

STATION NO. 070A001	NOV DEC DAY	14837	6 8 9 01	11 12 13 14 15	16 17 18 19 20	22 23 23	26 27 28 28 29 30 31	TOTAL MEAN DAMS MAX MIN	B-ICE COMDITIONS	DAY(S) DAY(S)	O DAY(S) MANUAL DATA O DAY(S) ESTIMATED 274 DAY(S) WITH WO DATA
ATHABASCA RIVER BELOW FORT MCMURRAY	(PRELIMINARY) DAILY DISCHARGE IN CUBIC METRES PER SECOND FOR 1993 APR HAY JUM JUL AUG SEP · OCT	171 B		TO TO SERVICE STATE OF THE SER	"Advance information subject to correction in private information only, pending publication in private information only, pending publication in Armala Department Report."				(INCOMPLETE YEAR, SUMMARY DATA MAY NOT BE VALID) /S AMS	H3/S ON H3/S ON	ARGE, ? «Structure control of the co
	MAR	116 8 116 8 117 8 117 8	121 8 125 8 125 8 128 8 129 8	130 B 131 B 131 B 130 B	129 B 130 B 131 B 133 B 136 B	138 B 142 B 146 B 149 B	153 8 155 8 156 8 157 8 161 8	4201 136 363000 168 116	(IN) M3/S DAM3	SCHARGE, SCHARGE,	MAXIMUM INSTANTAMEOUS DISCHARGE, ?
CANADA GE 6 11:48	FEB	121 B 118 B 116 B 115 B	122 B 122 B 122 B 122 B 121 B	120 B 120 B 120 B 120 B 120 B	121 8 120 8 119 8 119 8	119 B 119 B 118 B 118 B	117 8 117 B 116 B	3338 119 288000 122 115	THE YEAR 1993 NEAN DISCHARGE, TOTAL DISCHARGE,	MAXIMUM DAILY DISCHARGE, HINIMUM DAILY DISCHARGE,	M INSTANTA
LATER SURVEY OF CANADA JUL 7 1993 PAGE 6 CALGARY, ALTA 11:48	JAN	126 B 125 B 124 B 124 B 125 B	129 B 131 B 131 B 118 B 124 B	124 B 121 B 119 B 119 B	120 8 122 8 123 8 124 8	123 8 123 8 123 8 123 8	122 8 122 8 122 8 123 8 123 8 123 8	3821 123 330000 131 118	SLREJARY FOR THE YEAR 1993 NEAN DISCHARGE TOTAL DISCHARG	MAXIMU	HAXIHU
UATER JUL CALGA	DAY	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6 8 9 10	11 13 14 15	16 17 18 19 20	32,23,23	27 28 30 31 31 31	TOTAL MEAN DAM3 MAX MIN	SURMARY		,

)	CLEARWATER RIVER AT DRAPER			A STATE OF THE STA
	F CANADA	AGE 10	10:55	
	MATER SURVEY OF CANADA	FEB 11 1993 PAGE	CALGARY, ALTA	

STATION NO. 07CD001

5	
5	
2000	
201010	
200	T SOL
=	
TOTAL	
2 2 2	
1001	
1400	
TO CO	1

	DAY B 1 B 3 B 4 B 5	88 % % % % % % % % % % % % % % % % % %	8 17 8 17 8 17 8 17 5 1 8 17 5	B 16 B 17 B 18 B 19 B 20	6 21 8 22 8 23 8 24 8 24	8 25 8 27 8 28 8 30 8 30 8 31	TOTAL MEAN MAX MIN	WS TA E DATA DATA DATA
	DEC 52.0 51.5 51.0 50.0	49.8 49.0 48.5 48.5	46.0 46.4 46.4 46.4	45.7 45.0 44.0 43.0	42.3 42.3 42.0 41.9	41.9 42.0 41.9 41.9 41.7	1412.0 45.5 52.0 41.7	AL GAUGE COMPITIONS WITH DATA WITH ICE MANUAL DATA ESTINATED WITH NO DATA
	80.7 80.8 80.8 80.3 80.0	78.7 76.1 78.0 75.8 72.5	71.0 B 68.5 B 66.2 B 65.0 B	61.9 B 60.5 B 59.4 B 58.7 B	57.9 8 57.1 8 57.0 8 56.0 8	54.6 B 54.2 B 54.0 B 53.0 B	1967.8 65.6 80.8 53.0	A-MAMUAL GAUGE B-ICE CONDITIONS 366 DAY(S) WITH DATA 181 DAY(S) WITH ICE 1 DAY(S) RANUAL DA 0 DAY(S) ESTIMATED 0 DAY(S) WITH WO D
FOR 1992	0CT 108 108 106 104	99.6 98.1 96.8 95.8 97.5	93.9 92.7 91.7 90.6 88.8	85.9 82.7 80.0 B 80.0 B	81.3 8 81.9 8 81.9 8 80.5 8	80.9 B 81.5 B 82.0 B 82.8 B 82.0 B	2777.3 89.6 108 80.0	
PER SECOND F	SEP 56.5 57.5 58.6 59.5 59.5	58.3 57.5 57.8 58.9 58.9	59.6 60.3 62.8 68.8 73.5	77.5 80.2 80.7 81.4 81.9	82.3 82.8 84.1 84.5 90.8	100 103 105 108	2255.9 75.2 108 56.5	Pickanca internation subject w wirection.For private information only, pending quelication is Angral Department Report.? 12:12 kst. ok. kav. 6
METRES	AUG 65.4 66.2 67.4 67.4	60.9 60.7 61.6 61.5	58.7 57.7 57.4 56.9	54.4 53.2 53.5 55.4	55.8 56.9 56.8 55.8	55.1 54.8 54.3 54.2 53.6	1799.0 58.0 67.4 52.3	ion subject nonly, psndi nt Report.: x 6
E IN CUBIC	JUL 123 117 108 98.5 93.3	90.7 86.6 83.1 80.7	75.4 74.6 73.3 71.2	70.0 72.1 75.2 74.8	74.1 73.1 72.5 70.7	69.3 71.5 72.3 69.8 68.9 67.1	2469.0 79.6 123 67.1	rakovanca inistritatio private information Angral Degartment At 12:12 KST OK MAY
Y DISCHARGE	JUR 124 125 149 164	169 167 167 165	154 149 A 145 141 143	129 124 122 120 122	137 137 133 130 126	120 120 121 121	4167 139 169 117	AT
(PRELIMINARY) DAILY	169 175 178 180 182	183 180 178 178	169 167 165 163	156 155 152 150	148 148 146 146	144 141 138 132 131	4926 159 185 129	1 MAY 6 1 DEC 31 188 M3/S
É			51 50 60 60 60			80		88
(PRELI)	APR 62.0 64.0 66.0 72.0	76.0 80.3 83.7 85.8 85.8	92.0 95.0 98.0 100	107 110 114 122	124 128 131 135 140	142 152 158 163 165	3243.0 108 165 62.0	/S 000 DAM3 E, 185 M3/S E, 41.7 M3/S DISCHARGE,
	MAR 47.5 8 46.8 8 46.0 8 45.5 8	44.58 44.58 44.59 84.59	45.6 B 45.7 B 45.9 B 46.0 B	46.0 B 46.2 B 46.2 B 46.8 B 47.0 B	47.2 B 47.2 B 47.2 B 47.5 B 48.0 B	48.7 8 49.5 8 51.0 8 56.0 8 58.2 8 60.8 8	1476.1 47.6 60.8 44.2	M C (2 (2
	FEB 49.0 B 48.5 B 48.2 B 48.1 B 48.1 B	48.0 B 47.9 B 47.8 B 47.6 B	47.5 B 47.5 B 47.8 B 47.8 B	48.0 B 48.0 B 48.0 B 48.0 B	48.0 B 48.1 B 48.2 B 48.5 B	49.0 B 48.8 B 48.8 B 48.8 B 48.8 B 48.8 B	48.1 48.1 49.0 47.5	THE YEAR 1992 NEAU DISCHARGE, 80.3 KI TOTAL DISCHARGE, 254(NAXIMUN DAILY DISCHARG NINIMUN DAILY DISCKARG MAXIMUN INSTANTANEOUS
	JAN 49.0 B 49.5 B 49.6 B 49.6 B	8 0°67 8 0°67 8 0°67 8 0°67	49.1 B 49.2 B 49.2 B 48.9 B	48.6 B 48.7 B 49.0 B 49.1 B	8 7°87 8 7°87 8 7°87 8 7°87 8 7°87 8 7°87	48.5 B 48.6 B 48.6 B 48.6 B 48.6 B	1515.9 48.9 49.8 48.3	SUMMARY FOR THE YEAR 1992 MEAN DISCHARGE TOTAL DISCHARGE MAXIMUN DAILY I MINIMUN DAILY I MAXIMUN INSTAN
	DA 5 4 4 2 2 4 7	2 × 8 × 01	11 13 14 15	16 17 18 19 20	21 23 24 25	26 27 28 29 30 31	TOTAL MEAN MAX MIN	SUMMARY

750001		DAY	1 2 8 4 5	6 8 9 10	11 22 21 25 25 25	16 17 19 20	21 22 23 24 25	26 27 28 29 30	TOTAL MEAN DAM3 MAX MIN	ONS	ATA CE DATA	TED
STATION NO OZCOOT		DEC			*5	W. W.				CONDITIONS	WITH DATA WITH ICE	
STATIC		NOV				Wishing Gr				B-1CE	227 DAY(S) 116 DAY(S)	
		1993 0CT				M ROUGHAND ON LOOKING ROUGH	Adala la				2.4	
		FOR				:12/	Old May 1					
		R SECOND SEP					Solaha Minak Minak					
PFR		METRES PER AUG	132 145 151 155 157	157 158 159 162 165	169 167 167 168 162		•			/AL1D)		19
CIFARUATER RIVER AT DRAPER		IN CUBIC M JUL	71.2 76.2 80.4 81.5	80.1 78.8 77.5 77.7	78.0 79.0 80.1 79.6 79.6	78.4 77.3 75.2 73.3	73.3 78.7 84.5 87.3 84.6	85.0 90.4 100 108 111	2581.4 83.3 223000 123 71.2	SUMMARY DATA MAY NOT BE VALID)		MST ON APR
RUATER RI			92.5 89.6 87.5 84.8 82.5	80.8 79.5 77.4 76.6 76.7	79.3 80.7 80.4 79.9 78.5	77.2 75.9 74.3 72.3	69.4 70.0 71.6 71.4 71.4	71.4 71.3 70.6 68.9 68.8	2302.2 76.7 199000 22 92.5 68.8	RY DATA MA		M3/S AT 12:06 MST ON
CLE		(PRELIMINARY) DAILY DISCHARGE APR MAY JUN	118 118 117 116	115 · 116 · 122 133	142 144 148 148	140 136 131 127 123	120 116 112 110	105 104 102 99.6 97.2 94.8	3768.6 ; 122 326000 194 148 94.8		7.7	323 M3/S
		I NA			88888			82	326	E X	S ON	
		(PRELIM	55.9 8 57.4 8 58.2 8 59.0 8	62.6 62.9 63.7 65.2 66.5	68.2 F 70.0 F 74.0 F 83.0 F 89.9 F	95.0 1 103 114 123 124	123 122 120 118 116	114 121 119 118	2744.5 91.5 237000 124 55.9	(INCOMPLETE YEAR, /S AM3	M3/S M3/S	DISCHARGE, ?
		MAR	39.0 B 38.9 B 38.7 B 38.6 B	38.6 B 39.0 B 39.9 B 40.2 B 41.7 B	41.9 B 42.2 B 43.3 B 43.9 B 44.3 B	44.9 B 45.3 B 45.9 B 46.1 B	47.8 B 48.1 B 49.2 B 49.9 B	51.2 8 52.0 8 52.6 8 53.5 8 54.0 8	1401.3 45.2 121000 22 54.9 38.5	(IN M3/S DAM3	DISCHARGE, DISCHARGE,	
CANADA	E 9 14:49	FEB	38.0 B 38.0 B 37.9 B 37.9 B 38.0 B	38.0 B 38.2 B 38.4 B 38.5 B	38.2 B 38.2 B 38.5 B 38.2 B 37.8 B	37.8 B 37.6 B 37.5 B 37.8 B 37.6 B	37.9 B 38.0 B 38.1 B 38.4 B 38.7 B	39.0 B 39.2 B 39.2 B	1069.3 38.2 92400 39.2 37.5	YEAR 1993 DISCHARGE, L DISCHARGE,	DAILY DIS	MAXIMUM INSTANTANEOUS
DATER SURVEY OF CANADA	OCT 26 1993 PAGE CALGARY, ALTA	JAN	41.8 B 41.0 B 40.9 B 40.6 B 40.5 B	40.6 B 40.0 B 39.9 B 39.4 B 38.7 B	38.4 B 38.1 B 38.0 B 38.0 B	38.2 B 38.6 B 38.7 B 38.4 B 38.1 B	38.1 B 38.0 B 38.0 B 38.0 B	38.0 8 38.1 8 38.2 8 38.5 8 38.2 8	1205.0 38.9 104000 41.8 37.9	SUMMARY FOR THE YEAR 1993 MEAN DISCHARGE TOTAL DISCHARG	MAXIMUM DAILY MINIMUM DAILY	MAXIMUM
UATER	OCT 26 CALGAR	DAY	- C M 7 5	6 8 9 10	112 13 15 15 15 15 15 15 15 15 15 15 15 15 15	16 17 18 19 20	21 22 23 24 25	26 27 28 29 30 31	TOTAL MEAN DAM3 10 MAX MIN	SUMMARY		

APPENDIX D

Fish Collection Data Sheets

		-

SEX AND MATURITY DESCRIPTIONS

- 99 = Sex indeterminable due to small gonad size
- 14 = Female. Definite gonad development; the fish has spawned before and will spawn during the coming spawning season.
- 07 = Male. Sexual organs filling ventral cavity; testes white, drops of milt fall with pressure.
- 04 = Male. Definite gonad development; the fish has spawned before and will spawn during the coming spawning season.
- 01 = Male. Small gonad size; fish has never spawned and will not spawn during the coming season.

R.L. & L. ENVIRONMENTAL SERVICES LTD.

	LECTION SHEET		PR	OJECT #368
Sample No.	15	Date (D/M/	Y): 04/6	4/93
Location:	Site 1- Near	Entrance (ppen w	ater site selow Brule'Lake Stati	on:
		nje sje sj		
Species^		ork Length (mm) 6		nt (g)
Capture Met				
_		p Dip Net	Electrofis	sh Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:t:	Yes No		
_				
		Wt (g)	Sample #	
	Total		Sample #	
	Total MFO	Wt (g) less than 0.19 < 0.19	Sample # Vial 15	
		less than O.19		
Preservation Comments:	MFO	less than O.1a < 0.1g	Vial 15 Bag —	ag # <u>15</u>
	MFO Residual Tissue	less than O.1a < 0.1g	Vial 15 Bag — Yes - B	ag # <u>15</u>
	MFO Residual Tissue	less than O.1a < 0.1g	Vial 15 Bag — Yes - B	ag # <u>15</u>
	MFO Residual Tissue	less than O.1a < 0.1g	Vial 15 Bag — Yes - B	ag # <u>15</u>

	LECTION SHEET		PROJECT #368	
Sample No.	16	Date (D/M/	y). 04/004/93	_
Location:	Site 1-near	Entrance (b	elow Bruk L.) Station:	_
u.Y	y main	* * *		
Species RW	IW Fo	ork Length (mm) 7	7 Weight (g) 3.3	
Sex	9	Age Structure		_
Capture Met				
Set Li	ne Gee Tra	p Dip Net	Electrofish Othe	r
if other, spec	cify:		Bait:	and the last
Gross Pathol	logy Sheet:	Yes No		
T ! TY/. ! . 1.				
Liver Weigh	τ:			
	T-	TT/4 (-)	S1- #	
	m . 1	Wt (g)	Sample #	
	Total	∠0.1g		
•	Total MFO		Sample # Vial 6	
•		∠0.1g		
	MFO	∠0.1g	Vial 16	
	MFO	∠0.1g	Vial 16 Bag	
Preservation	MFO	20.1g 20.1g	Vial 16	
Preservation	MFO Residual Tissue	20.1g 20.1g	Vial 16 Bag	
Preservation Comments:	MFO Residual Tissue	20.1g 20.1g	Vial 16 Bag Yes - Bag # 16	
Comments:	MFO Residual Tissue of fish remains for re	∠ 0./g ∠ 0./g −−− esidual tissue analysis	Vial 16 Bag Yes - Bag # 16 No	
Comments:	MFO Residual Tissue of fish remains for re	20.1g 20.1g	Vial 16 Bag Yes - Bag # 16 No	
Comments:	MFO Residual Tissue of fish remains for re	∠ 0./g ∠ 0./g −−− esidual tissue analysis	Vial 16 Bag Yes - Bag # 16 No	
Comments:	MFO Residual Tissue of fish remains for re	∠ 0./g ∠ 0./g −−− esidual tissue analysis	Vial 16 Bag Yes - Bag # 16 No	
Comments:	MFO Residual Tissue of fish remains for re	20.1g 20.1g analysis	Vial 16 Bag Yes - Bag # 16 No	

	LECTION SHEET		PROJECT #368
Sample No.		Date (D/M/	(Y): 04/04/93
Location:	Site 1-near	Entrance (below	water W Brule L.) Station:
Species Q	\bigcirc		Weight (g) 2,3
Capture Met	hod:		
Set Li	ne Gee Tra	p Dip Net	Electrofish Other
if other, spec	cify:		Bait:
Gross Pathol Liver Weigh	logy Sheet:	YesNo	
		Wt (g)	Sample #
	Total	<0.1g	
	MFO	< 0.1g	Vial 17
	Residual Tissue		Bag
Preservation Comments:	of fish remains for re	esidual tissue analysis	Yes - Bag # 17No
		Sampler(s) H. Lo	irsen/R. DURACK

FISH COLI	LECTION SHEET		PROJEC	T #368
Sample No.	18	Date (D/M/	y). 04/03/	193
Location:	Site - near	Entrance	Station:	
	<i>y</i>	* * *		
Species 2	1. W. D Fo	ork Length (mm) 6	Weight (g)	2.0
Sex	99	Age Structure		
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:	Yes No		
	*			
Liver Weigh	t:			
		Wt (g)	Sample #	
	Total	Wt (g) ∠ ○. /	Sample #	
	Total MFO		Sample # Vial /	
		∠ 0.1		·
	MFO	∠ 0.1	Vial /S	
	MFO	∠ 0.1	Vial /8 Bag	
Preservation	MFO Residual Tissue	∠ 0.1	Vial /S	18
Preservation	MFO Residual Tissue	20.1 20.1	Vial /8 Bag	18
Preservation Comments:	MFO Residual Tissue	20.1 20.1	Vial / S Bag Yes - Bag #	18
	MFO Residual Tissue	20.1 20.1	Vial / S Bag Yes - Bag #	18
	MFO Residual Tissue	20.1 20.1	Vial / S Bag Yes - Bag #	18
	MFO Residual Tissue	20.1 20.1	Vial / S Bag Yes - Bag #	
	MFO Residual Tissue	∠ O. ∠ O. esidual tissue analysis	Vial / S Bag Yes - Bag #	

	LECTION SHEET		PROJECT #368
Sample No.		Date (D/M/	(Y): 04/My/93
Location:	Site I-near En	Trance (open water	vié L.) Station:
		ak ak a	•
Species	NW∯ Fo	ork Length (mm) 6	9 Weight (g) <u>2.2</u>
Sex	99	Age Structure	
Capture Met	hod:		
Set Li	ne Gee Tra	p Dip Net	Electrofish Other
if other, spec	cify:		Bait:
Gross Pathol Liver Weigh	logy Sheet:t:	Yes No	
		Wt (g)	Sample #
	Total	, ,	
	Total	20.1	
	MFO	20.1 20.1	Vial 19
		20.1 20.1	Vial /9 Bag ——
Preservation	MFO		
Preservation	MFO Residual Tissue		Bag
Preservation Comments:	MFO Residual Tissue		Yes - Bag #
	MFO Residual Tissue		Yes - Bag #
	MFO Residual Tissue		Yes - Bag #
	MFO Residual Tissue		Yes - Bag #

FISH COLLECTION SHEET PROJECT #30	i8
Sample No	
Location: Site - near Entrance (open water below Brulé L.) Station:	
* * *	
Species Fork Length (mm) Weight (g)	4
Sex Age Structure	
Capture Method:	
Set Line Gee Trap Dip Net Electrofish	Other
if other, specify: Bait:	
Gross Pathology Sheet: Yes No	
Liver Weight:	
Wt (a) Sample #	
Wt (g) Sample #	
Total 20,1	
Total 20.1 MFO 20.1 Vial 20	
Total 20,1	
Total 20.1 MFO 20.1 Vial 20	
Total 20.1 MFO 20.1 Vial 20	
Total 20, Wial 20 Residual Tissue Bag	
Total 20, Wial 20 Residual Tissue Bag Preservation of fish remains for residual tissue analysis Yes - Bag # 20	
Total 20, Wial 20 Residual Tissue Bag Preservation of fish remains for residual tissue analysis Yes - Bag # 20 No	
Total 20, Wial 20 Residual Tissue Bag Preservation of fish remains for residual tissue analysis Yes - Bag # 20 No	
Total 20, Wial 20 Residual Tissue Bag Preservation of fish remains for residual tissue analysis Yes - Bag # 20 No	
Total 20, Wial 20 Residual Tissue Bag Preservation of fish remains for residual tissue analysis Yes - Bag # 20 No	

FISH COLLECTION SHEET		PROJECT #368
Sample No. 2	Date (D/M/	y): 04/0 3 /93
Location: Site I-near Ent	rance (open we below !	Station:
	* * *	•
Species M.W. Fo	ork Length (mm)	Weight (g) 10.9
Sex99	Age Structure	
Capture Method:		
Set Line Gee Tra	p Dip Net	Electrofish Other
if other, specify:		Bait:
Gross Pathology Sheet:	Yes No	
Liver Weight:	•	
7	Wt (g)	Sample #
Total	< 0,1	
MFO	<0.1	Vial 21
Residual Tissue		Bag —
Preservation of fish remains for re	esidual tissue analysis	Yes - Bag #
		No
Comments:		
,	er during to	ssue removal.
Comments: - broken gall bladde	er during to	ssue removal.
,	er during to	ssue removal.
,	er during to	ssue removal.

FISH COLI	LECTION SHEET		PROJEC	CT #368
Sample No.	<u></u>	Date (D/M/	y) 04/03	193
Location:	site - neur	Entrance (open	Brule L: Station: _	
Sex Set Li if other, spec	hod: ine Gee Tra cify:	Age Structure Dip Net	Weight (g) Electrofish Bait:	
Liver Weigh	t:	Wt (g)	Sample #]
Liver Weigh	t: Total	Wt (g)	Sample #	
Liver Weigh	Γ	Wt (g)	1	•
Liver Weigh	Total		· ·	•
Preservation Comments:	Total MFO Residual Tissue of fish remains for re	2.3	Vial 22 Bag Yes - Bag # No	22

FISH COLI	LECTION SHEET			PROJEC	T #368
Sample No.	23	Date (D/M/	/Y) <u>:</u>	05/03/9	3
Location:	Site 1 (near	· Brole lake)		Station:	,
		1k 1k 1	*		
Species	MW Fo	ork Length (mm)	2	Weight (g)	12.2
Sex	79	Age Structure	e		
Capture Met	hod:				
Set Li	ne Gee Tra	p Dip Net	·	Electrofish	Other
if other, spec	cify:		Bait: _		
Gross Pathol Liver Weigh	logy Sheet:	Yes No			
		Wt (g)	S	ample #	,
	Total	Wt (g)	S	ample #	
	Total MFO	-	Sa Vial	23	
		0.2	Vial	23 23	
	MFO Residual Tissue	0.2	Vial Bag	23	
Preservation	MFO Residual Tissue	0.2	Vial Bag	23 23 	<u>23</u>
Preservation	MFO Residual Tissue	0.2	Vial Bag	23	<u>23</u>
Preservation Comments:	MFO Residual Tissue	0.2	Vial Bag	23 23 	<u>23</u>
	MFO Residual Tissue	0.2	Vial Bag	23 23 	23_
	MFO Residual Tissue	0.2	Vial Bag	23 23 	23
	MFO Residual Tissue	0.2	Vial Bag	23 23 	23

FISH COLI	LECTION SHEET		PROJEC	Г #368
Sample No.	24	Date (D/M/	y): 05/03/93	
Location:	Site 1 (near Brule lake	Station:	
		* * * *		
			7 Weight (g)	
Sex	99	Age Structure		
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:	YesNo		
river weigh	L.			
		Wt (g)	Sample #	
	Total	Wt (g) >♂.↑	Sample #	
	Total MFO	Wt (g) > 0. ↑ > 0.	Sample # Vial 24	
		>0.7		
	MFO	>0.7	Vial 24	
Preservation	MFO Residual Tissue	>0.7	Vial 24 Bag	24
Preservation	MFO Residual Tissue	>0.7 >0.1	Vial 24 Bag	24
Preservation Comments:	MFO Residual Tissue	>0.7 >0.1	Vial 24 Bag Yes - Bag #	24
	MFO Residual Tissue	>0.7 >0.1	Vial 24 Bag Yes - Bag #	24
	MFO Residual Tissue	>0.7 >0.1	Vial 24 Bag Yes - Bag #	24
	MFO Residual Tissue	>0.7 >0.1	Vial 24 Bag Yes - Bag #	24
	MFO Residual Tissue	>0.7 >0.1	Vial 24 Bag Yes - Bag #	24

FISH COLI	LECTION SHEET		PROJEC'	Г #368
Sample No.	25	Date (D/M/	y). 05/03/9	93
			Station:	
		* * *		
			Weight (g)	
Sex	99	Age Structure		
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
			Bait:	
, 1				
Const. Delta 1	Gl.	V / N.		
Gross Patnol	logy Sheet:	YesNo		
	*			•
Liver Weigh	t:			
Zivoi woigh	1			
Ziver weigh		Wt (g)	Sample #	
Zivor worgin	Total	Wt (g) > ∅,	Sample #	
Zivor worgi		-	Sample # Vial 25	
Zivor worgin	Total	> 0,		
Zivor worgin	Total MFO	> 0,	Vial 25	
	Total MFO	> 0,	Vial 25	
	Total MFO Residual Tissue	> 0,	Vial 25	<u> 25</u>
	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 25 Bag	<u>25</u>
	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 25 Bag ✓ Yes - Bag #	25
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 25 Bag ✓ Yes - Bag #	<u>25</u>
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 25 Bag ✓ Yes - Bag #	25
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 25 Bag ✓ Yes - Bag #	25
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 25 Bag ✓ Yes - Bag #	25
Preservation	Total MFO Residual Tissue	> O. > O. esidual tissue analysis	Vial 25 Bag ✓ Yes - Bag #	25

FISH COL	LECTION SHEET			PROJEC	CT #368
Sample No.	26	Date (D/M/	/Y) <u>:</u>	05/03	193
Location:	Site 1 (nee	= r Brule lake)		Station: _	
		aje aje aj			
Species	1W Fo	ork Length (mm)	2	Weight (g)	2.9
		Age Structure			
Capture Me	thod:				
Set L	ine Gee Tra	p Dip Net	~	Electrofish	Other
if other, spe	cify:		Bait: _		
Gross Patho	logy Sheet:	Yes / No			
01000 1 8880					
Liver Weigh	it:	·			1
		Wt (g)	S	ample #	
	Total	>0.1			
	MFO	> 0.1	Vial	26	
	Residual Tissue		Bag		
			ÿ.		
Preservation	of fish remains for re	esidual tissue analysis		Yes - Bag #	26
				_ No	
Comments:					
				5	
		Sampler(s)			

FISH COLI	LECTION SHEET		PROJECT #3	68
Sample No.	27	Date (D/M/	y): 05/03/93	
Location:	Site 1 (near)	Brule lake)	Station:	
		. * * *		
			Weight (g) 2.	
Sex	99	Age Structure		
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
			Bait:	
o, spec				
Gross Pathol	logy Sheet:	Yes No		
Liver Weigh	t:			
		Wt (g)	Sample #	
	Total			
	Total	>0.1		
	MFO	>0.1	Vial 27	
			Vial 27 Bag	
	MFO Residual Tissue	>0.1	Bag	
Preservation	MFO Residual Tissue			
Preservation	MFO Residual Tissue	>0.1	Bag	
Preservation Comments:	MFO Residual Tissue	>0.1	Yes - Bag #	
	MFO Residual Tissue	>0.1	Yes - Bag #	
	MFO Residual Tissue	>0.1	Yes - Bag #	
	MFO Residual Tissue	>0.1	Yes - Bag #	
	MFO Residual Tissue	>0.1	Yes - Bag #	

FISH COLI	LECTION SHEET		PROJECT #368
Sample No.	28	Date (D/M/	y): 05/03/93
Location:	Site 1 Chear	Brule lake)	Station:
Sex(Capture Met	hod: ne Gee Tra	Age Structure p Dip Net	Weight (g) 4,5 Lectrofish Other Bait:
*	logy Sheet:		
		Wt (g)	Sample #
	Total	Wt (g)	Sample #
	Total MFO		Vial 28
		> 0.1	
Preservation Comments:	MFO Residual Tissue	> 0.1	Vial 28 Bag
	MFO Residual Tissue	> 0.1 > 0.1	Vial 28 Bag ✓ Yes - Bag # 28

FISH COLI	LECTION SHEET		PROJEC	T #368
Sample No.	29	Date (D/M/	Y): 05/03/0	93
Location:	Site 1 (nea	· Brulelake)	Station:	
		* * *		
			Weight (g)	
Sex	99	Age Structure	2	:
Capture Met	hod:			
Set Li	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
, or				
Gross Pathol	logy Sheet:	Yes No		
I iman Waish	.			
Liver Weigh	L.			
		Wt (a)	Sample #	
	Total	Wt (g)	Sample #	
	Total MFO	70.1		
	Total MFO Residual Tissue		Vial 29	
	MFO	70.1		
Preservation	MFO Residual Tissue	70.1	Vial 29 Bag	29
Preservation Comments:	MFO Residual Tissue	>0.1 >0.1	Vial 29 Bag Yes - Bag #	29
	MFO Residual Tissue	>0.1 >0.1	Vial 29 Bag Yes - Bag #	29
	MFO Residual Tissue	>0.1 >0.1	Vial 29 Bag Yes - Bag #	29
	MFO Residual Tissue	>0.1 >0.1	Vial 29 Bag Yes - Bag #	29
	MFO Residual Tissue	>0.1 >0.1	Vial 29 Bag Yes - Bag #	29

	LECTION SHEET		PROJECT #368
Sample No.	30	Date (D/M/	(Y): 05/03/93
Location:	Site 1 (nea	· Bruk lake)	Station:
		* * *	*
Species	1W Fo	ork Length (mm) 65	Weight (g)
Sex	99	Age Structure	2
Capture Met	hod:		
Set Li	ne Gee Tra	p Dip Net	Electrofish Other
if other, spec	cify:		Bait:
Gross Pathol	logy Sheet:	Yes No	
Liver Weigh	t:		
		Wt (g)	Sample #
	Total	> 0.1	
4	MFO	>01	Vial 30
		> 0.	Vial 30
	Residual Tissue	7 0.1	Bag
Preservation	Residual Tissue of fish remains for re		
Preservation Comments:			

FISH COLI	LECTION SHEET		PROJECT #368
Sample No.	31	Date (D/M/	ry): 05/03/93
Location:	Site 1 (nec	r Brule lake)	Station:
		3¢ 3¢ 3i	•
Species^	ΛW Fo	rk Length (mm) 75	Weight (g) 2.8
Sex	99	Age Structure	
Capture Met	hod:		
Set Li	ne Gee Tra	p Dip Net	Electrofish Other
if other, spec	cify:		Bait:
Gross Pathol	logy Sheet:	Yes No	
I iven Weigh			
Liver Weigh	t:		
		Wt (g)	Sample #
	Total	70.1	
	MFO	>0.1	Vial 3
	Residual Tissue		Bag
Preservation		ocidual tiegue analysis	✓ Yes - Bag # <u>3</u>]
Comments:	of fish remains for re	sidual dissue alialysis	No
	of fish remains for re	sidual dissue alialysis	
	of fish remains for re	sidual dissue alialysis	
	of fish remains for re	sidual dissue alialysis	
	of fish remains for re	sidual dissue alialysis	

FISH COLI	LECTION SHEET		PROJECT #36	8
Sample No.	32	Date (D/M/	y): 05/03/93	
Location:	Site 1 (near	Brule lake)	Station:	
	4	* * *	•	
Species	YWFo	ork Length (mm) 72	Weight (g) 2.9	
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish(Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:	Yes No		
Liver Weigh	t:			
		Wt (g)	Sample #	
	Total	Wt (g)	Sample #	
			Sample # Vial 32	
	Total	>0.1		
	Total MFO	>0.1	Vial 32	
	Total MFO	>0.1	Vial 32	
	Total MFO Residual Tissue	>0.1	Vial 32 Bag	
	Total MFO Residual Tissue	> o . l	Vial 32 Bag	
	Total MFO Residual Tissue	> o . l	Vial 32 Bag ✓ Yes - Bag # 32	
Preservation	Total MFO Residual Tissue	> o . l	Vial 32 Bag ✓ Yes - Bag # 32	
Preservation	Total MFO Residual Tissue	> o . l	Vial 32 Bag ✓ Yes - Bag # 32	
Preservation	Total MFO Residual Tissue	> o . l	Vial 32 Bag ✓ Yes - Bag # 32	
Preservation	Total MFO Residual Tissue	> o . l	Vial 32 Bag ✓ Yes - Bag # 32	

FISH COLI	LECTION SHEET		PROJEC	T #368
Sample No.	33	Date (D/M/	Y): 05/03/0	3
Location:	Site 1 Chear	Brule Lake)	Station:	
		* * *	•	
Species	MW Fo	ork Length (mm) 7(Weight (g)	2.3
SexQ	9	Age Structure	÷	
Capture Met	hod:			
Set Li	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:	Yes No		
THACH AACISH	L.			
Liver weigh		Wt (g)	Sample #	
Liver weigh	Total	Wt (g)	Sample #	
Liver weigh		Wt (g) > 0, 1 > 0, 1	Sample #	
Liver Weigh	Total	>0.1	_	
	Total MFO Residual Tissue	>0.1	Vial 33 Bag	33
	Total MFO Residual Tissue	>0.1 >0.1	Vial 33 Bag	33
Preservation	Total MFO Residual Tissue	>0.1 >0.1	Vial 33 Bag	33
Preservation	Total MFO Residual Tissue	>0.1 >0.1	Vial 33 Bag	33
Preservation	Total MFO Residual Tissue	>0.1 >0.1	Vial 33 Bag	33

FISH COLI	LECTION SHEET		PROJECT #368
Sample No.	34	Date (D/M/	y). 05/03/93
Location:	Site 1 (nea	- Brule lake)	Station:
		* * *	•
Species	1W Fo	rk Length (mm) 60	Weight (g) 1.3
Sex	19	Age Structure	:
Capture Met	hod:		
Set Li	ne Gee Tra	p Dip Net	Electrofish Other
if other, spec	eify:		Bait:
Gross Pathol	ogy Sheet:	Yes No	
Liver Weigh	t:		
		Wt (g)	Sample #
	Total	Wt (g)	Sample #
	Total MFO	> 0.1	Sample # Vial 3 4
	MFO	> 0.1	Vial 34
	MFO	> 0.1	Vial 34
Preservation	MFO Residual Tissue	> 0.1	Vial 34
Preservation	MFO Residual Tissue	> 0.1 > 0.1	Vial 3 4 Bag
Preservation Comments:	MFO Residual Tissue	> 0.1 > 0.1	Vial 3 4 Bag ✓ Yes - Bag # 34
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3 4 Bag ✓ Yes - Bag # 34
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3 4 Bag ✓ Yes - Bag # 34
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3 4 Bag ✓ Yes - Bag # 34
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3 4 Bag ✓ Yes - Bag # 34

FISH COL	LECTION SHEET		PROJE	CT #368
Sample No.	35	Date (D/M/	ry): 05/03/9	3
Location:	site I (near !	Brule lake)	Station: _	
	*	* * 1	· ·	
			Weight (g)	
,		Age Structure		
Capture Met	thod:			
Set L	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spe	cify:		Bait:	
Gross Patho	logy Sheet:	_ YesNo		
		Wt (g)	Sample #	1
	Total	>0.1		
	MFO	70.1	Vial 35	
	Residual Tissue		Bag	
Preservation	of fish remains for re	esidual tissue analysis	Yes - Bag #	<u>35</u>
Comments:				
		Sampler(s)	sen Istack	

FISH COLI	LECTION SHEET		PROJECT	#368
Sample No.	36	Date (D/M/	y): 05/03/93	3
Location:	Site 1 (nea	r Brule lake)	Station:	
	¥	alc alc alc		
Species	<u> </u>	ork Length (mm) 6	Weight (g)	1.7
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
if other, spec	eify:		Bait:	
Gross Pathol	ogy Sheet:	YesNo		
Liver Weigh	t:			
		Wt (g)	Sample #	
	Total	Wt (g)	Sample #	
	Total MFO		Sample # Vial 36	
		>0.1		
	MFO	>0.1	Vial 36	
	MFO	>0.1	Vial 36	
Preservation	MFO Residual Tissue	>0.1	Vial 36 Bag	36
Preservation	MFO Residual Tissue	> 0.1	Vial 36 Bag	36
Preservation Comments:	MFO Residual Tissue	> 0.1	Vial 3.6 Bag ✓ Yes - Bag # 2	36
	MFO Residual Tissue	> 0.1	Vial 3.6 Bag ✓ Yes - Bag # 2	36_
	MFO Residual Tissue	> 0.1	Vial 3.6 Bag ✓ Yes - Bag # 2	36
	MFO Residual Tissue	> 0.1	Vial 3.6 Bag ✓ Yes - Bag # 2	36
	MFO Residual Tissue	> 0.1	Vial 3.6 Bag ✓ Yes - Bag # 2	3.6

FISH COLI	LECTION SHEET		PROJECT	#368
Sample No.	37	Date (D/M/	y): 05/03/93	
Location:	Site I LAPE	· Brule lake)	Station:	
		* * * *	•	
			Weight (g)	
Sex	19	Age Structure		
Capture Met	hod:			
Set Li	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:	Yes No		
		Wt (g)	Sample #	
	Total	Wt (g) > Ø,	Sample #	
	Total MFO		Sample # Vial > 7	
		>0.1		
	MFO	>0.1	Vial 37	
Preservation	MFO Residual Tissue	>0.1	Vial 3.7 Bag ✓ Yes - Bag # 3.	Z
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3.7 Bag	7_
Preservation Comments:	MFO Residual Tissue	> 0.1 > 0.1	Vial 3.7 Bag ✓ Yes - Bag # 3.	7
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3.7 Bag ✓ Yes - Bag # 3.	7
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3.7 Bag ✓ Yes - Bag # 3.	7
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3.7 Bag ✓ Yes - Bag # 3.	7
	MFO Residual Tissue	> 0.1 > 0.1	Vial 3.7 Bag ✓ Yes - Bag # 3.	7

FISH COLI	LECTION SHEET		PROJECT #368
Sample No.	. 38	Date (D/M/	y): 05/03/93
Location:	Site 1 (near (Bruk lake)	Station:
Species	For the following forms of the following forms for the following for the follo	* * * ork Length (mm) 6	Weight (g) Electrofish Other
Gross Pathol	ogy Sheet:	Yes No	
Liver Weigh	t:		
	*	Wt (g)	Sample #
	Total	Wt (g)	Sample #
	Total MFO		Sample # Vial 38
		>0.1	
Preservation Comments:	MFO Residual Tissue	>0.1	Vial 38
	MFO Residual Tissue	>0.1 >0.1	Vial 3 € Bag Yes - Bag # 3 € No

FISH COL	LECTION SHEET		PROJECT	#368
Sample No.	39	Date (D/M/	y). 05/03/93	
Location:	Site 1 (near	- Brule lake)	Station:	
		* * 1	•	
			Weight (g)	
Capture Met	thod:			
-		n Din Net	Electrofish	Other
			Bait:	
Gross Patho	logy Sheet:	Yes No		
Liver Weigh	**			
Liver Weigh	IL.			
Liver weigh		Wt (g)	Sample #	
Liver weigh	Total	Wt (g)		
Liver weigh	Total MFO		Sample # Vial 30	
Liver weigh	Total	> 0.1		
	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 39 Bag	9
	Total MFO Residual Tissue	> 0.1	Vial 30 Bag Yes - Bag # 3	39_
	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 39 Bag	39_
	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 30 Bag Yes - Bag # 3	39_
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 30 Bag Yes - Bag # 3	39
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 30 Bag Yes - Bag # 3	39
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 30 Bag Yes - Bag # 3	39
Preservation	Total MFO Residual Tissue	> 0.1 > 0.1	Vial 30 Bag Yes - Bag # 3	39

	LECTION SHEET		PROJECT #368	
Sample No.	40	Date (D/M/	y). 05/03/93	
Location:	site! (near	Brule lake)	Station:	_
		* * *		
			Weight (g)	
Capture Meti	hod:			
_		p Dip Net	Electrofish Oth	er
			Bait:	
Gross Pathol	ogy Sheet:	YesNo		
Liver Weight	t:			
		Wt (g)	Sample #	
ı		**** (g)		
	Total	>0.1		
	MFO	> 0. 1 > 0. 1	Vial 40	
		>0.1		
Preservation	MFO Residual Tissue	>0.1	Vial 40 Bag	
Preservation Comments:	MFO Residual Tissue	> 0. 1 > 0. 1	Vial 40 Bag ✓ Yes - Bag # 40	
	MFO Residual Tissue	> 0. 1 > 0. 1	Vial 40 Bag ✓ Yes - Bag # 40	_
	MFO Residual Tissue	> 0. 1 > 0. 1	Vial 40 Bag ✓ Yes - Bag # 40	
	MFO Residual Tissue	> 0. 1 > 0. 1	Vial 40 Bag ✓ Yes - Bag # 40	

TADIT COL	LECTION SHEET		PROJECT #:	368
Sample No.	41	Date (D/M/	ry: 05/03/93	
Location:	site 1 liver	Brule lake)	Station:	
		ale ale al	k	
Species^	MW Fo	ork Length (mm) 5	9 Weight (g)	3
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
			Bait:	
Gross Pathol	ogy Sheet:	Yes No		
Liver Weigh	t:			
		Wt (g)	Sample #	
4	Total	Wt (g)	Sample #	
	Total MFO		Vial 4	
		> 0.1	_	
Preservation	MFO Residual Tissue	> 0.1 > 0.1	Vial 4 Bag	
Preservation	MFO Residual Tissue	> 0.1	Vial 4 Bag Yes - Bag # 4	
Preservation Comments:	MFO Residual Tissue	> 0.1 > 0.1	Vial 4 Bag	
	MFO Residual Tissue	> 0.1 > 0.1	Vial 4 Bag Yes - Bag # 4	
	MFO Residual Tissue	> 0.1 > 0.1	Vial 4 Bag Yes - Bag # 4	
	MFO Residual Tissue	> 0.1 > 0.1	Vial 4 Bag Yes - Bag # 4	
	MFO Residual Tissue	> 0.1 > 0.1	Vial 4 Bag Yes - Bag # 4	

FISH COLI	LECTION SHEET		PROJECT #368	3
Sample No.	42	Date (D/M/	y). 05/03/93	
Location:	site I (near	- Brule lake)	Station:	
		ak ak a		
Species/	IW Fo	ork Length (mm) 60	Weight (g)	
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish O	ther
			Bait:	
Gross Pathol	ogy Sheet:	Yes No		
Liver Weigh	ă.			
Liver Weigh	t:			
Liver weigh	t:	Wt (g)	Sample #	
Liver weigh	Total		Sample #	
Liver weigh		Wt (g)	Sample # Vial 42	
Liver weigh	Total	>0.1		
Liver weigh	Total MFO	>0.1	Vial 42	
Liver weigh	Total MFO	>0.1	Vial 42	
	Total MFO Residual Tissue	>0.1	Vial 42	
	Total MFO Residual Tissue	>0.1	Vial 42 Bag	
	Total MFO Residual Tissue	>0.1	Vial 42 Bag ✓ Yes - Bag # 42	
Preservation	Total MFO Residual Tissue	>0.1	Vial 42 Bag ✓ Yes - Bag # 42	
Preservation	Total MFO Residual Tissue	>0.1	Vial 42 Bag ✓ Yes - Bag # 42	
Preservation	Total MFO Residual Tissue	>0.1	Vial 42 Bag ✓ Yes - Bag # 42	
Preservation	Total MFO Residual Tissue	>0.1	Vial 42 Bag ✓ Yes - Bag # 42	

FISH COLI	LECTION SHEET		PROJEC	Г #368
Sample No.	43	Date (D/M/	(Y): 05/03/9	3
Location:	Site I inea	r Brule lake)	Station:	
		ak ak a		
			Weight (g)	
Sex9	9	Age Structure	=	
Capture Met	hod:			
Set Li	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Cross Dathal	lagy Chast	Van Na		
Gross Pathol	logy Sheet:	_ res No		
Liver Weigh	t:	Γ		
1		Wt (g)	Sample #	
. "	Total	>0.1		
	MFO	>0.1	Vial 43	
	Residual Tissue		Bag	
Preservation	of fish remains for re	esidual tissue analysis	Yes - Bag # _	43
			No	
Comments:				

	LECTION SHEET			PROJEC	T #368
Sample No.	44	Date (D/M/	′Y) <u>·</u>	05/03/93	
Location:	Site Inpar	- Brule lake)		Station:	
		* * 1	k .		
		ork Length (mm) 66			
Sex	99	Age Structure	=		-
Capture Met	thod:				
Set Li	ine Gee Tra	p Dip Net	V.	Electrofish	Other
if other, spec	cify:		Bait:		
Gross Pathol	logy Sheet:	Yes No	* ,		
Liver Weigh	ıt:				
		Wt (g)	S	ample #	
	Total	>0.1			
	MFO	> 0.1 > 0.1	Vial	44	
			Vial Bag	44	
Preservation	MFO Residual Tissue		Bag	44 Yes - Bag#_	<u>44</u>
Preservation	MFO Residual Tissue	>0.1	Bag		<u>44</u>
Preservation Comments:	MFO Residual Tissue	>0.1	Bag	✓ Yes - Bag # _	<u>44</u>
	MFO Residual Tissue	>0.1	Bag	✓ Yes - Bag # _	<u>44</u>
	MFO Residual Tissue	>0.1	Bag	✓ Yes - Bag # _	<u>44</u>
	MFO Residual Tissue	>0.1	Bag	✓ Yes - Bag # _	<u>44</u>

TIOIT COL	LECTION SHEET		PROJEC	71 #368
Sample No.	Blank 2	Date (D/M/	Y): 05/03/	93
Location:	site 1 (near	- Brule lake)	Station: _	
	+	aje aje aje		
Species	VA Fo	ork Length (mm) N	A Weight (g)	
Capture Met	hod:			
Set Li	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spec	cify: NA		Bait:	
Gross Pathol	logy Sheet:	Yes No		
Liver Weigh	t: پُرْء	•		
				7
		Wt (g)	Sample #	
	Total	Wt (g)	Sample #	
	Total MFO	Wt (g) N A N A	Sample # Vial	
		NA	•	
	MFO	NA	Vial	
	MFO	NA	Vial	
Preservation	MFO Residual Tissue	NA	Vial Bag	<u>Bla</u> nk 2
Preservation	MFO Residual Tissue	N A N A	Vial Bag	<u>Bla</u> nk 2
Preservation Comments:	MFO Residual Tissue	N A N A	Vial Bag Yes - Bag #	<u>Bla</u> nk 2
	MFO Residual Tissue	N A N A	Vial Bag Yes - Bag #	Blank 2
	MFO Residual Tissue	N A N A	Vial Bag Yes - Bag #	Blank 2
	MFO Residual Tissue	N A N A	Vial Bag Yes - Bag #	Blank 2
	MFO Residual Tissue	N A N A	Vial Bag Yes - Bag # No	Blank 2

FISH COLI	LECTION SHEET			PROJECT #368
Sample No.		Date (D/M/	Y): 24	ZL 93
Location:	Weldwood Brid	ge - 5te 2		Station:
		* * *		
Species	NW Fo	ork Length (mm) 13	<u> </u>	Weight (g) 2699
Sex		Age Structure		<u> </u>
Capture Met	hod:			
Set Li	ine Gee Tra	p Dip Net	_X_ Elec	ctrofish Other
if other, spec	cify:		Bait:	
	•			
Gross Pathol	logy Sheet:	Yes X No		
Liver Weigh	t:			
			Printed by the Control of the Park Street, Street, Street, St. 1985	
		Wt (g)	Samp	le #
	Total	Wt (g)	Samp	le #
	Total MFO		Samp Vial /	le #
		0.1		le #
	MFO	-0.1	Vial /	le #
Preservation	MFO Residual Tissue	-0.1	Vial / Bag —	-
Preservation	MFO Residual Tissue	0.1 -0.1 -03	Vial / Bag —	es - Bag # <u>1</u>
Preservation Comments:	MFO Residual Tissue	0.1 -0.1 -03	Vial / Bag -	es - Bag # <u>1</u>
Comments:	MFO Residual Tissue of fish remains for re	0.1 -0.1 -03	Vial / Bag —	es - Bag # <u>1</u>
Comments:	MFO Residual Tissue of fish remains for re	o.1	Vial / Bag —	es - Bag # <u>1</u>
Comments:	MFO Residual Tissue of fish remains for re	o.1	Vial / Bag —	es - Bag # <u>1</u>
Comments:	MFO Residual Tissue of fish remains for re	o.1	Vial / Bag —	es - Bag # <u>1</u>

FISH CULI	LECTION SHEET		PROJEC	T #368
Sample No.		Date (D/M/	y): 24/2/9	3
Location:	Site 2 - Weldow	ood Bridge	Station:	
		* * *	.	
			Weight (g)	
Sex		Age Structure		
Capture Met	thod:			
Set Li	ine Gee Tra	p Dip Net	Electrofish	Other
if other, spe	cify:		Bait:	
Gross Pathol	logy Sheet:	Yes × No		•
		-		
Liver Weigh				
Livel Weigh	u.	Wt (g)	Sample #	
	Total	<0.1	Sample #	
	MFO	< 0·1	Vial 2	
	Residual Tissue	0	Bag —	
			Dag	
			Dag	
			Dag	
Preservation	of fish remains for re		Yes - Bag #	2
Preservation	of fish remains for re			2
Preservation Comments:	of fish remains for re		Yes - Bag #	<u>2</u>
	of fish remains for re		Yes - Bag #	2
	of fish remains for re		Yes - Bag #	2
	of fish remains for re		Yes - Bag #	2
	of fish remains for re		Yes - Bag #	2

FISH COL	LECTION SHEET			PROJECT	# 368
Sample No.	3	Date (D/M/	Y)· -	24/2/92	
Location:	Site 2 - W	eldwood Bridg	2	Station:	
		* *	.		
Species	mw Fo	ork Length (mm) 78		Weight (g)	3.4
Sex		Age Structure	=		
Capture Met	thod:				
Set L	ine Gee Tra	p Dip Net	X	Electrofish	Other
		,			
Gross Patho	logy Sheet:	Yes X No			
Liver Weigh	it:				
Liver Weigh	t:	Wt (g)	S	Sample #	
Liver Weigh	Total	Wt (g) < 0 · 1	S	Sample #	
Liver Weigh	Г	40.1	Vial		
Liver Weigh	Total				
Liver Weigh	Total MFO	<0.1 <0.1	Vial	3	
	Total MFO Residual Tissue	20.1 20.1	Vial Bag	3	•
	Total MFO Residual Tissue	<0.1 <0.1	Vial Bag	3	3_
	Total MFO Residual Tissue	20.1 20.1	Vial Bag	3	3
	Total MFO Residual Tissue	20.1 20.1	Vial Bag		3
Preservation	Total MFO Residual Tissue	20.1 20.1	Vial Bag		3
Preservation	Total MFO Residual Tissue	20.1 20.1	Vial Bag		3
Preservation	Total MFO Residual Tissue	20.1 20.1	Vial Bag		3

FISH COLI	LECTION SHEET		PROJECT	#368
Sample No.	<u> </u>	Date (D/M/	/Y): 24 /2 /93	
Location:	ite 2 - Wel	Lwood Have B	Station:	
	•	ok ok o	k	
Species	Mω Fo	ork Length (mm) 6	9 Weight (g)	2.5
			e	
Capture Met	hod:			
_		p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Gross Pathol	ogy Sheet:	Yes X No		
Liver Weigh	t:			
2.1		Wt (g)	Sample #	
	Total	40-1		
	MFO	<0.1	Vial 4	
	Residual Tissue	0	Bag	
				*
Preservation	of fish remains for re	esidual tissue analysis	<u>X</u> Yes - Bag # <u>4</u>	-
			No	
Comments:			•	
*****		·		
		Sampler(s)	m/HL	

	LECTION SHEET			PROJEC	T #368
Sample No.	5	Date (D/M/	Y). 2	4/2/93	
Location:	Site 2 - Welde	* * * *		_ Station:	
		ork Length (mm) 5			
Sex		Age Structure	=		
Capture Met	thod:				
Set Li	ine Gee Tra	p Dip Net	<u></u>	Electrofish	Other
if other, spe	cify:		Bait: _		
Gross Patho	logy Sheet:	Yes X No			
Liver Weigh	it:				
		Wt (g)	Sa	mple #	
	Total	40:1			
	3.5770				
	MFO	20.1	Vial	5	
	MFO Residual Tissue	20·1	Vial Bag	5	
Preservation	Residual Tissue	£ 10	Bag	-	5
Preservation	Residual Tissue		Bag	Yes - Bag #	5
Preservation	Residual Tissue	£ 10	Bag	Yes - Bag #	5
Preservation Comments:	Residual Tissue	esidual tissue analysis	Bag	Yes - Bag # _	
Comments:	Residual Tissue	esidual tissue analysis	Bag	Yes - Bag #	
Comments:	Residual Tissue	esidual tissue analysis	Bag	Yes - Bag # _	
Comments:	Residual Tissue	esidual tissue analysis	Bag	Yes - Bag # _	
Comments:	Residual Tissue	esidual tissue analysis	Bag	Yes - Bag # _	

FISH COLI	LECTION SHEET		PROJEC	CT #368
Sample No.	6	Date (D/M/	Y): 24 /2 /9	5
Location:	Ste 2 - we	Idwood Haul	Sidge Station:	
		ak ak ak	• • • • • • • • • • • • • • • • • • •	
Species	ω Fo	rk Length (mm) 74	Weight (g)	3.1
Sex		Age Structure		
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	∠ Electrofish	Other
if other, spec	eify:		Bait:	
, ,		•		
Gross Pathol	logy Sheet:	Yes <u> </u>		,
Liver Weigh	t:			
		Wt (g)	Sample #]
	Total	20.1		
	MFO	<0.1	Vial 6]
9 1	Residual Tissue	0	Bag 5	
Preservation	of fish remains for re	esidual tissue analysis	Yes - Bag #	6
			No	
Comments:				

FISH COLI	LECTION SHEET		PROJECT #368
			Y): 24/2/93
Location:	Site 2 - we	Idward Hawl E	Bridge Station:
		* * * *	*
Species/	Fo	ork Length (mm) 45	Weight (g)
Capture Met			
Set Li	ne Gee Tra	p Dip Net	Electrofish Other
if other, spec	cify:		Bait:
Gross Pathol	ogy Sheet:	Yes ★ No	
Liver Weigh			
Liver Weigh	C:		
		WW74 (-)	C1- #
			. Sample #
	Total	Wt (g) <つ・/	
	Total MFO		Sample # Vial 7
		201	
	MFO	<0·1	Vial 7
	MFO	<0·1	Vial 7
Preservation	MFO Residual Tissue	<0·1	Vial 7 Bag
Preservation	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag
Preservation Comments:	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag
	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag
	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag
	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag
	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag
	MFO Residual Tissue	<0.1 <0.1	Vial 7 Bag

FISH COLI	LECTION SHEET		PROJECT	Г #368
Sample No.	2	Date (D/M/	Y). 24/2/93	
Location:	ite 2- weld	wood Aul Bride	Station:	
	4	.ak ak ak		
			Weight (g)	
Sex		Age Structure	=	
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
			Bait:	
Gross Pathol	logy Sheet:	Yes <u>×</u> No		
Liver Weigh	t:			
		Wt (g)	Sample #	÷-
	Total	£0,·1		*.
3.	MFO	20.1	Vial 2	
	Residual Tissue	6	Bag –	
	of fish remains for re	esidual tissue analysis	Yes - Bag # No	8
Comments:				
	·		1.	
				-
		Sampler(s)	an INL	

	LECTION SHEET		PROJECT #368
Sample No.	9	Date (D/M/	Y). 24/2/93
Location: \leq	te 2 - weldow	ed Bridge	Station:
		ak ak a	•
Species	MW Fo	ork Length (mm)	Weight (g)
Capture Met	hod:		
Set Li	ne Gee Tra	p Dip Net	
		,	Bait:
	•		
Gross Pathol	ogy Sheet:	Yes V No	
Liver Weigh	.		
Liver weigh		Wt (g)	Sample #
1		. *** (5)	Sample "
	Total	1-1	
v.	Total	ZO·1	West 6
	MFO	∠o·1	Vial 9
			Vial 9 Bag
	MFO		Page 2
Drogomistica	MFO Residual Tissue	Z0.1	Bag
Preservation	MFO Residual Tissue	Z0.1	Bag X Yes - Bag #
Preservation	MFO Residual Tissue	Z0.1	Bag
Preservation Comments:	MFO Residual Tissue	Z0.1	Bag X Yes - Bag #
	MFO Residual Tissue	Z0.1	Bag X Yes - Bag #
	MFO Residual Tissue	Z0.1	Bag X Yes - Bag #
	MFO Residual Tissue	Z0.1	Bag X Yes - Bag #
	MFO Residual Tissue	Z0.1	Bag X Yes - Bag #

	FISH COLI	LECTION SHEET		PROJECT	r # 368
	Sample No.	10	Date (D/M/	(Y): 24/2/97	3
	Location:	Sile 2- Weld	wood Haul B	station:	
			* * * *	k	
	Species 5	. <i>UL</i> Fo	ork Length (mm) /2	Weight (g)	12-7
			Age Structure		
	Capture Met				
	-		- Di- Not	V Floates Sah	Othor
				<u>★</u> Electrofish	
	if other, spec	cify:		Bait:	
	Gross Pathol	logy Sheet:	Yes No		
	Liver Weigh	t:			
	!		Wt (g)	Sample #	
	5	Total	7	· · · · · · · · · · · · · · · · · · ·	A)ız Lıu 1
D	HUSR-	Residual Tissue		Bag Bag	Found &
		Residual Tissue		Bag	PRES
	Preservation	of fish remains for re	esidual tissue analysis		10
				No	
	Comments:				
	* No LI	us R*			
	<u> </u>				
			Sampler(s) Sampler		

FISH COLI	LECTION SHEET			PROJECT	Г #368
Sample No.	BLANK TI	<u> </u>	Y): 2	4 706 93	<u> </u>
Location:	Site 2- Weld	wood Hand Bri	de	Station:	/
		* * *			
Species	Fo	ork Length (mm)		Weight (g)	21.8
Sex		Age Structure	=		
Capture Met	hod:				
Set Li	ne Gee Tra	p Dip Net	/_	Electrofish	Other
if other, spec	eify:		Bait: _		
Gross Pathol	ogy Sheet:	Yes No			
Liver Weigh	t•				
Liver weigh					
		Wt (g)	S	amnle #	
	Total	Wt (g)	S	ample #	
	Total MFO	21.8		_	550E
				ample #	ع د د
	MFO	21.8	Vial 3	_	302
	MFO	21.8	Vial 3	_	30E
Preservation	MFO Residual Tissue	21.8	Vial 3	SLAUK TIS	
Preservation	MFO Residual Tissue	21.8	Vial R	SLAUK TIS	
	MFO Residual Tissue	21.8	Vial R	Yes - Bag # _	
Comments:	MFO Residual Tissue of fish remains for re	21.8 21.8 esidual tissue analysis	Vial R	Yes - Bag # _	
Comments:	MFO Residual Tissue	21.8 21.8 esidual tissue analysis	Vial R	Yes - Bag # _	
Comments:	MFO Residual Tissue of fish remains for re	21.8 21.8 esidual tissue analysis	Vial R	Yes - Bag # _	
Comments:	MFO Residual Tissue of fish remains for re	21.8 21.8 esidual tissue analysis	Vial R	Yes - Bag # _	
Comments:	MFO Residual Tissue of fish remains for re	21.8 21.8 esidual tissue analysis	Vial 3	Yes - Bag #No	

FISH COLI	LECTION SHEET			PROJE	CT #368
Sample No.	11	Date (D/M/	Y)· 27	12 193	
Location:	5te 3 OBE	D Bridge		Station:	
	¥	* * *	.		•
Species	_M ω Fo	rk Length (mm) 41	4	Weight (g	841
		Age Structure			
Capture Met	thod:				
-		p Dip Net	X	Electrofish	Other
n omer, spe	city:		Dait: _		
Gross Patho	logy Sheet:	Yes No			
Liver weigh		Wt (g)	S	ample #	
	Total	14.8		-	
	MFO	5.8	Vial	1)	
	Residual Tissue	9.0	Bag	11	Jennel cont
Preservation	of fish remains for re	esidual tissue analysis		_ Yes - Bag # _ No	
Comments:					
-					
Anna productiva de la constanta de la constant			PATROLOGICO CONTRACTO POR ESTABLISMOSTA (PATROLOGICO)		
		· ·			

FISH COLI	LECTION SHEET		PROJECT #368
Sample No.	12	Date (D/M/	y). 2) /2/93
Location:	site 3- OBE	BRIDGE	Station:
		alc alc alc	•
Species/	ηω Fo	ork Length (mm) 199	9 Weight (g) 92.9
Capture Met			
_ ,		Die Mai	V 51-1-51
			Electrofish Other
if other, spec	cify:		Bait:
Gross Pathol	ogy Sheet:	Yes _×_ No	
Liver Weigh	t:		
_			
		Wt (g)	Sample #
	Total	Wt (g)	Sample #
			Sample # Vial
	Total	1.0	
	Total MFO	1.0	Vial 🔼
	Total MFO Residual Tissue	1.0	Vial 🔼 Bag —
Preservation	Total MFO Residual Tissue	1.0	Vial 🔼 Bag —
Preservation	Total MFO Residual Tissue	1.0	Vial 🔼 Bag —
Preservation Comments:	Total MFO Residual Tissue	1.0	Vial □ □ Bag — X Yes - Bag # □ □ □
	Total MFO Residual Tissue	1.0	Vial □ □ Bag — X Yes - Bag # □ □ □
	Total MFO Residual Tissue	1.0	Vial □ □ Bag — X Yes - Bag # □ □ □
	Total MFO Residual Tissue	1.0	Vial □ □ Bag — X Yes - Bag # □ □ □
	Total MFO Residual Tissue	1.0	Vial □ □ Bag — X Yes - Bag # □ □ □
	Total MFO Residual Tissue	1.0	Vial

FISH COLI	LECTION SHEET			PROJEC	T #368
Sample No.	13	Date (D/M/	/Y) <u>·</u>	27/2/93	
Location:	SITE 3- OBS	ED BRIDGE		Station:	
	4	3¢ 3¢ 3			
	<u>Μω</u> Fo				
Sex	1	Age Structure	=		
Capture Met	thod:				
Set Li	ine Gee Tra	p Dip Net	>	Electrofish	Other
if other, spe	cify:		Bait:	•	
Gross Pathol	logy Sheet:	Yes X No			
		Wt (g)		Sample #	
	Total	2.1			
	MFO	2.1	Vial	13	
	Residual Tissue	_	Bag		
				w.	•
Preservation	of fish remains for re	esidual tissue analysis		Yes - Bag #	13
			-	No	
Comments:					

FISH COL	LECTION SHEET		PRO	JECT #368
Sample No.	14	Date (D/M/	Y): 27/2/9	3
Location:	Site 3 - OBED	BRIDGE	Statio	n:
		* * *		*
		ork Length (mm) 18		
Sex	99	Age Structure		
Capture Met	thod:			
Set L	ine Gee Tra	p Dip Net	_X_ Electrofish	Other
if other, spe	cify:		Bait:	
Gross Patho	logy Sheet:	Yes X No		
I syrom II/osok				
Liver Weigh	t:	TX/4 (m):	Samula #	
Liver Weigh		Wt (g)	Sample #	
Liver Weigh	Total	0.8		
Liver Weigh	Total MFO		Vial 14	
Liver Weigh	Total	0.8		
	Total MFO Residual Tissue	0.8	Vial 14	
	Total MFO Residual Tissue	0.8	Vial 14 Bag —	ng # 14
	Total MFO Residual Tissue	0.8	Vial 14 Bag — Yes - Ba	ng # <u>14</u>
Preservation	Total MFO Residual Tissue	0.8	Vial 14 Bag —	ng # _14
	Total MFO Residual Tissue	0.8	Vial 14 Bag — Yes - Ba	ng # _14
Preservation	Total MFO Residual Tissue	0.8	Vial 14 Bag — Yes - Ba	ng # <u>14</u>
Preservation	Total MFO Residual Tissue	0.8	Vial 14 Bag — Yes - Ba	ng # <u>14</u>
Preservation	Total MFO Residual Tissue	0.8	Vial 14 Bag — Yes - Ba	ng # <u>14</u>
Preservation	Total MFO Residual Tissue	0.8	Vial 14 Bag — Yes - Ba No	ng # _14_

FISH COLI	LECTION SHEET		PROJEC	T #368
Sample No.	45	Date (D/M/	m. 08/03/9	73
Location:	Site 4 - Em	erson Lake	5 Bridge Station:	-
	/	ak ak a	Weight (g)	
Sex	- 1	Age Structure		
Capture Met	; _{ix}			
_		p Dip Net	Electrofish	Other
if other, spec	cify:		Bait:	
Gross Pathol Liver Weigh		Yes No		
		Wt (g)	Sample #	
	Total	0.7		·
	MFO	0.7	Vial 45	
	Residual Tissue		Bag ###	
Preservation	of fish remains for re	esidual tissue analysis	Yes - Bag #	45
Comments:				
				,
		¥		
		Commission No. 10	acy / nectil	

FISH COL	LECTION SHEET		PRO	DJECT #368
Sample No.	46	Date (D/M/	Y): 08/E	3/93
Location:	Site 4- Emer	son Lakes	Bridge Statio	on:
		* * 3		
Species	MWFo	ork Length (mm)	Weigh	t (g) <u>395.</u> 7
Sex		Age Structure	·	
Capture Met	thod:		,	
Set Li	ine Gee Tra	p Dip Net	Electrofis	h Other
if other, spec	cify:		Bait:	
Gross Pathol	logy Sheet:	Yes No		
Liver Weigh	t•			
Divor worgh				
		Wt (g)	Sample #	İ
	Total	Wt (g)	Sample #	
	Total MFO	Wt (g) 5.0 5.0	Sample # Vial 46	
		5.0		
	MFO	5.0	Vial 46	
	MFO	5.0	Vial 46 Bag	
Preservation	MFO	5.0 5.0	Vial 46 Bag	ng # <u>46</u>
Preservation	MFO Residual Tissue	5.0 5.0	Vial 46 Bag	ng # <u>46</u>
Preservation Comments:	MFO Residual Tissue	5.0 5.0	Vial 46 Bag Yes - Ba	ng # <u>46</u>
	MFO Residual Tissue	5.0 5.0	Vial 46 Bag Yes - Ba	ng # <u>46</u>
	MFO Residual Tissue	5.0 5.0	Vial 46 Bag Yes - Ba	ng # <u>46</u>
	MFO Residual Tissue	5.0 5.0	Vial 46 Bag Yes - Ba	ng # <u>46</u>
	MFO Residual Tissue	5.0 5.0	Vial 46 Bag Yes - Ba	ng # <u>46</u>

FISH COLI	LECTION SHEET		PROJEC	T #368
Sample No.	BLANK 3	Date (D/M/	<u>v). 08/03/</u>	93
Location:	Site 4 - E	merson Lakes	Station:	
		* * *		
Species	Fo	rk Length (mm)	Weight (g)	~ 16.7
Capture Met	hod:			
Set Li	ne Gee Tra	p Dip Net	Electrofish	Other
			Bait:	
	•		F	
Gross Pathol	ogy Sheet:	Yes No		
G1055 Tudio				
W 1 WW 1 1				
Liver Weigh	t:	WW74 /->	Committee #	1
Liver Weigh	,	Wt (g)	Sample #	
Liver Weigh	Total	Wt (g)		
Liver Weigh	Total MFO	Wt (g)	Sample # Vial	
Liver Weigh	Total	Wt (g)		
Liver Weigh	Total MFO	Wt (g)	Vial	
	Total MFO Residual Tissue		Vial Bag	
	Total MFO		Vial Bag	BLANK 3
	Total MFO Residual Tissue		Vial Bag	BLANK 3
	Total MFO Residual Tissue		Vial Bag Yes - Bag #	BLANK 3
Preservation	Total MFO Residual Tissue		Vial Bag Yes - Bag #	BLANK 3
Preservation	Total MFO Residual Tissue		Vial Bag Yes - Bag #	BLANK 3
Preservation	Total MFO Residual Tissue		Vial Bag Yes - Bag #	BLANK 3
Preservation	Total MFO Residual Tissue	esidual tissue analysis	Vial Bag Yes - Bag #	

					4	